CN1166861C - 容积型流体机械 - Google Patents
容积型流体机械 Download PDFInfo
- Publication number
- CN1166861C CN1166861C CNB981042007A CN98104200A CN1166861C CN 1166861 C CN1166861 C CN 1166861C CN B981042007 A CNB981042007 A CN B981042007A CN 98104200 A CN98104200 A CN 98104200A CN 1166861 C CN1166861 C CN 1166861C
- Authority
- CN
- China
- Prior art keywords
- piston
- rotary
- cylinder
- suction
- fluid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C18/00—Rotary-piston pumps specially adapted for elastic fluids
- F04C18/02—Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
- F04C18/04—Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents of internal-axis type
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Applications Or Details Of Rotary Compressors (AREA)
- Rotary Pumps (AREA)
- Reciprocating Pumps (AREA)
Abstract
一种容积型流体机械,具有一种由旋转活塞的侧壁面和缸的内壁面形成多个工作室;不管在何种动作状态时,在这些工作室中,在吸入工作流体的空间之间会形成对工作流体进行压缩(排出)的空间;在与形成于与工作室相连通的、并从轴方向夹持着旋转活塞的端板上的吸入口和排出口相对向的端板的各自的部位上,具有孔部。在使工作室内部的压力平衡稳定的同时,大幅度降低排出行程时的流体损失。
Description
技术领域
本发明涉及例如泵、压缩机、和膨胀机等,特别是涉及一种容积型流体机械。
背景技术
很早以来,作为容积型流体机械,下列几种流体机械已众所周知:通过活塞在圆筒状的缸内重复做往复运动而对工作流体进行移动的往复式流体机械;通过圆筒状的活塞在圆筒状的缸内做偏心回转运动而对工作流体进行移动的回转式(滚动活塞型)流体机械;和通过使直立在端板上的具有螺旋形的卷体的一对固定涡旋件和旋转涡旋件相啮合、并使旋转涡旋件产生旋转运动而对工作流体进行移动的涡旋型流体机械。
对往复式流体机械,在因其构造简单而具有制作容易且价廉这一优点的反面,由于从吸入终了开始到排出终了为止的行程为轴转动角180°,比较短,所以存在因排出过程的流速增加而导致压力损失增加、进而致使性能降低这一问题,以及存在由于需要使活塞做往复的运动而使转动轴系不能完全地取得平衡,使振动和噪音增大这一问题。
又,对回转式流体机械,由于从吸入终了开始到排出终了为止的行程为轴转动角360°,所以排出过程中的压力损失增大这一问题与往复式流体机械的相比是要小一些,但由于在轴的1次转动中是进行一次排出的,所以存在气体压缩转矩的变动较大,而导致与往复式流体机械同样地存在振动和噪音的问题。
进一步,对涡旋型式流体机械,由于从吸入终了开始到排出终了为止的行程为轴转动角360°以上,比较长(作为用于空调上的被实用化着的上述行程通常为900°左右),所以具有排出过程的压力损失较少的优点;且由于一般形成有多个工作室,所以还具有气体压缩转矩的变动也较小、使振动和噪音减小的优点。但由于有必要在卷体的啮合状态时对螺旋状的卷体之间的间隙和端板与卷条齿顶间的间隙进行管理,于是存在必须施行高精度的加工,使加工费用变高这一问题。又,由于从吸入终了开始到排出终了为止的行程为轴转动角360°以上,比较长,所以还存在压缩过程的时间过长,内部泄漏增加这一问题。
不过,特开昭55-23353号公报上提出了这样一种容积型流体机械:通过对工作流体进行移动的排出器(旋转活塞)相对于吸入有工作流体的缸不做相对的自转运动,而是以大致一定的半径做公转运动、即旋转运动,而对工作流体进行移送。这里所提出的容积型流体机械,由活塞和缸所构成,其中,该活塞具有其多个的部件(叶片)从中心呈放射状延伸着的花瓣形状;而该缸,在使上述活塞的中心和该缸的中心为一致时,具有在活塞的外周和缸的内周之间形成有旋转半径程度的间隙那样的中空部。通过该活塞在该缸内做旋转运动,对工作流体进行移动。
在上述特开昭55-23353号公报中所展示的容积型流体机械,由于不存在象在往复式中那样的要做往复运动的部分,所以可以使转动轴系得到完全的平衡。由此可以减少振动;进一步,由于活塞和缸之间的相对滑动速度较小,所以具有可以相对而言降低摩擦损失这一作为容积型流体机械来说的本质优点。
但是,存在在运转时活塞的举动变得不稳定,使振动、噪音增大、工作流体的泄漏增加、性能下降这一问题。
又,在吸入行程和排出行程时的通路面积,是为由压缩工作室内部的吸入口、排出口、和旋转活塞所围成的部位,但由于因活塞的轴转动角使其面积会有变化,所以还存在不容易确保必要的充分的吸入通路和排出通路、使性能降低这一问题。
发明内容
本发明的目的是,提供一种确保了旋转活塞的稳定举动的、可以实现提高性能和可靠性的容积型流体机械。
本发明的一种容积型流体机械,包括:一旋转活塞,一缸,所述旋转活塞和缸配置于其间的端板,以及一驱动轴,当所述旋转活塞的中心与所述驱动轴的旋转轴线重合时,所述旋转活塞的外壁表面和所述缸的内壁表面形成一个空间,而当所述旋转活塞和所述缸位于旋转位置时,所述旋转活塞的外壁表面和所述缸的内壁表面则形成多个空间,并且所述端板中的一个形成多个吸入口,而所述端板中的另一个则形成多个排出口,其特征在于:在与所述吸入口和排出口相对的位置处,在所述端板上形成孔,并且所述旋转活塞具有叶片,所述叶片具有油槽,该油槽将润滑油供给至所述驱动轴并且形成于沿着叶片面对该端板的表面上。
为达成上述目的,在端板之间配置有排出器和缸、当使上述排出器的中心与转动轴的转动中心相重合时由上述缸的内壁面和上述排出器的外壁面形成1个空间,而当使上述排出器和上述缸之间的位置关系为处于旋转位置时形成多个空间的容积型流体机械上,设置有使上述旋转排出器在上述端板之间隔以润滑油进行旋转的装置。
进一步详细来说,本发明的目的是通过设置下列构成而实现的:作为使上述旋转排出器在上述端板之间隔以润滑油进行旋转的装置的、对上述排出器的上述端板对向面上供给润滑油的装置;和在形成于与形成有上述吸入口的端板相对向的端板的上述吸入口相对的位置上的孔部、和形成于与形成有上述排出口的端板相对向的端板的上述排出口相对的位置上的孔部之中至少一方的孔部。
附图说明
图1为显示了本发明的实施例的旋转型压缩部件的平面图。
图2A~2D为对显示了本发明的实施例的旋转型压缩部件的工作原理进行图示的平面图。
图3为显示了本发明的实施例的容积型压缩机的纵断面图。
图4为显示了本发明的实施例的旋转型压缩元件的放大断面图。
图5为显示了本发明的实施例的旋转型压缩部件的立体图。
图6为显示了本发明的实施例的容积型压缩机的纵断面图。
图7为显示了本发明的实施例的旋转型压缩部件的立体图。
图8为显示了本发明的实施例的容积型压缩机的旋转型压缩部件的放大断面图。
图9为显示了本发明的实施例的容积型压缩机的纵断面图。
图10为显示了本发明的实施例的旋转型压缩部件的立体图。
图11A~11D为对显示了本发明的实施例的旋转型压缩部件的工作原理进行图示的平面图。
图12为对使用了显示了本发明的实施例的容积型压缩机的空调系统进行图示的示图。
图13为对使用了显示了本发明的实施例的容积型压缩机的冷冻系统进行图示的示图。
图14为本发明的旋转活塞的平面图。
图15为对本发明的旋转型压缩部件的装配方法进行说明的示图。
