CN1176014C - 一种直接合成超长连续单壁碳纳米管的工艺方法 - Google Patents
一种直接合成超长连续单壁碳纳米管的工艺方法 Download PDFInfo
- Publication number
- CN1176014C CN1176014C CNB021006849A CN02100684A CN1176014C CN 1176014 C CN1176014 C CN 1176014C CN B021006849 A CNB021006849 A CN B021006849A CN 02100684 A CN02100684 A CN 02100684A CN 1176014 C CN1176014 C CN 1176014C
- Authority
- CN
- China
- Prior art keywords
- carbon nanotube
- carbon nanometer
- walled carbon
- product
- ferrocene
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000034 method Methods 0.000 title claims abstract description 25
- 229910021392 nanocarbon Inorganic materials 0.000 title claims description 10
- 230000002194 synthesizing effect Effects 0.000 title abstract 2
- 238000006243 chemical reaction Methods 0.000 claims abstract description 41
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 40
- YTPLMLYBLZKORZ-UHFFFAOYSA-N Thiophene Chemical compound C=1C=CSC=1 YTPLMLYBLZKORZ-UHFFFAOYSA-N 0.000 claims abstract description 30
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 27
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims abstract description 23
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 claims abstract description 22
- KTWOOEGAPBSYNW-UHFFFAOYSA-N ferrocene Chemical compound [Fe+2].C=1C=C[CH-]C=1.C=1C=C[CH-]C=1 KTWOOEGAPBSYNW-UHFFFAOYSA-N 0.000 claims abstract description 20
- 229930192474 thiophene Natural products 0.000 claims abstract description 15
- 239000000654 additive Substances 0.000 claims abstract description 11
- 230000000996 additive effect Effects 0.000 claims abstract description 11
- 238000007233 catalytic pyrolysis Methods 0.000 claims abstract description 5
- 239000001257 hydrogen Substances 0.000 claims description 28
- 229910052739 hydrogen Inorganic materials 0.000 claims description 28
- 238000004523 catalytic cracking Methods 0.000 claims description 12
- 238000003672 processing method Methods 0.000 claims description 6
- 239000011259 mixed solution Substances 0.000 claims description 2
- 238000002360 preparation method Methods 0.000 abstract description 12
- 238000005516 engineering process Methods 0.000 abstract description 8
- 229910002804 graphite Inorganic materials 0.000 abstract description 3
- 239000010439 graphite Substances 0.000 abstract description 3
- 239000003054 catalyst Substances 0.000 abstract 1
- 239000000463 material Substances 0.000 abstract 1
- 239000000758 substrate Substances 0.000 abstract 1
- 239000002109 single walled nanotube Substances 0.000 description 53
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 42
- 239000007789 gas Substances 0.000 description 23
- 229910052786 argon Inorganic materials 0.000 description 21
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 9
- 230000005540 biological transmission Effects 0.000 description 8
- 238000001069 Raman spectroscopy Methods 0.000 description 7
- 238000002425 crystallisation Methods 0.000 description 7
- 230000008025 crystallization Effects 0.000 description 7
- 150000002431 hydrogen Chemical class 0.000 description 7
- 238000009413 insulation Methods 0.000 description 7
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 7
- 239000000243 solution Substances 0.000 description 6
- 239000002134 carbon nanofiber Substances 0.000 description 5
- 239000002048 multi walled nanotube Substances 0.000 description 5
- 239000006200 vaporizer Substances 0.000 description 4
- 239000002041 carbon nanotube Substances 0.000 description 3
- 229910021393 carbon nanotube Inorganic materials 0.000 description 3
- 238000002156 mixing Methods 0.000 description 2
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- PFUQSACCWFVIBW-UHFFFAOYSA-N [C].C1=CC=CC=C1 Chemical compound [C].C1=CC=CC=C1 PFUQSACCWFVIBW-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000012159 carrier gas Substances 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000002079 double walled nanotube Substances 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000002086 nanomaterial Substances 0.000 description 1
- 238000000197 pyrolysis Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/15—Nano-sized carbon materials
- C01B32/158—Carbon nanotubes
- C01B32/16—Preparation
- C01B32/162—Preparation characterised by catalysts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/15—Nano-sized carbon materials
- C01B32/158—Carbon nanotubes
- C01B32/16—Preparation
- C01B32/164—Preparation involving continuous processes
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/26—Deposition of carbon only
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B25/00—Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/02—Elements
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/60—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
- C30B29/605—Products containing multiple oriented crystallites, e.g. columnar crystallites
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2202/00—Structure or properties of carbon nanotubes
- C01B2202/02—Single-walled nanotubes
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2202/00—Structure or properties of carbon nanotubes
- C01B2202/08—Aligned nanotubes
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2202/00—Structure or properties of carbon nanotubes
- C01B2202/20—Nanotubes characterized by their properties
- C01B2202/34—Length
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2202/00—Structure or properties of carbon nanotubes
- C01B2202/20—Nanotubes characterized by their properties
- C01B2202/36—Diameter
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S977/00—Nanotechnology
- Y10S977/70—Nanostructure
- Y10S977/734—Fullerenes, i.e. graphene-based structures, such as nanohorns, nanococoons, nanoscrolls or fullerene-like structures, e.g. WS2 or MoS2 chalcogenide nanotubes, planar C3N4, etc.