图16A~16B为显示了4条卷体的轴转动角和工作室之间的关系的示图。
图17A~17B为显示了3条卷体的轴转动角和工作室之间的关系的示图。
图18为当压缩部件的卷角比360°要大时的动作说明图。
具体实施方式
对以上所说明了的本发明的特征,由以下的实施形态使其进一步明确化。以下,用图对本发明的一实施形态进行说明。首先,利用图1至图3对本发明的旋转型流体机械的构造进行说明。图1为本发明的压缩部件的平面图,图2A~2D为显示了图1的压缩部件的压缩动作的平面图,图3为具有图1的压缩部件的密闭型压缩机的纵断面图,图4为图2的压缩部件的放大断面图,图5为压缩部件的立体图。
图1的压缩部件1,显示了3组相互组合着的、具有同一轮廓形状的3条卷体。缸2的内周形状,形成为一种其左卷状的中空部2a每隔120°(中心为O’)而重复出现的形状。在这些每个的形成为左卷状的中空部2a的端部上,具有向内方突出的多个(在该场合时为3个)叶片2b。旋转活塞3,被配设在该缸2的内侧,并以与缸2的内周壁2c(比叶片2b的曲率要大的部分)和叶片2b相啮合的方式形成着。又,当使缸2的中心O’和旋转活塞3的中心O相一致时,在两者之间形成有具有一定宽度(旋转半径)的间隙。
又,符号a、b、c、d、e、f表示缸2的内周壁2c和叶片2b与旋转活塞3相啮合的接点。这里,缸2的内周壁2c的轮廓形状,由同一曲线在3个部位连续且圆滑的组合而接续形成着。当着眼于其中的1个部位时,可以将形成内周壁2c和叶片2b的曲线看作为具有一定厚度的1个涡曲线(将叶片2b的前端考虑为涡的起卷处),其外壁曲线(g-h)是卷角大致为360°(设计上是360°,这里的意思是指由于制造误差的原因不可能正好为该值,以下同样)的涡曲线,内壁曲线(h-i)是卷角大致为360°的涡曲线。而且,上述1个部位的内周壁2c的轮廓形状,由外壁曲线和内壁曲线所形成。通过将由该3条曲线所形成的涡旋体在圆周上大致等间距(120°)地进行配设,并对相邻涡旋体的外壁曲线和内壁曲线之间由圆弧等圆滑的曲线(例如i-j)进行连接,就构成了缸的内周轮廓形状。旋转活塞3的外周壁3a的轮廓形状也由与上述缸2的相同的原理而构成。
又,以上是将由3条曲线所形成的涡旋体在圆周上大致等间距(120°)地配设着的,这是由于考虑到使伴随后述的压缩动作而来的荷重得到均等的分散的目的和制造上的容易性。但特别地,在这些方面不会成为问题时,也可以采用不等间距。
下面,由图2A~2D,对由上述这样构成的缸2和旋转活塞3的压缩动作进行说明。4a为吸入口,5a为排出口,它们分别被设置在3个部位上。通过使驱动轴6产生转动,旋转活塞3在作为固定侧的缸2的中心O’的周围不产生自转地以旋转半径(等于OO’)做公转运动,并在旋转活塞3的中心O的周围形成有多个工作室7[在由缸2的内周轮廓(内壁)和旋转活塞3的外周轮廓(侧壁)所包围和密闭着的多个空间中,指吸入过程已终了而成为压缩(排出)行程时的空间。在压缩终了时,该空间虽会消失,但由于在该瞬间吸入过程也已结束,所以将该空间算作为1个。但,在作为泵而使用时,是指经排出口5a而与外部相连通着的空间。]。在本实施形态时,总是形成有3个工作室。即,形成有与叶片数为同样数量的工作室。例如,在叶片数(条数)为4时,当由与上述同样的考虑方法来确定形状时,仍然形成4个工作室。即,通过在每条叶片上形成一个工作室,由于由压缩所产生的压力全部向着中心部,所以具有可以减少一端接触等现象的优点。对该叶片的条数与工作室个数之间的关系的详细情况,见后述。
在图2中,着眼于由接点c和接点d所围成的、并画有阴影线的1个工作室7(在吸入终了时,是被分割为2个的,但当开始进行压缩行程时,该2个的工作室7会立即相连而成为1个)进行说明。图2A为从吸入口4a往该工作室7的工作流体的吸入过程为终了时的状态。从该状态开始,驱动轴6沿顺时针方向转动90°后的状态为图2B;继续进行转动,从最初开始转动了180°后的状态为图2c;进一步进行转动,从最初开始转动了270°后的状态为图2D。从图2D的状态再转动90°时,就返回到最初的图2A的状态。由此,随着转动的进行,工作室7的容积被缩小,由于排出口5a由排出阀8(见图3)所关闭着,所以对工作流体的压缩作用,就得到进行。然后,当工作室7内的压力比外部的排出压力要高时,由压力差而使排出阀8自动地打开,受到压缩了的工作流体于是通过排出口5a被排出。从吸入终了(压缩开始)开始到排出终了为止的轴转动角为360°;在进行压缩和排出的各行程期间,下一次的吸入行程得到准备,在排出终了时进入下一次的压缩开始阶段。
如上所述,进行连续的压缩动作的工作室7在位于旋转活塞3的中心部上的驱动轴6的周围被大致等间距地分散配设着,各工作室7相互间错开相位地得到压缩。即,当着眼于1个空间时,从吸入开始到排出为止的轴转动角是360°,但由于在本实施形态中,形成有3个工作室7,且它们以错开120°相位的方式进行排出,所以作为压缩机来说,在轴转动角为360°期间是进行了3次的排出工作流体的作业。这样的可以减小工作流体的排出波动的这一点,在往复式、回转式、和涡旋型流体机械上是没有的。而且,当将压缩动作终了瞬间的空间(由接点c和d所围成的空间)看作为1个空间时,则无论在哪一种压缩机状态时,进行吸入行程时的空间和进行压缩行程时的空间都被设计成相互间为交替的,因此,可以在压缩行程终了的瞬间马上转入下一压缩行程,从而可以圆滑、且连续地对流体进行压缩。
下面,利用图3至图5,对组装有具有上述形状的旋转型压缩部件1的压缩机进行说明。在图3中,旋转型压缩部件1,除了以上所详述了的缸2和旋转活塞3以外,还具有下列构成:在旋转活塞3的中心部的轴承部3b上嵌合有其偏心部6a的、对旋转活塞3进行驱动的驱动轴6;同时分别起着对上述缸2的两端开口部进行闭塞的端板作用和对驱动轴6进行轴支承的轴承作用的主轴承4和副轴承5;形成于上述主轴承4上的吸入口4a;形成于上述副轴承5上的排出口5a;以及对该排出口5a进行开闭的导向阀形式(由压力差进行开闭)的排出阀8。上述旋转活塞3,由驱动轴6的偏心部6a而以仅仅错开旋转半径ε的方式与缸2的内周壁2c相啮合着。又,9为被安装在主轴承4的端面上的用于形成吸入室10的吸入盖,11为被安装在副轴承5的端面上的用于形成排出室12的排出盖。
电动部件13,由定子13a和转子13b所构成,转子13b由热装等方法而被固定在驱动轴6的一端上。该电动部件13,为提高电动机的效率,由无电刷马达所构成,并由3相变换器控制其驱动。但也可以使用其它形式的电动机,如直流电动机和感应电动机。
14为积存在密闭容器15的底部上的润滑油,在其中浸入有驱动轴6的下端部。16为吸入管,17为排出管,7为由缸2的内周壁2c和叶片2b与旋转活塞3之间的相互啮合而形成的上述工作室。又,排出室12,由“O”型环(图中未示)等密封部件而使其与密闭容器15内的压力相区划着。
又,在贮存于密闭容器15的底部的润滑油14上,由于受到有高压的排出压力的作用,所以由离心泵的作用,使该润滑油14从浸在其中的驱动轴6的下端部侧被导入到形成于驱动轴6的内部上的给油孔(图中未示)中,并经形成于驱动轴6上的给油孔6b和给油槽6c,被供给到主轴承4,副轴承5、和工作室7等备滑动部上,起着对滑动部进行润滑和提高工作室7之间的密封性的作用。
在电动部件13的转子13b的前后端部和驱动轴6的下端部上,分别设置有平衡装置18,使在转动时的不平衡量得到完全抵消。进一步,在排出盖11的下端部上,设有油盖19,以减少由于被安装在驱动轴6的下端部上的平衡装置18的转动而产生的润滑油的搅拌阻力。由以上的构成,形成了纵置型的密闭型压缩机。
对工作流体(致冷剂)的流动由图4进行说明。如图中的箭头所示,经吸入管16而进入到密闭容器15内的工作流体,进入到位于安装在主轴承4的端面上的吸入盖9内的吸入室10中,并经吸入口4a而进入到压缩部件1,在此处通过由因驱动轴6的转动而使旋转活塞3做旋转运动使工作室7的容积缩小而使工作流体得到压缩。受到压缩了的工作流体,经形成于副轴承5上的排出口5a后推开排出阀8而进入排出室12内;进一步,从分别形成于副轴承5、缸2、主轴承4、和吸入盖9上的与上述排出室12相连通着的排出口5b、2d、4b、9a被导向电动部件13侧的空间中,并在对上述电动部件13进行冷却后,从排出管(图中未示)被放出到压缩机外部。
图5为图4的旋转型压缩部件的立体图。在主轴承4上,具有形成于其中央部上的对驱动轴进行轴支承的主轴承部4c、和相对于上述主轴承部4c的中心在圆周上等间距地配置着的3个吸入口4a。进一步,在与形成于副轴承5上的排出口5a相对向的位置上,在相对于主轴承部4c的中心的圆周上等间距地形成有3个与上述排出口5a具有大致相同直径的锪孔状的均压孔4d。4e为用于固定缸2和副轴承5的螺纹孔,4f为用于固定缸2的叶片2b部的螺纹孔。又,在主轴承4的外周部上,形成有油返回用的缺口部4g。4b为与形成于副轴承5上的排出室12相连通的排出口。
缸2,被安装在主轴承4上,并分别形成有用于被安装在主轴承4上的孔部2e、和为防止叶片2b部的径向变形而用于将其固定在主轴承4上的孔部2f。在与形成于副轴承5上的排出口5a相接触的缸2的端面2g上,具有倾斜流路2h。进一步,在外周部上形成有油返回用的缺口部2i;2d为与形成于副轴承5上的排出室12相连通的排出口。
旋转活塞3,被插入到缸2上。在旋转活塞3的中心部上,形成有插入有驱动轴6的偏心部6a的轴承部3b和压力连通孔3c。又,在旋转活塞3的上下端面上,从上述轴承部3b沿着3个部位的每条叶片3d分别形成有油槽3e。
在副轴承5上,具有形成于其中央部上的对驱动轴6进行轴支承的副轴承部5c、和相对于上述副轴承5c的中心在圆周上等间距地配置着的3个排出口5a。在与形成于主轴承4上的吸入口4a相对向的位置上,在相对于副轴承部5c的中心的圆周上等间距地形成有与上述吸入口4a大致具有同样直径的锪孔穴状的均压孔5d。5e为用于固定排出阀8的螺纹孔,5f为用于将缸2的叶片2b部安装在主轴承4上的孔部,5g为用于将副轴承5和缸2固定在主轴承4上的孔部。并在外周部上形成有油返回用的缺口部5h。5b为与形成于副轴承5上的排出室12相连通的排出口。
由上述构成,通过配置上形成于主轴承4和副轴承5上的均压孔4d、5d,在吸入行程和排出行程时可以使作用在被配置在由主轴承4的端面、副轴承5的端面、和缸2所围成的空间上的旋转活塞3的上下端面上的压力均一化,从而在压缩机运转时可以使旋转活塞3具有稳定的举动,下面对该作用进行说明。
由从两侧夹持着缸2的旋转活塞3的部件(在本实施例中,为兼起轴承和端板作用的主轴承4和副轴承5),与缸2的内壁和旋转活塞3的外壁共同地形成吸入和压缩(排出)空间。旋转活塞3,在由缸2的内壁和上述这些夹持部件所形成的空间内做旋转运动。至于滑动,旋转活塞3的两端部与作为主轴承4的端板而起作用的部分(在图5中,为主轴承4的与旋转活塞3相对向的面)、和作为副轴承5的端板而起作用的部分(在图5中,为副轴承5的与旋转活塞3相对向的面)之间的滑动占很大的部分。
当该滑动增强时,由于金属之间的相互摩擦而引起磨耗,所以磨损会变剧烈,从而在该磨损部分因相邻的吸入空间和压缩(排出)空间之间相连而使内部泄漏增大这样的问题,以及存在由于金属之间的滑动而使机械损失增大、总绝热效率降低的问题。
对该问题,通过设置往与旋转活塞3的端板相对向的面上供给油的给油装置而得到解决。即,在本实施例中,通过设置将从轴上供给出来的油的润滑油供给到位于旋转活塞3的两端面上的油槽3e中,可以使旋转活塞3与两端板间非接触地做旋转运动,并提高相邻空间之间的密封性。
但在仅仅具有该油槽3e时,对旋转活塞3与夹持着该旋转活塞3的主轴承4和副轴承5的端面之间的接触情况由实验的结果进行判断。对此用图4进行说明。在排出口5a上,由于工作室内的工作流体反抗外部压力而流出,所以从外部经排出口5a作用有要将旋转活塞3按压到排出口5a的反对面上的力。因此,旋转活塞3这时被按压到主轴承4的端面上,成为一端接触。
又,在吸入口4a上,由从外部流入的工作流体的流动,使旋转活塞3此时受到要将其按压到副轴承5的端面上的力。因此,旋转活塞3被按压到副轴承上,成为一端接触。
为解决该问题,在本实施形态中,在主轴承4的与形成于副轴承5上的排出口5a相对向的位置上,设有与排出口5a具有大致相同直径的锪孔状的均压孔4d。由此,经排出口5a而对旋转活塞3进行按压的力,就成为将工作流体作为介质使其进入到均压孔4d内、并从均压孔4d侧对旋转活塞3进行按压的力而起作用。因此,两个力相互抵消,旋转活塞3可以与任何端板不相接触地进行旋转运动。这种情况,对于被设置在与吸入口4a相对向的位置上的均压孔5d也是同样的。又,为使按压力和抵消该按压力的作用力相均衡,使均压孔4d、5d的直径与排出口5a、吸入口4a分别为相同的直径,并且使均压孔5d(与吸入口4a相对向)的深度比均压孔4d(与排出口5a相对向)的深度要深一些。
其结果是,由于旋转活塞3相对于对其进行夹持的主轴承4和副轴承5的端面,可以在隔有油膜的情况下分别保持住沿同轴方向的间隙,所以不会发生因一端接触而引起的摩擦和磨耗,并由于可以在使旋转活塞与端板之间间隔有润滑油的情况下使旋转活塞做旋转运动,所以与仅仅具有油供给装置的场合相比,就可以提供具有更高可靠性的容积型压缩机。并且因为可以在旋转活塞3和缸2的滑动部上保持一定的间隙,所以可提供高性能的容积型压缩机。从实施的结果来看,与没有设置两均压孔的场合相比,总绝热效率提高了6%。
又,通过配置上述均压孔4d、5d,使吸入和排出通路得到确保,可以降低在吸入行程和排出行程时的流体损失,可能实现容积型压缩机的高效率化。以上所说明了的油供给槽和均压孔的作用效果,在下述的实施例中也是同样的。在本实施例中,是在排出口5a和吸入口4a上都分别设有均压孔的,但即使只设置任何一方的均压孔,也具有上述效果。
进一步,由于在缸2的靠近排出口5a的附近的叶片2b部上配置有倾斜流路2h,所以可以大幅度地减少在排出行程时的压力损失和流体损失,可以提高容积型压缩机的性能。又,本实施例的压缩部件1的排出行程区间,由于比现有的滚动活塞型的要长,所以可以降低在排出行程时的工作流体的流速,进一步可以减少压力损失和流体损失(过压缩损失),提供高性能的容积型压缩机。
又,在本实施例中,是对在主轴承4和副轴承5上分别设有均压孔4d和5d的场合进行了说明的。但在同一部件、例如在主轴承侧上形成有吸入口和排出口时,即使在副轴承的分别与这些口相对向的位置配置均压孔,也可以得到与上述同样的效果。又,对均压孔,由于尺寸上的规定,也可以被配置在旋转活塞3和缸2上。
这里,对上述卷角θ和从吸入终了开始到排出终了为止的轴转动角θC之间的关系进行详细的说明。通过改变卷角θ,可以改变轴转动角θC。例如,在通过使卷角小于360°而使从吸入终了开始到排出终了为止的轴转动角减小时,出现排出口和吸入口相连通的状态,从而会存在由排出口内的流体的膨胀作用而使一度被吸入了的流体产生逆流这样的问题。又,在通过使卷角大于360°而使从吸入终了开始到排出终了为止的轴转动角增大时,在从吸入终了开始到与排出口的某个空间相连通为止的期间,会形成大小不同的2个工作室;在作为压缩机而使用时,由于该2个工作室的压力上升各不相同,所以在两者相合体时会产生不可逆的混合损失,在增加了压缩动力的同时也降低了旋转活塞的刚性。又,即使想作为液体泵而使用时,由于会形成与排出口不相连通的工作室,所以作为泵时会没法使用。因此,卷角θ在被允许的精度范围内最好是尽量为360°。
在由特开昭55-23353号公报(文献1)所记载的流体机械上的压缩行程的轴转动角θC,为θC=180°;而在由特开平5-202869号公报(文献2)和特开平6-28075号公报(文献3)中所记载的流体机械上的压缩行程的轴转动角θC,为θC=210°。从工作流体的排出终了开始到随后的压缩行程开始(吸入终了)为止的期间,在文献1上是轴转动角θC为180°,而在文献2和文献3上为150°。
在压缩行程的轴转动角θC为210°时,在轴的1次回转中的各工作室(用符号I、II、III、IV表示)的压缩行程线图在图16A中示出。但条数N=4。当轴转动角θC在360°内时是形成有4个工作室的,但相隔某个角度而同时形成着的工作室数n,为n=2或3。同时形成着的工作室数的最大值为比条数要少的3。
同样地,条数N=3、压缩行程的轴转动角θC为210°的场合在图17A中示出。在该场合,同时形成着的工作室数n为n=1或2,同时形成着的工作室数的最大值也是要比条数要少的2。