- Y10S977/742—Carbon nanotubes, CNTs
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S977/00—Nanotechnology
- Y10S977/70—Nanostructure
- Y10S977/734—Fullerenes, i.e. graphene-based structures, such as nanohorns, nanococoons, nanoscrolls or fullerene-like structures, e.g. WS2 or MoS2 chalcogenide nanotubes, planar C3N4, etc.
- Y10S977/742—Carbon nanotubes, CNTs
- Y10S977/75—Single-walled
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/29—Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
- Y10T428/2913—Rod, strand, filament or fiber
- Y10T428/2918—Rod, strand, filament or fiber including free carbon or carbide or therewith [not as steel]
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Nanotechnology (AREA)
- Organic Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Metallurgy (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Physics & Mathematics (AREA)
- General Chemical & Material Sciences (AREA)
- General Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Composite Materials (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
一种直接合成超长连续单壁碳纳米管的工艺方法,涉及一种碳纳米材料的制备工艺。本发明采用立式浮动催化裂解法,以正己烷为碳源,二茂铁为催化剂,噻吩为添加剂制成反应溶液,以蒸汽的形式随氢气一同引入反应器进行催化裂解。在特定的工艺参数下,制得的超长绳状单壁碳纳米管产物,管束定向性良好,纯度最高可达85%;管束中的单壁碳纳米管生长连续、平直,长度可达20cm(单根单壁碳纳米管长径比>108)。本发明由于采用立式浮动催化裂解法,仅需一个立式电炉,且不需要石墨基底,二茂铁直接溶解在正己烷溶液中,无需预先在氢气气氛下还原,因此操作简单、方便,可实现超长连续单壁碳纳米管束的低成本批量制备。
Description
技术领域
本发明涉及一种碳纳米材料的制备工艺,尤其涉及一种单壁碳纳米管的合成工艺方法。
背景技术
单壁碳纳米管的发现极大地推动了纳米科技研究及其应用领域的发展。1996年,Smalley研究小组在《科学》杂志(Science,1996,273(5274):483~487)上报道了采用激光蒸发工艺合成高纯度单壁碳纳米管的方法。1997年,Journet等人在《自然》杂志(Nature,1997,388:756~758)报道了采用直流电弧法批量制备单壁碳纳米管的工艺。另外,采用催化裂解工艺制备单壁碳纳米管也成为该研究领域的焦点之一,因为该方法是最可能实现碳纳米管大批量工业化的制备方法。Dai等人在文献(Chemical Physics Letters,1996,260:471~475)中首先采用CO气体为碳源制备了单壁碳纳米管,但其产量及产率很低。该方法制备单壁碳纳米管的工艺条件比较苛刻,参数控制比较严格。后来,乙烯、甲烷、苯等都被作为碳源制备单壁碳纳米管,通过对工艺参数的改进,产量和产率有所提高。目前单壁碳纳米管的批量制备仍是该领域的难点和热点。Cheng等人在文献(Applied Physics Letters,1998,72(25):3282~3284)中介绍了卧式浮动催化裂解工艺制备单壁碳纳米管。虽然以上方法实现了单壁碳纳米管的制备,但所得单壁碳纳米管的长度均为微米量级,且管束间定向性差,单壁碳纳米管纯度低,从而限制了理论及实验上对超长连续单壁碳纳米管的研究。制备超长连续的单壁碳纳米管是一个重点、难点,在理论及应用方面具有重要意义。这里所指的“超长”是指单壁碳纳米管的长度达到十厘米量级;“连续”是指管束中的单壁碳纳米管连续生长,无间断,并且有良好的定向性。
在催化裂解法中,立式浮动催化裂解法(Carbon,2000,38(14):1933~1937)是大批量制备多壁碳纳米管和碳纳米纤维的一种有效方法。现有的立式浮动催化裂解法以苯为碳源,二茂铁(Fe(C5H5)2)为催化剂,噻吩(C4H4S)为添加剂。设备简单,成本低,适于大批量生产。同卧式浮动催化裂解法实验设备相比,立式浮动催化裂解法仅需一个立式电炉,并且不需要石墨基底。二茂铁直接溶解在碳源中,无需预先在氢气气氛下还原,二茂铁随溶液注入蒸发器,操作简单方便。但由于苯含碳量高,仅适用于制备多壁碳纳米管和碳纳米纤维。且苯有毒性,对环境造成污染。要使用立式浮动催化裂解法实现单壁碳纳米管的制备,就需要寻找一种含碳量低且无毒性的碳源。
发明内容
本发明的目的是提供一种直接合成超长连续单壁碳纳米管的工艺方法,实现超长连续单壁碳纳米管束的低成本批量制备,使所制得的单壁碳纳米管束定向性良好,纯度高且长度长。
本发明的目的是通过如下技术方案实现的:一种直接合成超长连续单壁碳纳米管的工艺方法,采用立式浮动催化裂解法,以二茂铁(Fe(C5H5)2)为催化剂,噻吩(C4H4S)为添加剂溶入碳源中制成反应溶液,以蒸汽的形式随氢气一同引入反应器进行催化裂解,其特征在于该方法是以正己烷(C6H14)为碳源。
所述反应溶液是由正己烷、(0.010~0.020g/ml)的二茂铁和(0.2~0.6wt.%)噻吩组成的混合液。反应溶液引入流量为0.2~0.8ml/min,氢气的流量为150~300ml/min。
本发明由于采用立式浮动催化裂解法,该方法仅需一个立式电炉,并且不需要石墨基底,二茂铁直接溶解在正己烷溶液中,无需预先在氢气气氛下还原,且二茂铁随溶液注入蒸发器,因此操作简单、方便,可实现超长连续单壁碳纳米管束的低成本批量制备。制得的超长绳状单壁碳纳米管产物,管束定向性良好,纯度最高可达85%;管束中的单壁碳纳米管生长连续、平直,长度可达20cm(单根单壁碳纳米管长径比>108)。
附图说明
图1:为本发明(立式浮动催化裂解法)所用设备的结构原理示意图。
图2:为利用扫描电子显微镜检测的产物的微观形貌图。
图3:为利用透射电子显微镜检测的产物的微观形貌图。
具体实施方式
下面结合附图1具体说明本发明的工艺过程及实施方式:
立式浮动催化裂解法的设备主体为立式陶瓷反应管1(外径68mm,内径58mm,长度1600mm),该管垂直放置在电阻炉2(额定温度为1200℃,额定功率6KW)中。反应容器的上部是蒸发器3,包括进气口4及反应溶液(正己烷、二茂铁、噻吩的混合溶液)入口5。反应溶液6通过液体微流量泵7引入蒸发器3(蒸发温度150~200℃)随载气(氢气)以蒸汽的形式一同引入反应容器1。反应容器1下面安装产物收集瓶8、过滤器9及尾气出口10。其具体操作步骤如下:
(1)首先通氩气100ml/min并开始升高炉温,至1000℃左右时开始通氢气并停止氩气。
(2)升温到预定反应温度(1100~1200℃),引入反应溶液开始制备产物。反应溶液6为正己烷(C6H14)、二茂铁(Fe(C5H5)2)和噻吩(C4H4S)的混合溶液。其中正已烷为碳源,二茂铁(0.010~0.020g/ml)为催化剂,噻吩(0.2~0.6wt.%)作为添加剂。
(3)反应溶液6引入流量为0.2~0.8ml/min,氢气的流量为150~300ml/min。
(4)保温一段时间后停止升温,通氩气(100ml/min)冷却并停止氢气,温度降至室温后收集产物。
使用扫描电子显微镜(如图2所示)和透射电子显微镜(如图3所示)检测产物的微观形貌。
使用显微共焦拉曼光谱仪检测产物的直径分布及晶化程度。
检测结果表明,立式浮动催化技术可以实现超长连续的单壁碳纳米管的批量制备。产物由大量密集排列的定向单壁碳纳米管束组成;管束中的单壁碳纳米管长度可达20cm,直径分布在1~2nm之间。单壁碳纳米管的纯度最高可达85%。
实施例1:
(1)首先通氩气100ml/min并开始升温,至1000℃左右时开始通氢气并停止氩气。
(2)升温到预定反应温度(1100℃),引入反应溶液开始制备产物。反应溶液中采用正己烷(C6H14)为碳源,二茂铁(Fe(C5H5)2,0.010g/ml)为催化剂,噻吩(C4H4S,0.6wt.%)作为添加剂。
(3)反应溶液引入流量为0.5ml/min,氢气的流量为200ml/min。
(4)保温约60min后停止升温。通氩气(100ml/min)冷却并停止氢气,温度降至室温后收集产物。
(5)使用扫描电子显微镜和透射电子显微镜检测产物的微观形貌。产物为20cm长细丝,由单壁碳纳米管和部分碳纳米管纤维组成,单壁碳纳米管含量为60%。
(6)使用显微共焦拉曼光谱仪检测产物的直径分布及晶化程度。单壁碳纳米管产物由大量密集排列的定向单壁碳纳米管束(直径20~60nm)组成。管束由直径在1~2nm间的单壁碳纳米管组成。
实施例2:
(1)首先通氩气100ml/min并开始升温,至1000℃左右时开始通氢气并停止氩气。
(2)升温到预定反应温度(1150℃),引入反应溶液开始制备产物。反应溶液采用正己烷(C6H14)为碳源,二茂铁(Fe(C5H5)2,0.020g/ml)为催化剂,噻吩(C4H4S,0.4wt.%)作为添加剂。
(3)反应溶液引入流量为0.5ml/min,氢气的流量为250ml/min。
(4)保温约60min后停止升温。通氩气(100ml/min)冷却并停止氢气,温度降至室温后收集产物。
(5)使用扫描电子显微镜和透射电子显微镜检测产物的微观形貌。产物为20cm长细丝,由单壁碳纳米管和少量双壁碳纳米管组成,单壁碳纳米管含量为85%。
(6)使用显微共焦拉曼光谱仪检测产物的直径分布及晶化程度。单壁碳纳米管产物由大量密集排列的定向单壁碳纳米管束(直径10~50nm)组成。管束由直径在1~2nm间的单壁碳纳米管组成。
实施例3:
(1)首先通氩气100ml/min并开始升温,至1000℃左右时开始通氢气并停止氩气。
(2)升温到预定反应温度(1200℃),引入反应溶液开始制备产物。反应溶液中采用正己烷(C6H14)为碳源,二茂铁(Fe(C5H5)2,0.018g/ml)为催化剂,噻吩(C4H4S,0.4wt.%)作为添加剂。
(3)反应溶液引入流量为0.2ml/min,氢气的流量为250ml/min。
(4)保温约60min后停止升温。通氩气(100ml/min)冷却并停止氢气,温度降至室温后收集产物。
(5)使用扫描电子显微镜和透射电子显微镜检测产物的微观形貌。产物为20cm长细丝,由单壁碳纳米管和少量多壁碳纳米管、碳纳米纤维组成,单壁碳纳米管含量为80%。
(6)使用显微共焦拉曼光谱仪检测产物的直径分布及晶化程度。单壁碳纳米管产物由大量密集排列的定向单壁碳纳米管束(直径10~60nm)组成。管束由直径在1~2nm间的单壁碳纳米管组成。
实施例4:
(1)首先通氩气100ml/min并开始升温,至1000℃左右时开始通氢气并停止氩气。
(2)升温到预定反应温度(1200℃),引入反应溶液开始制备产物。反应溶液中采用正己烷(C6H14)为碳源,二茂铁(Fe(C5H5)2,0.018g/ml)为催化剂,噻吩(C4H4S,0.2wt.%)作为添加剂。
(3)反应溶液引入流量为0.8ml/min,氢气的流量为250ml/min。
(4)保温约60min后停止升温。通氩气(100ml/min)冷却并停止氢气,温度降至室温后收集产物。
(5)使用扫描电子显微镜和透射电子显微镜检测产物的微观形貌。产物为20cm长细丝,由单壁碳纳米管和碳纳米纤维组成,单壁碳纳米管含量为70%。
(6)使用显微共焦拉曼光谱仪检测产物的直径分布及晶化程度。单壁碳纳米管产物由大量密集排列的定向单壁碳纳米管束(直径20~60nm)组成。管束由直径在1~2nm间的单壁碳纳米管组成。
实施例5:
(1)首先通氩气100ml/min并开始升温,至1000℃左右时开始通氢气并停止氩气。
(2)升温到预定反应温度(1200℃),引入反应溶液开始制备产物。反应溶液中采用正己烷(C6H14)为碳源,二茂铁(Fe(C5H5)2,0.018g/ml)为催化剂,噻吩(C4H4S,0.5wt.%)作为添加剂。
(3)反应溶液引入流量为0.5ml/min,氢气的流量为150ml/min。
(4)保温约60min后停止升温。通氩气(100ml/min)冷却并停止氢气,温度降至室温后收集产物。
(5)使用扫描电子显微镜和透射电子显微镜检测产物的微观形貌。产物为20cm长细丝,由单壁碳纳米管和多壁碳纳米管、碳纳米纤维组成,单壁碳纳米管含量为70%。
(6)使用显微共焦拉曼光谱仪检测产物的直径分布及晶化程度。单壁碳纳米管产物由大量密集排列的定向单壁碳纳米管束(直径20~60nm)组成。管束由直径在1~2nm间的单壁碳纳米管组成。
实施例6:
(1)首先通氩气100ml/min并开始升温,至1000℃左右时开始通氢气并停止氩气。
(2)升温到预定反应温度(1200℃),引入反应溶液开始制备产物。反应溶液中采用正己烷(C6H14)为碳源,二茂铁(Fe(C5H5)2,0.018g/ml)为催化剂,噻吩(C4H4S,0.5wt.%)作为添加剂。
(3)反应溶液引入流量为0.5ml/min,氢气的流量为300ml/min。
(4)保温约60min后停止升温。通氩气(100ml/min)冷却并停止氢气,温度降至室温后收集产物。
(5)使用扫描电子显微镜和透射电子显微镜检测产物的微观形貌。产物为20cm长细丝,由单壁碳纳米管和少量多壁碳纳米管组成,单壁碳纳米管含量为80%。
(6)使用显微共焦拉曼光谱仪检测产物的直径分布及晶化程度。单壁碳纳米管产物由大量密集排列的定向单壁碳纳米管束(直径10~50nm)组成。管束由直径在1~2nm间的单壁碳纳米管组成。
Claims (3)
1.一种直接合成超长连续单壁碳纳米管的工艺方法,采用立式浮动催化裂解法,以二茂铁为催化剂,噻吩为添加剂溶入碳源中制成反应溶液,以蒸汽的形式随氢气一同引入反应器进行催化裂解,其特征在于该方法是以正己烷为碳源。
2.按照权利要求1所述的一种直接合成超长连续单壁碳纳米管的工艺方法,其特征在于所述反应溶液是由正己烷、0.010~0.020g/ml的二茂铁和0.2~0.6wt.%的噻吩组成的混合液。