在这样的状态时,由于工作室偏向驱动轴的周围而形成着,所以会产生力上的不平衡,使作用于旋转活塞上的自转力矩过大,存在由于旋转活塞和缸之间的接触负荷增大、机械磨损增加而引起性能降低、和由于叶片的磨耗而引起的可靠性降低的问题。
为解决该问题,在本实施形态上,以使压缩行程的轴转动角θC满足式
(((N-1)/N)·360°)<θC≤360°……(数学式1)的方式,形成旋转活的外周轮廓形状和缸的内周轮廓形状。换句话说,上述卷角θ在数学式1的范围内。当参照图16B时,压缩行程的轴转动角θC比270°要大,同时形成的工作室数n为n=3或4,工作室数的最大值为4。该最大值与条数N(=4)相一致。又,在图17B上,压缩行程的轴转动角θC比240°要大,同时形成的工作室数n为n=2或3,工作室数的最大值为3。该最大值与条数N(=3)相一致。
这样地,由于通过使压缩行程的轴转动角θC的下限值比数学式1中的左边的值要大,可以使工作室数的最大值在条数N以上,使工作室在驱动轴的周围被分散配置着,所以力的平衡情况变好,作用在旋转活塞上的自转力矩减小,旋转活塞和缸之间的接触负荷也降低,可以由机械磨损的减轻而提高性能,同时提高接触部的可靠性。
另一方面,压缩行程的轴转动角θC的上限值,依据数学式1为360°。该压缩行程的轴转动角θC的上限值以360°为理想值。如上所述,可以将从工作流体的排出终了到下一次的压缩行程开始(吸入终了)。的时间延迟设为0,可以防止在θC<360°时由于所发生的间隙容积内的气体的再膨胀而引起的吸入效率的降低,同时还可以防止在θC>360°时由于所发生的2个工作室的压力上升情况的不同而在两者相合体时所产生的不可逆的混合损失。对后者用图18进行说明。
图18所示的容积型流体机械的压缩行程时的轴转动角θC为375°。该图18A,为图中的施行有绳钩(網挂け)的2个工作室15a和15b的吸入终了的状态。这时,2个工作室15a和15b的压力为吸入压力Ps,两者是相等的。排出口8a位于工作室15a和15b之间,与两工作室之间不相连通。从该状态开始轴转动角θC向前转动15°后的状态在图18B中示出。此时处于紧接于排出口8a与两工作室15a和15b即将要连通的之前的状态。这时,工作室15a的容积比图18A的吸入终了时的要小,由于进行了压缩使其压力也比吸入压力Ps要大。与此相对,工作室15b的容积相反地比吸入终了时的要大,由于膨胀作用使其压力也比吸入压力Ps要小。当在随后的瞬间工作室15a和15b产生合体(连通)时,会产生如在图18C中的箭头所示那样的不可逆的混合,从而发生因压缩动力的增加而引起性能降低的情况。因此,可以得出结论,压缩行程时的轴转动角θC的上限的理想值为360°。
又,本实施例的压缩部件1,由于通过在被插入到旋转活塞3的轴承部3b中的驱动轴6的偏心部6a的周围、等间距地分散配置着从吸入终了开始到排出终了为止的轴转动角为360°的工作室7,可以将自转力矩的作用点靠近旋转活塞3的中心,所以具有一种使使用在旋转活塞3上的自转力矩从形状上变得很小的构成的优点。又,本实施例的压缩部件1,由于使在形成于副轴承5上的排出口5a附近的旋转活塞3的形状和缸2的啮合圆弧部的形状由充分大的曲率所形成,所以可以提供确保了在排出行程时的密封性的高效率的容积型压缩机。又,本实施例的压缩部件1,由于将作用有自转力矩的旋转活塞3和缸2的滑动部位配置在温度低、油粘度高的工作流体的吸入口4a的附近,所以可以进一步降低作用在旋转活塞3上的自转力矩,同时可以减轻滑动部的机械磨损,从而可以提供高效率的容积型压缩机。
又,本实施例的压缩部件1,由于可以在短时间内使压缩行程结束,所以可以降低工作流体的泄漏,提高容积型压缩机的性能。又,本实施例的压缩部件1,由于不需要如在涡旋型中那样的涡卷形状和端板,所以可以实现提高生产率和降低成本,同时由于因不需要端板而不会作用有如在涡旋型中那样的推力负荷,所以可以实现提高容积型压缩机的性能。又,本实施例的压缩部件1,由于可以做成薄壁型,所以冲裁加工等其加工方法的选择自由度较大。又,由于其形状,使轴方向的精度管理也变得容易了,所以可以实现提高生产率。又,通过在旋转活塞3的外周壁3a和缸2的内周壁2c的至少一方上,进行滑动特性优良的覆盖膜处理,可以对在运转初期位于两部件的滑动部上的间隙进行管理,从而可以防止容积型压缩机在运转初期时的性能降低。又,由于不存在如在涡旋型中的欧氏环件(オルダムリング)那样的为防止旋转涡旋件的自转而做往复滑动的机构,所以可以完全地实现转动轴系的平衡,从而可以降低压缩机的振动和噪音。进一步,还可以实现压缩机的小型和轻量化。
进一步,在上述特开昭55-23353号公报上,由邻接空间的相连而形成的一个空间(吸入空间),在从相连着的状态到工作室被形成时,伴随着将形成工作室的活塞的旋转运动在该吸入空间内部会发生流体的流入,并且工作流体会从将形成工作室的空间向在随后的由邻接空间的相连而形成的吸入空间一方移动,从而存在被封闭着的流体体积比工作室的最大容积要小、使吸入效率低下的问题。当该吸入效率低下时,压缩机的能力或泵的能力本身会受到降低。与此相对,在本实施形态中,由于是在吸入容积大致为最大时形成封闭的空间(工作室7)的,所以也不会发生该问题。
又,本实施例的容积型压缩机,是采用使在密闭容器15内为排出压力气氛的高压方式的。由此,由于在润滑油14上作用有高压(排出压力),所以由上述的离心泵的作用,可以容易使润滑油14供给到压缩机内部的各滑动部上,从而可以提高工作室7之间的密封性和各滑动部的润滑性。
如上所述,在本实施例中,是对构成旋转活塞3的外周面形状和缸2的内周面形状的涡旋体的数量为3个的场合进行了说明的。但也可以相应于具有可以实用的涡旋体数(2~10个)的压缩部件1的形状而进行均压孔4d、5d、以及倾斜流路2h的配置。又,随着构成旋转活塞3的外周面形状和缸2的内周面形状的涡旋体的数量在可以实用的范围内逐渐增多,可以具有下列优点。
(1)可以使转矩的变动减少,从而降低振动和噪音。
(2)在使缸2的外径为同一时,可以降低为确保同样的吸入容积而所需的缸2的高度尺寸,实现压缩部件1的小型轻量化。
(3)可以减小作用在旋转活塞3上的自转力矩,同时可以降低在旋转活塞3和缸2的滑动部上的机械磨损,从而提高可靠性。
(4)可以减小在吸入和排出管内的压力波动,进一步实现低振动和低噪音化。由此,可以实现在医疗或产业上应用的要求无脉冲流的流体机械(压缩机、泵等)。
又,这里,作为旋转活塞3和缸2的轮廓形状的构成方法,是对由多圆弧的组合而构成的方法进行了说明的。但本发明并不仅仅限于此方法,也可以由任意的(高次)曲线的组合而构成同样的轮廓形状。
图6显示了本发明的容积型压缩机的纵断面图。在本实施例中,旋转型压缩部件的配置与图1是不同的,这里重点对该差异部分进行说明。在图6中,与在上述的图3~图5中的为同一符号的部分表示相同的部件,并具有相同的作用。
在图6中,1为本发明的压缩部件,它被配置在对其进行驱动的电动部件13的上端部上。作为压缩部件1的旋转活塞3,与缸2的叶片2b相啮合,并在其中心部上形成有与驱动轴20的偏心部20a相嵌合的轴承部3b。驱动轴20,由形成于主轴承4上的主轴承部4c而可以转动地得到轴支持,它对被插入到驱动轴20的偏心部20a中的旋转活塞3单臂支持着,并且其下端部浸入到被贮存在密闭容器21底部的润滑油14中。在密闭容器21上,在其外周部上分别具有吸入管16、排出管17、和电流导入端子22。对旋转型压缩部件1的工作原理等,由于与上述图3中的同样,所以省略其说明。
又,对于工作流体的流动,如图中的箭头所示,经吸入管16而流入到密闭容器21内部的工作流体,经过由安装在主轴承4的端面上的吸入盖9和吸入口4a所形成的吸入室10而流入到压缩部件1中;当由电动部件13而使驱动轴20进行转动时,旋转活塞3做旋转运动,由工作室7的容积的缩小而进行压缩动作。受到压缩了的工作流体,经形成于排出盖23上的排出口23a将排出阀8推开,而被导入到密闭容器21的上部空间中;再经排出口24,被导入到电动部件13侧的空间上,然后从排出管17被放出到密闭容器21的外部。
图7为图6的旋转型压缩部件的立体图。在主轴承4上,在其与形成于排出盖23上的排出口23a相对向的位置上,形成有与上述排出口23a大致具有同一直径的锪孔状的均压孔4d,该均压孔4d相对于主轴承4的中心在圆周上等间距地形成有3个。又,在缸2上,在其与形成于上述排出盖23上的排出口23a相接触的缸2的端面2g上,具有倾斜流路2h。又,在排出盖23上,在其与形成于主轴承4上的吸入口4a相对向的位置上,形成有与上述吸入口4a大致具有相同直径的锪孔状的均压孔23b,该均压孔23b相对于排出盖23的中心在圆周上等间距地形成着。
由上述构成,可以得到与在图4中所说明了的相同的效果。进一步,由于可以实现对驱动轴20进行单臂支持的构造,所以在图4中所示的副轴承5等部件就可以不需要,从而可以实现由容积型压缩机的部件数的减少而带来的低成本化、生产率的提高、以及小型和轻量化。
图8为本发明的低压方式的压缩部件的纵断面图。在本实施例中,在其密闭容器内的压力为低压方式这一点上,与图4的情况不同,此处对该差异部分重点进行说明。
1为本发明的压缩部件,25为收容有压缩部件1和电动部件13的密闭容器。在主轴承4的端面上配设有吸入盖26,由此形成吸入室10。又,上述吸入室10与配置有电动部件13的密闭容器25内的空间相连通着。与图4同样地,在与形成于主轴承4上的吸入口4a相对向的副轴承5的端面位置上,形成有与上述吸入口4a大致具有同一直径的锪孔状的均压孔5d;并且,在与形成于副轴承5上的排出口5a相对的主轴承4的端面位置上,也形成有与上述排出口5a具有大致相同的直径的锪孔状的均压孔4d。进一步,在缸2的叶片2b的靠近排出口5a的圆弧部上,具有倾斜流路2h。由以上的构成,工作流体如图中箭头所示,经吸入管16而流入到密闭容器25内的工作流体,经过由安装在主轴承4上的吸入盖26和吸入口4a所形成的吸入室10后流入到压缩部件1上;通过由电动部件13使驱动轴6产生转动而使旋转活塞3做旋转运动由工作室7的容积的缩小而进行压缩动作。受到压缩了的工作流体,经形成于副轴承5上的排出口5a,推开排出口8后流入到排出室12,然后从排出管17被放出到压缩机外部。
其结果是,与图4同样地,由均压孔4d、5d的作用,使作用在旋转活塞3的上下端上的压力为均一状态,可以得到在运转时的旋转活塞3的稳定举动,从而可以提供具有高可靠性的容积型压缩机。又,由于还可以将支配性能的在旋转活塞3和缸2的滑动部上的径向间隙保持为一定,所以可以提供高性能的容积型压缩机。进一步,由配设在缸2上的倾斜流路2h的作用效果,可以大幅度地降低在排出行程时的压力损失和流体损失,实现提高容积型压缩机的性能。
又,由于吸入室10和密闭容器25内相连通着,所以密闭容器25内部为吸入压力(低压)状态。通过使密闭容器25内的压力为低压方式,可以具有以下优点。
(1)可以减轻由受到了压缩的高温的工作流体所引起的对电动部件13的加热情况,提高马达效率,实现提高容积型压缩机的性能。
(2)在为氟隆(フロン)等与润滑油14之间具有相溶性的工作流体时,由于降低了压力,所以溶解到润滑油14中的工作流体的比例也会减少,可以抑制在轴承部等处发生的润滑油14的发泡现象,提高可靠性。
(3)可以降低对密闭容器25的耐压要求,实现压缩机构成部件的薄壁化和轻量化。
又,本实施例中的低压方式的压缩部件1,也可以适用作当构成旋转活塞3的外周面形状和缸2的内周面形状的涡旋体的数量为可以实用的数值(2-10个)时的压缩部件1、和应用于单臂支持型的容积型压缩机上。又,也可以将均压孔4d、5d和倾斜流路2h配置在本实施例的低压方式上。
以上,在使用本发明的旋转型流体机械的压缩机上,根据机器的样式、用途、或生产设备等情况,可以选择采用低压方式和高压方式中的任一种方式,从而可以大幅度扩大设计的自由度。
图9为本发明的具有自转防止机构的容积型压缩机的纵断面图。在该图中,27为本发明的压缩部件,13为驱动该压缩部件的电动部件,28为收容有压缩部件27和电动部件13的密闭容器;另外还具有吸入管16、排出管17、和电流导入端子22。压缩部件27包括:具有从内周壁29a向内侧突出的圆弧状的叶片29b、并对驱动轴30进行轴支持的主轴承部29c的缸29;与上述缸29的叶片29b相啮合的、在其中心部上具有与偏心部30a相嵌合的轴承孔部31a的旋转活塞31,其中该偏心部30a仅以驱动轴30的旋转半径ε而产生偏心;与该相啮合着的缸29和旋转活塞31的端面相接触的、并且具有对驱动轴30进行轴支持的副轴承部32a的副轴承部件32;形成于上述缸29上的吸入口29d;形成于上述副轴承部件32上的排出口32b;以及对上述排出口32b进行开闭的导向阀形式的排出阀8。又,在旋转活塞31和副轴承部件32上,配置有销方式的自转防止部件33。另外,34为由缸29的叶片29b和旋转活塞31所形成的工作室34。
又,9为安装在缸29的端面上的吸入盖,35为安装在副轴承部件32的端面上的排出盖,它们分别将密闭容器28内部的电动部件13侧和润滑油14侧的空间遮断,并分别形成有吸入室10和排出室12。14为贮存在密闭容器28的底部上的润滑油,在其中浸入有驱动轴30的下端部。36为将副轴承部件32的排出室12和电动部件13侧的空间相连通的连通路。又,电动部件13,由定子13a和转子13b所构成,转子13b由热装工艺等被固定在驱动轴30的一端上。进一步,在上述转子13b的前后端部和驱动轴30的下端部上分别设置有平衡装置37,由这些平衡装置的作用,可以将转动时的不平衡量完全抵消。又,在排出盖35的下端部上,设有油盖38,以用于降低因安装在驱动轴30的下端部上的平衡装置37的转动而引起的润滑油的搅拌阻力。
图10为图9的压缩部件27的立体图。从图中可见,旋转活塞31的外周面形状,为由多圆弧曲线所构成的涡旋体在3个部位连续且圆滑地组合而形成。若着眼于其中的一个部位,则可以将形成外周壁31b和叶片31c的曲线看作为一个具有厚度的涡曲线,其外壁曲线为实际上具有360°卷角的涡曲线,而内壁曲线一方为实际上具有180°卷角的涡曲线,并由将该外壁曲线和内壁曲线所连接了的接线曲线所形成着。缸29的内周壁29a的形状,也由与上述旋转活塞31的相同的原理而构成。
销方式的自转防止机构33,由轴承部件33a、偏心部件33b、轴承部件33c、和销部件33d所构成。轴承部件33a,被嵌入固定在相对于旋转活塞31的中心在圆周上等间距地形成着的孔部31d的内部。又,在偏心部件33b上,形成有偏心孔部33e;偏心部件33b的中心和孔部的中心之间的距离,与在驱动轴30的偏心部30a处的偏心距离ε(二旋转半径)为同等的构成;偏心部件33b以可以滑动的状态被插入到轴承部件33a的孔部中。又,在偏心部件33b的孔部33e中嵌入固定有轴承部件33c;在形成于其中央的孔部中,以可以滑动的方式插入有固定在副轴承部件32上的销部件33d。销部件33d,被固定在相对于副轴承部件32的中心等间距地形成着的孔部32c中;销部件33d与被插入到偏心部件33b的偏心的孔部中的轴承部件33c的中央的孔部之间,各自的轴心是同轴的。由以上的构成,就形成了销方式的自转防止机构33。
在副轴承部件32上,形成有在其中央部上的对驱动轴30进行轴支持的副轴承部32a、和相对于上述副轴承部32a的中心在圆周上等间距地配置着的排出口32b。又,在与形成于缸29上的吸入口29d相对向的位置上,形成有与上述吸入口29d具有大致相同的直径的锪孔状的均压孔32d,该均压孔32d相对于副轴承部32的中心在圆周上等间距地形成着。又,32e为用于固定副轴承部件32和缸29的孔部,32f为用于固定排出阀8的螺纹孔。又,在外周部上形成有油返回用的缺口部32g。另外,36为连通路。
又,在缸29上,在其与形成于副轴承部32上的排出口32b相对向的位置上,形成有与上述排出口32b具有大致相同直径的锪孔状的均压孔29e,该均压孔相对于主轴承29c的中心在圆周上等间距地形成有3个。又,在缸29上,在与形成于副轴承部件32上的排出口32b相接的缸29的端面29f上,具有倾斜流路29g。