3.按照权利要求1所述的一种直接合成超长连续单壁碳纳米管的工艺方法,其特征在于反应溶液引入流量为0.2~0.8ml/min,氢气的流量为150~300ml/min。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB021006849A CN1176014C (zh) | 2002-02-22 | 2002-02-22 | 一种直接合成超长连续单壁碳纳米管的工艺方法 |
AU2003216383A AU2003216383A1 (en) | 2002-02-22 | 2003-02-24 | Direct synthesis of long single-walled carbon nanotube strands |
PCT/US2003/005529 WO2003072859A1 (en) | 2002-02-22 | 2003-02-24 | Direct synthesis of long single-walled carbon nanotube strands |
US10/370,519 US7615204B2 (en) | 2002-02-22 | 2003-02-24 | Direct synthesis of long single-walled carbon nanotube strands |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB021006849A CN1176014C (zh) | 2002-02-22 | 2002-02-22 | 一种直接合成超长连续单壁碳纳米管的工艺方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1365946A CN1365946A (zh) | 2002-08-28 |
CN1176014C true CN1176014C (zh) | 2004-11-17 |
Family
ID=4739439
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB021006849A Expired - Fee Related CN1176014C (zh) | 2002-02-22 | 2002-02-22 | 一种直接合成超长连续单壁碳纳米管的工艺方法 |
Country Status (2)
Country | Link |
---|---|
US (1) | US7615204B2 (zh) |
CN (1) | CN1176014C (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7824649B2 (en) | 2005-08-19 | 2010-11-02 | Tsinghua University | Apparatus and method for synthesizing a single-wall carbon nanotube array |
Families Citing this family (93)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5978833A (en) * | 1996-12-31 | 1999-11-02 | Intel Corporation | Method and apparatus for accessing and downloading information from the internet |
CN100411979C (zh) * | 2002-09-16 | 2008-08-20 | 清华大学 | 一种碳纳米管绳及其制造方法 |
WO2004065294A2 (en) * | 2003-01-17 | 2004-08-05 | Duke University | Systems and methods for producing single-walled carbon nanotubes (swnts) on a substrate |
CN101230145B (zh) * | 2003-02-13 | 2012-05-30 | 斯蒂茨丁荷兰聚合物学会 | 增强聚合物 |
WO2005053828A2 (en) * | 2003-11-07 | 2005-06-16 | Ahwahnee Technology, Inc. | Systems and methods for manufacture of carbon nanotubes |
WO2006073455A2 (en) * | 2004-05-07 | 2006-07-13 | The Regents Of The University Of California Los Alamos National Laboratory | Preparation of single-walled carbon nanotubes |
DE102004059814A1 (de) * | 2004-12-06 | 2006-06-08 | C. & E. Fein Gmbh | Kupplung, insbesondere für ein Elektrowerkzeug |
CN100500555C (zh) * | 2005-04-15 | 2009-06-17 | 清华大学 | 碳纳米管阵列结构及其制备方法 |
US7754183B2 (en) | 2005-05-20 | 2010-07-13 | Clemson University Research Foundation | Process for preparing carbon nanostructures with tailored properties and products utilizing same |
CA2897320A1 (en) | 2005-07-28 | 2007-01-28 | Nanocomp Technologies, Inc. | Systems and methods for formation and harvesting of nanofibrous materials |
CN100387516C (zh) * | 2005-11-10 | 2008-05-14 | 上海交通大学 | 直接连续制备超短碳纳米管的方法 |
CN100391834C (zh) * | 2006-09-22 | 2008-06-04 | 北京交通大学 | 高纯度多壁碳纳米管的制备方法 |
CN100443403C (zh) * | 2006-11-09 | 2008-12-17 | 上海交通大学 | 连续合成大直径单壁碳纳米管的方法 |
CN100450922C (zh) * | 2006-11-10 | 2009-01-14 | 清华大学 | 一种超长定向的碳纳米管丝/薄膜及其制备方法 |
US8951631B2 (en) | 2007-01-03 | 2015-02-10 | Applied Nanostructured Solutions, Llc | CNT-infused metal fiber materials and process therefor |