下面,对工作流体的流动情况进行说明。如图9的箭头所示,经吸入口16而流入到密闭容器28内部的工作流体,经由形成于缸29上的吸入口29d和吸入盖9而形成的吸入室10流入到压缩部件27;通过由电动部件13使驱动轴30产生转动,而使旋转活塞31做旋转运动,使工作室34的容积缩小,压缩动作得到进行。被压缩了的工作流体,经形成于副轴承部件32上的排出口32b,推开排出阀8后被引导到排出室12,然后从连通路36、经电动部件13后从排出管17放出到压缩机外部。这时,在被贮存于密闭容器28的底部上的润滑油14上,由于会受到高压的排出压力的作用,所以由离心泵的作用可使润滑油14被引导到形成于驱动轴30内部的给油孔(图中未示)中,然后经与驱动轴30内部的上述给油孔相连通的给油孔30b和给油槽30c,被供给到缸29的主轴承部29c、副轴承部件32、缸29的内周壁29a、和旋转活塞31的外周壁31b等滑动部上。进一步,经上述各滑动部而被引导到工作室34中的润滑油14,溶解到工作流体中;通过从排出室12、经连通路36后对电动部件13进行冷却的过程,可使该溶解了的润滑油与工作流体相分离,然后经所形成着的给油通路使其返回到密闭容器28的底部。又,在作为自转防止机构33的销部件33d的内部,具有给油孔;经设置于销部件33d的后端部侧的排出盖35上的给油孔,上述在销部件33d内部的给油孔与密闭容器28的底部的润滑油14相连通着,由离心泵的作用,可对构成销方式的自转防止机构33的各部件进行润滑。
下面,由图11A~11D,对压缩部件27和销方式的自转防止机构33的动作进行说明。在旋转活塞31的轴承孔部31a上,插入有驱动轴30的偏心部30a;旋转活塞31和缸29之间仅以错开旋转半径的方式相啮合着。这里,符号a、b、c、d、e、f,显示了旋转活塞31的外周面形状和缸29的内周面形状之间的啮合的接点。在旋转活塞31上,在相对于中心O的圆周上等间距地形成有3个孔部31d。又,在上述孔部31d中,分别配设有销方式的自转防止机构33。又,符号O1分别为旋转活塞31的孔部31d、轴承部件33a、和偏心部件33b的中心,符号O1’分别为偏心部件33b的孔部、轴承部件33c、和销部件33d的中心;且使O1和O1’之间的距离,与作为旋转活塞31的中心O和缸29的中心O’之间的距离的旋转半径ε相同。
接着进行压缩作用。当驱动轴30转动时,插入到偏心部30a中的旋转活塞31,在被固定着的缸29的中心的周围以旋转半径ε做旋转运动,由此,在旋转活塞的中心周围形成多个的工作室34。
若着眼于由接点a和接点b所围成的空间的工作室34(在吸入终了时是被分割成夹持着排出口32b的2个工作室34的,但当开始压缩行程时该2个工作室34会马上相连而成为1个),图11A为工作流体从吸入口29d向该工作室34的吸入已终了时的状态;从该状态开始,驱动轴30向顺时针方向转动90度后的状态为图11B;从图11B开始,驱动轴30向顺时针方向转动90度后的状态为图11C;从图11C开始,驱动轴30向顺时针方向转动90度后的状态为图11D;当驱动轴30进一步向顺时针方向转动90度时,则返回到最初的图11A的状态。由此,随着驱动轴30的转动,工作室的容积缩小,且由于排出口32b由排出阀8所关闭着,所以对工作流体的压缩作用得以进行。
然后,当工作室内部的压力比外部(密闭容器内的压力)的排出压力要高时,由于压力差的作用使排出阀8自动打开,于是受到压缩了的工作流体经排出口32b后被排出。从吸入终了(压缩开始)开始到排出终了为止的轴转动角为360°;在进行压缩和排出的各行程的期间,下一次的吸入行程得到准备,在排出终了时开始下一次的压缩。即,进行压缩动作的工作室34,相对于旋转活塞31的中心O被等间距地分散配置着。由于各工作室34相互间错开相位而连续地进行吸入和压缩行程,所以驱动轴30的在每1次转动中的转矩波动就可以减少,从而实现容积型压缩机的低振动和低噪音14。
又,在作为被配置在旋转活塞31上的销方式的自转防止部件33的偏心部件33b的孔部中,以可以滑动的状态插入有销部件33d,该销部件33d相对于副轴承部件32的中心O’具有等间距的位置、且与旋转半径ε同方向地被固定支持着。依据以上的构成,以销部件33d为中心被插入到旋转活塞31的3个孔部31d中的偏心部件33b,就在轴承部件33a的孔部内部进行滑动的同时,以旋转活塞31的中心O和缸29的中心O’之间的距离(=旋转半径ε),如图11A→图11B→图11C→图11D→图11A那样地进行与旋转活塞31同样的旋转运动。
其结果是,由销方式的自转防止机构33的作用,在可以对旋转活塞31给予确实的旋转运动的同时,由于将旋转活塞31和缸29的接点之间的间隙保持为一定,所以可以降低摩擦和磨耗,提供具有高可靠性的容积型压缩机。又,由于可以将销方式的自转防止机构33配置在由旋转活塞31和缸29所形成的工作室34的内侧,所以可以实现压缩配件27的小直径化。
进一步,由于在缸29的与旋转活塞31相接触的底面部上,在其与形成于副轴承部件32上的排出口32b相对向的位置上形成有均压孔29e;并在副轴承部件32的与旋转活塞31相接触的端面上,在其与形成于缸29上的吸入口29d相对向的位置上也形成有均压孔32d,所以使在吸入行程和排出行程时在旋转活塞31的上下端上的压力变得均一,可以得到在运转时旋转活塞31的稳定举动。其结果是,由于可以使旋转活塞31相对于将其夹持着的缸29和副轴承部件32的端面在隔离有油膜的同时保持同样的间隙,所以不会发生因一端接触而引起的摩擦和磨耗,可以提供具有高可靠性的容积型压缩机。
又,由于在缸29的叶片29b的靠近排出口32b的圆弧上配设有倾斜流路29g,所以可以大幅度地降低在排出行程时的压力损失和流体损失,实现提高容积型压缩机的性能。
又,在本实施例的压缩部件27中,由于在被嵌合在旋转活塞31上的驱动轴30的偏心部30a的周围等间距地分散配置着从吸入终了开始到排出终了为止的轴转动角为360°的工作室34,所以具有可以使自转力矩的作用点靠近旋转活塞31的中心,使作用在旋转活塞31上的自转力矩自身减小的特点。
又,本实施例中的缸29,为了种将图3所示的缸2和主轴承4一体化了的构造,从而可以在减少部件数的同时提高生产率。
又,本实施例的容积型压缩机,是密闭容器28的内部为排出压力状态的高压方式。通过使之为该方式,由于在润滑油14上作用有高压(排出压力),所以由上述的离心泵的作用,可以容易地将润滑油14供给到压缩机内部的各滑动部上,从而可以提高工作室34的密封性和各滑动部的润滑性。
如上所述,在本实施例中,是对构成旋转活塞31的外周面形状和缸29的内周面形状的涡旋体的数量为3个时的情况进行了说明的。但也可以适用于配置为可以实用的涡旋体数量(2~10个)时的自转防止机构33、均压孔29e和32d,以及倾斜流路29g。
又,在本实施例的压缩部件27上,是显示了销方式的自转防止机构33的。但根据由可以实用的涡旋体的数量所决定的压缩部件的形状,也可以使用曲轴销、十字键和球形联轴器方式的各种自转防止机构。
在图12中,显示了应用了本发明的容积型压缩机的空调系统。该循环为可以产生致冷和供暖的热泵循环,其构成为:在上述图3中所说明了的本发明的容积型压缩机39、室外热交换器40和其风扇41、膨胀阀42、室内热交换器43和其风扇44、以及4通阀45。由点划线所标示着的46为室外单元,而47为室内单元。容积型压缩机39,依据在图2A~2D中所示的动作原理图进行动作;通过起动容积型压缩机39,在缸2和旋转活塞3之间对工作流体(例如为氟隆HCF22、R407C、或R410A等)进行压缩作用。
在作为致冷设备而运转时,受到压缩了的高温、高压的工作气体,如实线箭头所示那样,从排出口17经4通阀45后流入到室外热交换器40;由风扇41的鼓风作用使其放热和液化;在膨胀阀42处受到节流,进行绝热膨胀后成为低温、低压状态;在室内热交换器43中吸收室内的热后得到气化,然后经吸入管16被吸入到容积型压缩机39中。另一方面,在作为供暖设备而运转时,如虚线箭头所示那样,与致冷运转时相反方向地流动着的受到压缩了的高温、高压的工作气体,从排出管17经4通阀45流入到室内热交换器43,由风扇44的鼓风作用使其向室内放热,并液化;然后由膨胀阀42所节流,进行绝热膨胀后成为低温、低压的状态;在室外热交换器40上从外气中吸收热量并被气化,然后经吸入管16被吸入到容积型压缩机39中。
图13显示了装载有本发明的旋转型压缩机的冷冻系统。该循环为冷冻(致冷)专用的循环。在该图中,48为冷凝器,49为冷凝器风扇,50为膨胀阀,51为蒸发器,52为蒸发器风扇。