US9005755B2 (en) | 2007-01-03 | 2015-04-14 | Applied Nanostructured Solutions, Llc | CNS-infused carbon nanomaterials and process therefor |
US8951632B2 (en) | 2007-01-03 | 2015-02-10 | Applied Nanostructured Solutions, Llc | CNT-infused carbon fiber materials and process therefor |
US8158217B2 (en) | 2007-01-03 | 2012-04-17 | Applied Nanostructured Solutions, Llc | CNT-infused fiber and method therefor |
AU2008219693B2 (en) * | 2007-02-27 | 2012-04-12 | Nanocomp Technologies, Inc. | Materials for thermal protection and methods of manufacturing same |
EP2125212A2 (en) | 2007-03-23 | 2009-12-02 | Lydall, Inc. | Substrate for carrying catalytic particles |
TW200840888A (en) * | 2007-04-04 | 2008-10-16 | Univ Nat Cheng Kung | Carbon fiber of high thermal conduction and continuous gaseous growth and its manufacturing method and application |
US9061913B2 (en) | 2007-06-15 | 2015-06-23 | Nanocomp Technologies, Inc. | Injector apparatus and methods for production of nanostructures |
JP2011508364A (ja) | 2007-08-07 | 2011-03-10 | ナノコンプ テクノロジーズ インコーポレイテッド | 非金属電気伝導性および熱伝導性ナノ構造体ベースアダプター |
US8308930B2 (en) * | 2008-03-04 | 2012-11-13 | Snu R&Db Foundation | Manufacturing carbon nanotube ropes |
EP2274464A4 (en) | 2008-05-07 | 2011-10-12 | Nanocomp Technologies Inc | COMPOSITE SHEETS WITH NANOSTRUCTURES AND METHODS OF USE |
JP5968621B2 (ja) | 2008-05-07 | 2016-08-10 | ナノコンプ テクノロジーズ インコーポレイテッド | ナノ構造体ベースの加熱装置およびその使用方法 |
US8673258B2 (en) * | 2008-08-14 | 2014-03-18 | Snu R&Db Foundation | Enhanced carbon nanotube |
US8357346B2 (en) * | 2008-08-20 | 2013-01-22 | Snu R&Db Foundation | Enhanced carbon nanotube wire |
US8021640B2 (en) | 2008-08-26 | 2011-09-20 | Snu R&Db Foundation | Manufacturing carbon nanotube paper |
BRPI0806065B1 (pt) * | 2008-10-16 | 2021-05-18 | Petroleo Brasileiro S. A. - Petrobras | método para a produção de nanoesferas de carbono |
CA2750484A1 (en) | 2009-02-17 | 2010-12-16 | Applied Nanostructured Solutions, Llc | Composites comprising carbon nanotubes on fiber |
BRPI1008131A2 (pt) | 2009-02-27 | 2016-03-08 | Applied Nanostructured Sols | "crescimento de nanotubo de carbono de baixa temperatura usando método de preaquecimento de gás". |
US20100227134A1 (en) | 2009-03-03 | 2010-09-09 | Lockheed Martin Corporation | Method for the prevention of nanoparticle agglomeration at high temperatures |
CA2758694C (en) | 2009-04-17 | 2017-05-23 | Seerstone Llc | Method for producing solid carbon by reducing carbon oxides |
EP2422595A1 (en) | 2009-04-24 | 2012-02-29 | Applied NanoStructured Solutions, LLC | Cnt-infused emi shielding composite and coating |
US9111658B2 (en) | 2009-04-24 | 2015-08-18 | Applied Nanostructured Solutions, Llc | CNS-shielded wires |
KR101696207B1 (ko) | 2009-04-27 | 2017-01-13 | 어플라이드 나노스트럭처드 솔루션스, 엘엘씨. | 복합 구조물 제빙을 위한 cnt계 저항 가열 |
CN101927995A (zh) * | 2009-04-30 | 2010-12-29 | 中国科学院成都有机化学有限公司 | 一种制备大内径长度可控碳纳米管的方法 |
US8354593B2 (en) * | 2009-07-10 | 2013-01-15 | Nanocomp Technologies, Inc. | Hybrid conductors and method of making same |
BR112012002216A2 (pt) | 2009-08-03 | 2016-05-31 | Applied Nanostructured Sols | método de incorporação de nanopartículas em fibras compósitas, fibra de vidro e tapete de fibra picada ou compósito |