通过起动容积型压缩机39,在缸2和旋转活塞3之间进行对工作流体的压缩作用;受到压缩了的高温、高压的工作气体,如实线箭头所示那样,从排出管17流入到冷凝器48,由风扇49的鼓风作用使其放热和液化;在膨胀阀50处受到节流,进行绝热膨胀后成为低温、低压的状态;在蒸发器51上吸热气化后,经吸入管16被吸入到容积型压缩机39中。这里,由于在图12和图13中都是装配着本发明的容积型压缩机39的,所以可以得到能量效率高、低振动、低噪音、和高可靠性的冷冻、空调系统。又,在这里,作为容积型压缩机39是以高压方式为例进行了说明的,但在低压方式时也可以具有同样的功能,可以产生同样的效果。又,通过装配上本发明的容积型压缩机39,就不需要消音器等部件,可以实现系统的低成本化。
图14为显示了本实施例的旋转活塞53的平面图。旋转活塞53,显示了为具有同一轮廓形状的3组相组合着的3条卷体。上述旋转活塞53的外周面形状,由左卷状的外周壁53a每隔120°(中心为O’)重复显出同一形状的方式而形成着。在形成为这些每个左卷状的外周壁53a的端部上,具有向内方突出的多个(这时为3个)的大致为圆弧状的叶片53b。在这里,当使旋转活塞53与构成压缩部件的缸相啮合着时,使由自转力矩而受到负荷作用着的旋转活塞53的外周壁53c、53d的曲率,为一种比理想曲线的曲率要大的构成。由上述构成,就可以防止因受到由自转力矩所引起的负荷的作用而导致旋转活塞53在中心周围进行转动的情况。其结果是,可以将在位于旋转活塞53和构成压缩部件的缸之间的啮合的接点处的径向间隙保持在最佳的值,可以提供高效率的密闭型压缩机。又,上述外周壁53c、53d的曲率,由在位于旋转活塞53和构成压缩部件的缸之间的啮合的接点处的径向间隙所决定。
又,通过在上述旋转活塞53的外周壁上施行滑动特性优良的表面处理或进行热处理,可以提供可靠性能优良的密闭型压缩机。
又,由上述构成,当使旋转活塞53的中心和构成压缩部件的缸的中心相一致时,两者的轮廓形状不会成为如图1所示那样的相似形。
以上,在本实施例中的旋转活塞53的构造,可以适用于为可以实用的涡旋体数(2~10个)时的旋转活塞53的构造。
下面,对本发明的实施例的压缩部件的装配方法进行说明。图15为该说明图。在该图中,当将缸2暂时固定在主轴承4上时,将组合夹具54插入到插入有同图的旋转活塞的空间55中,该组合夹具54具有比构成缸2的内周壁2c的3个部位的涡旋体的任意的同心圆2j(在本实施例的3条卷体时,该同心圆2j存在于3个部位上)要小的3处的曲率部位54a。在上述组合夹具54的3处的曲率部位54a上,分别形成有对径向的间隙进行测定的传感器54b;在将上述组合夹具54插入到空间55中时,通过在当上述3处的传感器54b的测定值为相等时的位置(为3同心圆的中心)上将缸2暂时固定在主轴承4上,就可以进行精确的定位。这时,径向的间隙的设定,由旋转活塞的外周壁、缸2的内周壁2c和驱动轴的偏心部的尺寸公差所决定。又,本实施例,可以适用于如图3所示的缸2和对驱动轴6进行轴支承的主轴承4为非同一体的场合。
又,在本实施例中,是对构成旋转活塞的外周面形状和缸的内周面形状的涡旋体数为3个时的情况进行了说明的。但本装配方法也可以适用于为可以实用的涡旋体数(2~10个)时的情况。
如在以上所详细说明了的那样,依据本发明,通过在驱动轴的周围配设2个及以上的多个工作室,并具有一种使每个工作室的从吸入终了开始到排出终了为止的轴转动角大致为360°的构成,同时配置上均压孔,就可以大幅度地降低排出过程的过压缩损失,并确保旋转活塞的稳定举动,得到实现了高性能的、且具有高可靠性的容积型流体机械。又,通过将这样的旋转型流体机械装配在冷冻循环上,可以得到能量效率优良、可靠性高的冷冻和空调系统。
Claims (2)
1.一种容积型流体机械,包括:一旋转活塞(3),一缸(2),所述旋转活塞(3)和缸(2)配置于其间的端板,以及一驱动轴(6),当所述旋转活塞(3)的中心与所述驱动轴(6)的旋转轴线重合时,所述旋转活塞(3)的外壁表面和所述缸(2)的内壁表面形成一个空间,而当所述旋转活塞(3)和所述缸(2)位于旋转位置时,所述旋转活塞(3)的外壁表面和所述缸(2)的内壁表面则形成多个空间,并且所述端板中的一个形成多个吸入口(4a),而所述端板中的另一个则形成多个排出口(5a),
其特征在于:
在与所述吸入口(4a)和排出口(5a)相对的位置处,在所述端板上形成孔(4d、5d),并且
所述旋转活塞(3)具有叶片(3d),所述叶片(3d)具有油槽(3e),该油槽(3e)将润滑油供给至所述驱动轴(6)并且形成于沿着叶片(3d)面对该端板(4,5)的表面上。
2.如权利要求1所述的容积型流体机械,其特征在于:所述端板中的一个与一主轴承一体形成,并且所述端板中的另一个与一副轴承一体形成。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP066075/1997 | 1997-03-19 | ||
JP06607597A JP3924834B2 (ja) | 1997-03-19 | 1997-03-19 | 容積型流体機械 |
JP066075/97 | 1997-03-19 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1193699A CN1193699A (zh) | 1998-09-23 |
CN1166861C true CN1166861C (zh) | 2004-09-15 |
Family
ID=13305374
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB981042007A Expired - Fee Related CN1166861C (zh) | 1997-03-19 | 1998-03-18 | 容积型流体机械 |
Country Status (10)
Country | Link |
---|---|
US (1) | US6179593B1 (zh) |
EP (1) | EP0866226B1 (zh) |
JP (1) | JP3924834B2 (zh) |
KR (1) | KR100266949B1 (zh) |
CN (1) | CN1166861C (zh) |
DE (1) | DE69820320T2 (zh) |
ES (1) | ES2208987T3 (zh) |
MY (1) | MY118187A (zh) |
SG (1) | SG74618A1 (zh) |
TW (1) | TW386135B (zh) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11264383A (ja) * | 1998-03-19 | 1999-09-28 | Hitachi Ltd | 容積形流体機械 |
JPH11264390A (ja) | 1998-03-19 | 1999-09-28 | Hitachi Ltd | 容積形流体機械 |
US6746223B2 (en) | 2001-12-27 | 2004-06-08 | Tecumseh Products Company | Orbiting rotary compressor |
CN106168214A (zh) * | 2016-06-29 | 2016-11-30 | 珠海格力节能环保制冷技术研究中心有限公司 | 一种转缸增焓活塞压缩机及具有其的空调系统 |
CN110892136B (zh) * | 2017-04-28 | 2022-09-27 | 奎斯特发动机有限责任公司 | 可变容积腔室装置 |
CN112483429A (zh) | 2019-09-12 | 2021-03-12 | 开利公司 | 离心压缩机和制冷装置 |
US11739753B1 (en) * | 2022-05-09 | 2023-08-29 | Yaode YANG | Radial compliance mechanism to urge orbiting member to any desired direction and star scroll compressor |