CN101996706B (zh) * | 2009-08-25 | 2015-08-26 | 清华大学 | 一种耳机线及具有该耳机线的耳机 |
CN101998200A (zh) * | 2009-08-25 | 2011-03-30 | 鸿富锦精密工业(深圳)有限公司 | 一种耳机线及具有该耳机线的耳机 |
WO2011035157A2 (en) * | 2009-09-18 | 2011-03-24 | Applied Materials, Inc. | Apparatus and methods for forming energy storage and photovoltaic devices in a linear system |
CN101696491B (zh) * | 2009-10-22 | 2011-05-04 | 清华大学 | 石墨烯/碳纳米管复合薄膜的原位制备方法 |
KR20120120172A (ko) | 2009-11-23 | 2012-11-01 | 어플라이드 나노스트럭처드 솔루션스, 엘엘씨. | Cnt 맞춤형 복합재 해상 기반의 구조체 |
CN102596564B (zh) | 2009-11-23 | 2014-11-12 | 应用纳米结构方案公司 | 含有碳纳米管并入的纤维材料的陶瓷复合材料及其制备方法 |
AU2010353294B2 (en) | 2009-12-14 | 2015-01-29 | Applied Nanostructured Solutions, Llc | Flame-resistant composite materials and articles containing carbon nanotube-infused fiber materials |
US9167736B2 (en) | 2010-01-15 | 2015-10-20 | Applied Nanostructured Solutions, Llc | CNT-infused fiber as a self shielding wire for enhanced power transmission line |
CN102741465A (zh) | 2010-02-02 | 2012-10-17 | 应用纳米结构方案公司 | 包含平行排列的碳纳米管的碳纳米管并入的纤维材料、其制造方法及从其衍生的复合材料 |
AU2011223743A1 (en) | 2010-03-02 | 2012-08-30 | Applied Nanostructured Solutions,Llc | Electrical devices containing carbon nanotube-infused fibers and methods for production thereof |
BR112012021968A2 (pt) | 2010-03-02 | 2016-06-07 | Applied Nanostructured Sols | dispositivos elétricos enrolados em espiral que contêm materiais de eletrodo infundidos por nanotubo de carbono e métodos e aparelhos para a produção dos mesmos |
US8780526B2 (en) | 2010-06-15 | 2014-07-15 | Applied Nanostructured Solutions, Llc | Electrical devices containing carbon nanotube-infused fibers and methods for production thereof |
US9017854B2 (en) | 2010-08-30 | 2015-04-28 | Applied Nanostructured Solutions, Llc | Structural energy storage assemblies and methods for production thereof |
BR112013005802A2 (pt) | 2010-09-14 | 2016-05-10 | Applied Nanostructured Sols | substratos de vidro com nanotubos de carbono crescidos sobre os mesmos e métodos para sua produção |
KR101877475B1 (ko) | 2010-09-22 | 2018-07-11 | 어플라이드 나노스트럭처드 솔루션스, 엘엘씨. | 탄소 나노튜브가 성장된 탄소 섬유 기판 및 그의 제조 방법 |
EP2619767A2 (en) | 2010-09-23 | 2013-07-31 | Applied NanoStructured Solutions, LLC | Cnt-infused fiber as a self shielding wire for enhanced power transmission line |
EP2661369B1 (en) | 2011-01-04 | 2019-04-10 | Nanocomp Technologies, Inc. | Thermal insulators based on nanotubes, their use and method for thermal insulation. |
KR20140014224A (ko) * | 2011-03-08 | 2014-02-05 | 고쿠리츠 다이가쿠 호우징 나고야 다이가쿠 | 카본 나노 튜브의 제조 방법 |
RU2497752C2 (ru) * | 2011-11-29 | 2013-11-10 | Инфра Текнолоджис Лтд. | Способ получения длинных углеродных нанотрубок и устройство для осуществления этого способа |
US9085464B2 (en) | 2012-03-07 | 2015-07-21 | Applied Nanostructured Solutions, Llc | Resistance measurement system and method of using the same |
EP2838839B1 (en) | 2012-04-16 | 2020-08-12 | Seerstone LLC | Method for producing solid carbon by reducing carbon dioxide |
NO2749379T3 (zh) | 2012-04-16 | 2018-07-28 | ||
JP6379085B2 (ja) | 2012-04-16 | 2018-08-22 | シーアストーン リミテッド ライアビリティ カンパニー | 炭素酸化物を含有するオフガスを処理するための方法 |
MX2014012548A (es) | 2012-04-16 | 2015-04-10 | Seerstone Llc | Metodos y estructuras para reducir oxidos de carbono con catalizadores no ferrosos. |
WO2013158161A1 (en) | 2012-04-16 | 2013-10-24 | Seerstone Llc | Methods and systems for capturing and sequestering carbon and for reducing the mass of carbon oxides in a waste gas stream |
US9896341B2 (en) | 2012-04-23 | 2018-02-20 | Seerstone Llc | Methods of forming carbon nanotubes having a bimodal size distribution |
US10815124B2 (en) | 2012-07-12 | 2020-10-27 | Seerstone Llc | Solid carbon products comprising carbon nanotubes and methods of forming same |
CN104619637B (zh) | 2012-07-12 | 2017-10-03 | 赛尔斯通股份有限公司 | 包含碳纳米管的固体碳产物以及其形成方法 |
US9598286B2 (en) | 2012-07-13 | 2017-03-21 | Seerstone Llc | Methods and systems for forming ammonia and solid carbon products |
US9779845B2 (en) | 2012-07-18 | 2017-10-03 | Seerstone Llc | Primary voltaic sources including nanofiber Schottky barrier arrays and methods of forming same |
WO2014085378A1 (en) | 2012-11-29 | 2014-06-05 | Seerstone Llc | Reactors and methods for producing solid carbon materials |
CN102994980B (zh) * | 2012-12-13 | 2015-01-14 | 苏州汉纳材料科技有限公司 | 高导电碳纳米管薄膜的制备方法及装置 |
CN104995134B (zh) * | 2013-01-22 | 2018-06-05 | Mcd技术有限公司 | 生产碳纳米结构的方法及装置 |
US9586823B2 (en) | 2013-03-15 | 2017-03-07 | Seerstone Llc | Systems for producing solid carbon by reducing carbon oxides |
EP3129135A4 (en) | 2013-03-15 | 2017-10-25 | Seerstone LLC | Reactors, systems, and methods for forming solid products |
EP3114077A4 (en) | 2013-03-15 | 2017-12-27 | Seerstone LLC | Methods of producing hydrogen and solid carbon |
EP3129321B1 (en) | 2013-03-15 | 2021-09-29 | Seerstone LLC | Electrodes comprising nanostructured carbon |
US9783421B2 (en) | 2013-03-15 | 2017-10-10 | Seerstone Llc | Carbon oxide reduction with intermetallic and carbide catalysts |
CN103204492A (zh) * | 2013-05-03 | 2013-07-17 | 苏州汉纳材料科技有限公司 | 一种提高单壁碳纳米管产率的新方法 |
EP3010853B1 (en) | 2013-06-17 | 2023-02-22 | Nanocomp Technologies, Inc. | Exfoliating-dispersing agents for nanotubes, bundles and fibers |
SG11201601113SA (en) * | 2013-09-04 | 2016-03-30 | Ngee Ann Polytechnic | A method for producing carbon nanotubes |
EP3253709A4 (en) | 2015-02-03 | 2018-10-31 | Nanocomp Technologies, Inc. | Carbon nanotube structures and methods for production thereof |
US11752459B2 (en) | 2016-07-28 | 2023-09-12 | Seerstone Llc | Solid carbon products comprising compressed carbon nanotubes in a container and methods of forming same |
US10581082B2 (en) | 2016-11-15 | 2020-03-03 | Nanocomp Technologies, Inc. | Systems and methods for making structures defined by CNT pulp networks |
US11279836B2 (en) | 2017-01-09 | 2022-03-22 | Nanocomp Technologies, Inc. | Intumescent nanostructured materials and methods of manufacturing same |
US10870089B2 (en) * | 2017-03-14 | 2020-12-22 | 4th Phase Water Technologies, Inc. | Hydrophilic graphitic material |
CN107601458B (zh) * | 2017-09-12 | 2020-07-28 | 刘云芳 | 一种单壁碳纳米管的制备方法 |
JP7441799B2 (ja) * | 2018-12-27 | 2024-03-01 | 住友電気工業株式会社 | カーボンナノチューブの製造方法、カーボンナノチューブ集合線の製造方法、カーボンナノチューブ集合線バンドルの製造方法、カーボンナノチューブ製造装置、カーボンナノチューブ集合線製造装置及びカーボンナノチューブ集合線バンドル製造装置 |
CN113490638B (zh) | 2019-02-22 | 2024-03-29 | 住友电气工业株式会社 | 碳纳米管及其集合线、集合线集束的制法、它们的制造装置 |
US11508498B2 (en) | 2019-11-26 | 2022-11-22 | Trimtabs Ltd | Cables and methods thereof |
CN114477141B (zh) * | 2020-10-24 | 2023-11-24 | 江苏天奈科技股份有限公司 | 一种寡壁碳纳米管纤维束及其制备工艺 |
CN113562724B (zh) * | 2021-07-06 | 2024-03-19 | 上海大学 | 一种单壁碳纳米管封装超长线性碳链及其制备方法 |
WO2023239500A1 (en) * | 2022-06-07 | 2023-12-14 | ExxonMobil Technology and Engineering Company | Integrated production of thiophene and carbon nanotubes |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5458784A (en) * | 1990-10-23 | 1995-10-17 | Catalytic Materials Limited | Removal of contaminants from aqueous and gaseous streams using graphic filaments |
US6683783B1 (en) * | 1997-03-07 | 2004-01-27 | William Marsh Rice University | Carbon fibers formed from single-wall carbon nanotubes |
US6333016B1 (en) * | 1999-06-02 | 2001-12-25 | The Board Of Regents Of The University Of Oklahoma | Method of producing carbon nanotubes |
-
2002
- 2002-02-22 CN CNB021006849A patent/CN1176014C/zh not_active Expired - Fee Related
-
2003
- 2003-02-24 US US10/370,519 patent/US7615204B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7824649B2 (en) | 2005-08-19 | 2010-11-02 | Tsinghua University | Apparatus and method for synthesizing a single-wall carbon nanotube array |
Also Published As
Publication number | Publication date |
---|---|
US20030161950A1 (en) | 2003-08-28 |
US7615204B2 (en) | 2009-11-10 |
CN1365946A (zh) | 2002-08-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1176014C (zh) | 一种直接合成超长连续单壁碳纳米管的工艺方法 | |
Liu et al. | Continuously processing waste lignin into high-value carbon nanotube fibers | |
Keller et al. | Synthesis and characterisation of medium surface area silicon carbide nanotubes | |
Hou et al. | Purification of carbon nanotubes | |
CN100368287C (zh) | 单壁碳质毫微管有助于其溶剂化的化学衍生化以及经衍生化毫微管的用途 | |
CN1751989A (zh) | 制备碳纳米笼的方法 | |
CN101891184B (zh) | 一种高温化学气相沉积法连续合成单壁碳纳米管的方法 | |
Luo et al. | Solvothermal preparation of amorphous carbon nanotubes and Fe/C coaxial nanocables from sulfur, ferrocene, and benzene | |
CN101032756A (zh) | 原位合成碳纳米管/镍/铝增强增韧氧化铝基复合材料制备方法 | |
CN1294076C (zh) | 碳原子线以及固态碳源热解制备碳纳米管和碳原子线的方法 | |
Baghel et al. | Ultrafast growth of carbon nanotubes using microwave irradiation: characterization and its potential applications | |
CN115403029B (zh) | 一种单壁碳纳米管的制备方法 | |
CN101927995A (zh) | 一种制备大内径长度可控碳纳米管的方法 | |
CN114572965B (zh) | 一种碳纳米管的制备方法 | |
Janowska et al. | Structured silica reactor with aligned carbon nanotubes as catalyst support for liquid-phase reaction | |
Zhai et al. | One-step floating conversion of biomass into highly graphitized and continuous carbon nanotube yarns | |
CN107601460A (zh) | 一种碳纳米管产品及其制备方法 | |
CN1193931C (zh) | 双壁碳纳米管的合成方法 | |
CN1261222C (zh) | Al2O3气凝胶负载型催化剂的制备及其催化甲烷裂解制备纳米碳管的方法 | |
Khan et al. | Carbon nanotube and its possible applications | |
CN1839094A (zh) | 纳米级物质的结构控制方法和使用该结构控制方法的纳米级低维量子结构的制造方法 | |
CN1183031C (zh) | 一种制备碳纳米管的方法 | |
CN1944244A (zh) | 利用大功率等离子体发生器制备碳纳米管的方法 | |
CN113088324B (zh) | 一种从废润滑油、重质油或沥青中提取碳纳米材料的方法 | |
CN1923678A (zh) | 高纯度多壁碳纳米管的制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C06 | Publication | ||
PB01 | Publication | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20041117 Termination date: 20180222 |
|
CF01 | Termination of patent right due to non-payment of annual fee |