CN115441646B (zh) * | 2022-11-09 | 2023-03-21 | 四川埃姆克伺服科技有限公司 | 一种电机及其整机动平衡方法 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR398678A (fr) * | 1908-12-23 | 1909-06-11 | Wilhelm Leyenthal | Appareil pour recueillir le caoutchouc coagulé sur le tronc des arbres à caoutchouc |
US2112890A (en) * | 1936-10-22 | 1938-04-05 | Socony Vacuum Oil Co Inc | Rotary power device |
US3834842A (en) * | 1971-12-06 | 1974-09-10 | Hydraulic Prod Inc | Hydraulic power translating device |
ZA732299B (en) * | 1972-04-10 | 1974-03-27 | E Stenner | Improvements in or relating to rotary pumps or engines |
ZA741225B (en) * | 1973-03-01 | 1975-01-29 | Broken Hill Propietary Co Ltd | Improved rotary motor |
US3981641A (en) * | 1975-10-08 | 1976-09-21 | Amato Michael A D | Hydraulic motor with orbiting drive member |
US5597293A (en) * | 1995-12-11 | 1997-01-28 | Carrier Corporation | Counterweight drag eliminator |
-
1997
- 1997-03-19 JP JP06607597A patent/JP3924834B2/ja not_active Expired - Fee Related
-
1998
- 1998-03-10 KR KR1019980007836A patent/KR100266949B1/ko not_active IP Right Cessation
- 1998-03-13 TW TW087103734A patent/TW386135B/zh not_active IP Right Cessation
- 1998-03-16 SG SG1998000563A patent/SG74618A1/en unknown
- 1998-03-18 DE DE69820320T patent/DE69820320T2/de not_active Expired - Fee Related
- 1998-03-18 CN CNB981042007A patent/CN1166861C/zh not_active Expired - Fee Related
- 1998-03-18 MY MYPI98001174A patent/MY118187A/en unknown
- 1998-03-18 ES ES98104903T patent/ES2208987T3/es not_active Expired - Lifetime
- 1998-03-18 EP EP98104903A patent/EP0866226B1/en not_active Expired - Lifetime
- 1998-03-19 US US09/044,169 patent/US6179593B1/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
EP0866226A1 (en) | 1998-09-23 |
KR100266949B1 (ko) | 2000-09-15 |
DE69820320T2 (de) | 2004-10-21 |
CN1193699A (zh) | 1998-09-23 |
DE69820320D1 (de) | 2004-01-22 |
ES2208987T3 (es) | 2004-06-16 |
MY118187A (en) | 2004-09-30 |
TW386135B (en) | 2000-04-01 |
JPH10259701A (ja) | 1998-09-29 |
JP3924834B2 (ja) | 2007-06-06 |
KR19980080060A (ko) | 1998-11-25 |
SG74618A1 (en) | 2000-08-22 |
US6179593B1 (en) | 2001-01-30 |
EP0866226B1 (en) | 2003-12-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6264446B1 (en) | Horizontal scroll compressor | |
EP2177765A2 (en) | Scroll compressor and refrigerating machine having the same | |
CN1950608A (zh) | 旋转式压缩机 | |
CN104454021B (zh) | 具有转轮活塞同步回旋机构的流体动力机械 | |
KR20100010456A (ko) | 압축기 | |
US20180372103A1 (en) | Compressor having integrated flow path structure | |
CN101952595A (zh) | 具有润滑系统的开放式驱动涡旋压缩机 | |
KR20180136282A (ko) | 원심 및 차압 급유 구조가 구비된 압축기 | |
CN1163670C (zh) | 容积型流体机械 | |
CN1115485C (zh) | 密闭式压缩机 | |
CN1166861C (zh) | 容积型流体机械 | |
CN1303328C (zh) | 容积式流体机械及该容积式流体机械中的活塞的制造方法 | |
CN1168900C (zh) | 高压穹顶形压缩机 | |
CN1124415C (zh) | 容积式流体机械 | |
AU2005240930B8 (en) | Rotary fluid device | |
JP2004036583A (ja) | 圧縮機 | |
KR101549863B1 (ko) | 밀폐형 압축기 및 이를 적용한 냉동기기 | |
CN1080389C (zh) | 流体压缩机 | |
CN1228552C (zh) | 流体机械 | |
CN216842199U (zh) | 涡旋压缩机轴系平衡结构、涡旋压缩机、空调器 | |
CN217107425U (zh) | 涡旋压缩机 | |
KR102182171B1 (ko) | 스크롤 압축기 | |
CN1081751C (zh) | 流体机械 | |
CN1757928A (zh) | 具有侧进气口结构的旋转叶片式压缩机 | |
KR20190011115A (ko) | 원심 급유 구조가 구비된 압축기 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C06 | Publication | ||
PB01 | Publication | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C19 | Lapse of patent right due to non-payment of the annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |