Nothing Special   »   [go: up one dir, main page]

CN116613192B - 一种常关型GaN HEMT及制造方法 - Google Patents

一种常关型GaN HEMT及制造方法 Download PDF

Info

Publication number
CN116613192B
CN116613192B CN202310872371.8A CN202310872371A CN116613192B CN 116613192 B CN116613192 B CN 116613192B CN 202310872371 A CN202310872371 A CN 202310872371A CN 116613192 B CN116613192 B CN 116613192B
Authority
CN
China
Prior art keywords
layer
gan
normally
gallium nitride
gan hemt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202310872371.8A
Other languages
English (en)
Other versions
CN116613192A (zh
Inventor
朱仁强
罗鹏
刘勇
刘家才
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Nitrogen Core Technology Co ltd
Chengdu Nitrosil Technology Co ltd
Original Assignee
Shenzhen Nitrogen Core Technology Co ltd
Chengdu Nitrosil Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Nitrogen Core Technology Co ltd, Chengdu Nitrosil Technology Co ltd filed Critical Shenzhen Nitrogen Core Technology Co ltd
Priority to CN202310872371.8A priority Critical patent/CN116613192B/zh
Publication of CN116613192A publication Critical patent/CN116613192A/zh
Application granted granted Critical
Publication of CN116613192B publication Critical patent/CN116613192B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66446Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET]
    • H01L29/66462Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET] with a heterojunction interface channel or gate, e.g. HFET, HIGFET, SISFET, HJFET, HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

本发明涉及半导体器件,具体是指一种常关型GaN HEMT及制造方法,包括从下到上设置的衬底、成核层,缓冲层、氮化镓沟道层和铝氮化镓势垒层,所述位于所述铝氮化镓势垒层的上方还设置有p‑GaN层、钝化层、源极和漏极,以及位于p‑GaN层和钝化层上方的栅极,所述p‑GaN层两侧倾斜一定角度设置。采用本发明所提供的方案,提高p‑GaN栅型HEMT器件栅极正向耐压,进而使得器件能够完全导通,降低导通电阻。提高p‑GaN栅型HEMT器件关态漏极击穿电压。修复干法刻蚀后的表面损伤,降低界面态陷阱密度,进而降低器件动态电阻。

Description

一种常关型GaN HEMT及制造方法
技术领域
本发明涉及半导体器件,具体是指一种常关型的GaN HEMT器件及其制造方法。
背景技术
氮化镓(GaN)作为重要的第三代半导体之一,具有禁带宽度大、击穿场强高电子迁移率高、电子饱和速度大等特点。使用功率氮化镓器件能够降低系统损耗,提升效率。
GaN HEMT(High Electron-Mobility Transistor, 高电子迁移率晶体管)器件,拥有高击穿电压和高饱和电流,适合大功率场景的应用。它的基本工作原理,是通过氮化镓/铝氮化镓(GaN/AlGaN)异质结因极化效应产生的拥有高电子迁移率的二维电子气,再通过调控栅极电压完成对器件开关态的控制。但是其阈值电压为负值,是一种耗尽型常开型(耗尽型)器件,而功率半导体系统中需要的核心功率器件为常关型(增强型)。
一种实现常关型的技术路线是将一颗常开型高压GaN HEMT与一颗低压常关型Si(硅) MOSFET 通过Cascode(共栅共源)方式相连。这种方式能够获得较高的耐压和较高的器件稳定性,单由于需要两颗不同材料制备的晶体管连接,存在封装寄生参数大等问题,影响器件的高频应用。
另一种实现常关型的技术路线是制备常关型的单颗GaN HEMT器件。已被报道的可实现常关型单颗GaN HEMT器件的技术包括氟离子注入技术、超薄势垒结构、凹槽栅结构、三栅结构和p-GaN(p型掺杂GaN)栅结构。其中,p-GaN栅型HEMT,通过在栅极金属和铝氮化镓势垒层直接插入p-GaN层,以提高导带能级,实现对二维电子气的关断,进而得到常关型器件。综合考虑器件性能和和工艺水平,目前p-GaN栅型HEMT成为主流的常关型器件技术路线并已经实现大规模量产。
然而,现有的p-GaN栅型HEMT器件仍存在一些问题,低栅极正向耐压,低关态漏极击穿电压,以及高动态电阻。在现有的p-GaN栅型HEMT器件技术中,主要采用干法刻蚀定义p-GaN栅极区域,而干法刻蚀会对铝氮化镓势垒层表面造成损伤,引入额外的表面态陷阱(trap),进而可能降低漏极击穿电压,同时增大器件动态电阻。此外,现有技术形成的p-GaN边缘为垂直台面,在刻蚀后的p-GaN台阶边缘区域会产生尖峰电场,进而降低栅极正向击穿电压。
发明内容
本发明的目的是提供一种常关型的GaN HEMT器件及其制造方法,来解决现有技术中采用干法刻蚀定义p-GaN栅极区域,而干法刻蚀会对铝氮化镓势垒层表面造成损伤。
本发明的实施例通过以下技术方案实现:
第一方面,一种常关型GaN HEMT,包括从下到上设置的衬底、成核层,缓冲层、氮化镓沟道层和铝氮化镓势垒层,位于所述铝氮化镓势垒层的上方还设置有p-GaN层、钝化层、源极和漏极,以及位于p-GaN层和钝化层上方的栅极,所述p-GaN层两侧倾斜一定角度设置。
在本发明的一实施例中,所述源极、漏极与铝氮化镓势垒层接触为欧姆接触,栅极与p-GaN层接触为肖特基接触。
在本发明的一实施例中,所述衬底为硅衬底,厚度为0.3-1.2 mm。
在本发明的一实施例中,所述p-GaN层两侧的切斜角度为0°-90°。
在本发明的一实施例中,所述缓冲层材料为碳掺杂的氮化镓,厚度为1-5,所述氮化镓沟道层厚度为200-500 nm。
在本发明的一实施例中,铝氮化镓势垒层厚度为10-25 nm,所述p-GaN层厚度为50-100 nm,使用镁掺杂,掺杂浓度为1×至1×/>cm-3
第二方面,本发明还提供了一种常关型GaN HEMT的制造方法,包括上述的一种常关型GaN HEMT,还包括;
对p-GaN层进行干法刻蚀,其中,所述干法刻蚀使用电感耦合等离子体刻蚀ICP法,使用的气体为氯气Cl2和三氯化硼BCl3混合气体;
进行湿法清洗,对p-GaN层台阶边缘进行倒圆角处理;
钝化层沉积,对源极、漏极区域钝化层开孔;
源极、漏极沉积及退火,形成欧姆接触;
栅极区域钝化层开孔,栅极金属沉积。
在本发明的一实施例中,所述进行湿法清洗包括利用四甲基氢氧化铵溶液进行处理,所述四甲基氢氧化铵溶液温度为60 ℃-85 ℃,湿法处理时间为5-60 min。
在本发明的一实施例中,所述对p-GaN层进行干法刻蚀还包括;
使用正光刻胶进行光刻,在完成曝光显影后,对光刻胶进行坚膜处理;
获得具有倾斜边缘的光刻胶掩膜层。
在本发明的一实施例中,所述钝化层沉积包括;先沉积一层氮化铝,厚度为2-5nm,再沉积一层氮化硅,厚度为30-300 nm。
本发明实施例的技术方案至少具有如下优点和有益效果:
1.提高p-GaN栅型HEMT器件栅极正向耐压,进而使得器件能够完全导通,降低导通电阻。
2.提高p-GaN栅型HEMT器件关态漏极击穿电压。
3.修复干法刻蚀后的表面损伤,降低界面态陷阱密度,进而降低器件动态电阻。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本发明的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为本发明的常关型GaN HEMT一种结构示意图;
图2为本发明的器件使用的外延层的结构示意图;
图3为本发明的常关型GaN HEMT器件一实施例的制造方法流程图;
图4为使用热的四甲基氢氧化铵溶液处理前(a)、后(b)的p-GaN台阶边缘形貌示意图;
图标:101-衬底,102-成核层,103-缓冲层,104-氮化镓沟道层,105-铝氮化镓势垒层,106- p-GaN层,107-钝化层,108-源极,109-漏极,110-栅极。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本发明实施例的组件可以以各种不同的配置来布置和设计。
请参照图1-图4,本发明包括一种常关型GaN HEMT器件,包括从下到上设置的衬底101,成核层102,缓冲层103,氮化镓沟道层104,铝氮化镓势垒层105,位于铝氮化镓势垒层105上方的p-GaN层106、钝化层107、源极108、漏极109,以及位于p-GaN层106和钝化层107上方的栅极110,所述p-GaN层106两侧倾斜一定角度设置。
具体的,本发明提出的p-GaN层106具有倾斜台面0°<α<90°。传统技术形成的p-GaN边缘为垂直台面,在刻蚀后的p-GaN台阶边缘区域会产生较高的尖峰电场,进而降低栅极110正向击穿电压。采用本发明提出的具有倾斜台面的p-GaN层106,可以缓解尖峰电场效应,降低p-GaN台阶边缘的电场,提升栅极110正向击穿电压,进而使得器件能够完全导通,降低导通电阻
在本实施例中,源极108、漏极109与铝氮化镓势垒层105接触为欧姆接触,栅极110与p-GaN层106接触为肖特基接触。栅极110位于钝化层107上方部分可形成栅极场板,可进一步进行电场调制,降低栅极区域的尖峰电场,增加栅极正向耐压。
器件制造使用的外延层结构如图2所示,包括从下到上设置的衬底101,成核层102,缓冲层103,氮化镓沟道层104,铝氮化镓势垒层105和p-GaN层106。该结构通过金属有机化合物化学气相沉积法MOCVD进行外延生长。衬底101为硅衬底,厚度为0.3-1.2 mm。成核层(102)为氮化AlN。缓冲层103材料为碳掺杂的(铝)氮化镓,厚度为1-5。氮化镓沟道层104厚度为200-500 nm。铝氮化镓势垒层105厚度为10-25 nm。p-GaN层106厚度为50-100nm,使用镁掺杂,掺杂浓度为1×/>至1×/>cm-3
第二方面,本发明还提供了一种常关型GaN HEMT的制造方法,包括上述的一种常关型GaN HEMT,还包括;
S101:对p-GaN层进行干法刻蚀;
具体的,首先进行p-GaN的干法刻蚀。为了获得具有倾斜台面的p-GaN,在干法刻蚀时,可使用光刻胶作为刻蚀的掩膜层。具体而言,可使用正光刻胶进行光刻,在完成曝光显影后,对光刻胶进行坚膜(hard bake)处理,让光刻胶边缘进行回流(reflow),获得具有倾斜边缘的光刻胶掩膜层,再进行干法刻蚀可获得具有倾斜台面的p-GaN。通过改变坚膜的温度和时间,可以控制光刻胶边缘的角度,进而控制刻蚀后p-GaN倾斜台面的角度α。P-GaN干法刻蚀使用电感耦合等离子体刻蚀ICP法,使用的气体为氯气Cl2和三氯化硼BCl3混合气体。使用氯气Cl2和三氯化硼BCl3混合气体刻蚀,因其对氮化镓和铝氮化镓具有较高的刻蚀选择比,能够减少对于铝氮化镓势垒层的过刻蚀。
S102:进行湿法清洗,对p-GaN层台阶边缘进行倒圆角处理;
在完成p-GaN干法刻蚀后,将样品放入热的四甲基氢氧化铵溶液进行湿法处理。热的四甲基氢氧化铵对氮化镓及铝氮化镓的刻蚀具有各项异性,使用热的四甲基氢氧化铵修复干法刻蚀后的表面损伤,降低表面陷阱密度,进而提升漏极击穿电压,减小器件动态电阻。同时,利用热的四甲基氢氧化铵对p-GaN台阶边缘进行倒圆角处理,使得p-GaN台阶边缘处更加光滑,进一步降低此处的电场,以提升栅极正向击穿电压。
S103:钝化层沉积,对源极、漏极区域钝化层开孔;
先沉积一层氮化铝,厚度为2-5nm,采用原子层沉积(ALD)法。再沉积一层氮化硅,厚度为30-300nm。
之后进行源极、漏极钝化层开孔。使用光刻胶作为掩膜层,完成光刻后,采用干法对氮化铝AlN/氮化硅(SixNy)的复合钝化层进行刻蚀。
S104:源极、漏极沉积及退火,形成欧姆接触;
进行源极108、漏极109欧姆金属沉积。金属的沉积使用蒸发镀膜evaporation法。使用的金属结构为钛/铝/镍/金Ti/Al/Ni/Au复合层。使用剥离法(lift off)定义源极108、漏极109区域金属,先完成光刻,再沉积金属,最后进行剥离。之后进行快速热退火(RTA)以形成欧姆接触,退火温度为850℃,退火时间30s。高温退火可以帮助降低接触电阻。
S105:栅极区域钝化层开孔,栅极金属沉积。
之后进行栅极区域钝化层开孔。使用光刻胶作为掩膜层,完成光刻后,采用干法对氮化铝AlN/氮化硅(SixNy)的复合钝化层进行刻蚀。
最后进行栅极110金属沉积。使用的金属为镍/金Ni/Au。金属的沉积使用蒸发镀膜法。使用剥离法定义栅极110区域金属。
图4为使用热的四甲基氢氧化铵处理前a、后b的p-GaN台阶边缘形貌示意图。使用四甲基氢氧化铵处理后,p-GaN台阶边缘处更加光滑。使用的四甲基氢氧化铵溶液为25%四甲基氢氧化铵水溶液,温度为60 ℃-85 ℃,湿法处理时间为5-60 min。溶液温度和处理时间会影响表面形貌。
以上仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (9)

1.一种常关型GaN HEMT,包括从下到上设置的衬底(101)、成核层(102),缓冲层(103)、氮化镓沟道层(104)和铝氮化镓势垒层(105),其特征在于,位于所述铝氮化镓势垒层(105)的上方还设置有p-GaN层(106)、钝化层(107)、源极(108)和漏极(109),以及位于p-GaN层(106)和钝化层(107)上方的栅极(110),所述p-GaN层(106)两侧倾斜设置;
常关型GaN HEMT的制备方法包括:
对p-GaN层进行干法刻蚀,其中,所述干法刻蚀使用电感耦合等离子体刻蚀ICP法,使用的气体为氯气Cl2和三氯化硼BCl3混合气体;
进行湿法清洗,对p-GaN层台阶边缘进行倒圆角处理;
钝化层沉积,对源极、漏极区域钝化层开孔;
源极、漏极沉积及退火,形成欧姆接触;
栅极区域钝化层开孔,栅极金属沉积。
2.根据权利要求1所述的一种常关型GaN HEMT,其特征在于,所述源极(108)、漏极(109)与铝氮化镓势垒层(105)接触为欧姆接触,栅极(110)与p-GaN层(106)接触为肖特基接触。
3.根据权利要求1所述的一种常关型GaN HEMT,其特征在于,所述衬底(101)为硅衬底,厚度为0.3-1.2 mm。
4.根据权利要求1所述的一种常关型GaN HEMT,其特征在于,所述p-GaN层(106)两侧的切斜角度为0°-90°。
5.根据权利要求1所述的一种常关型GaN HEMT,其特征在于,所述缓冲层(103)材料为碳掺杂的氮化镓,厚度为1-5 ,所述氮化镓沟道层(104)厚度为200-500 nm。
6. 根据权利要求1所述的一种常关型GaN HEMT,其特征在于,铝氮化镓势垒层(105)厚度为10-25 nm,所述p-GaN层(106)厚度为50-100 nm,使用镁掺杂,掺杂浓度为1×至1×/>cm-3
7.一种常关型GaN HEMT的制造方法,包括权利要求1-6任意一项所述一种常关型GaNHEMT,其特征在于,所述进行湿法清洗包括利用四甲基氢氧化铵溶液进行处理,所述四甲基氢氧化铵溶液温度为60 ℃-85 ℃,湿法处理时间为5-60 min。
8.根据权利要求7所述的一种常关型GaN HEMT的制造方法,其特征在于,所述对p-GaN层进行干法刻蚀还包括;
使用正光刻胶进行光刻,在完成曝光显影后,对光刻胶进行坚膜处理;
获得具有倾斜边缘的光刻胶掩膜层。
9.根据权利要求7所述的一种常关型GaN HEMT的制造方法,其特征在于,所述钝化层沉积包括;先沉积一层氮化铝,厚度为2-5 nm,再沉积一层氮化硅,厚度为30-300 nm。
CN202310872371.8A 2023-07-17 2023-07-17 一种常关型GaN HEMT及制造方法 Active CN116613192B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310872371.8A CN116613192B (zh) 2023-07-17 2023-07-17 一种常关型GaN HEMT及制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310872371.8A CN116613192B (zh) 2023-07-17 2023-07-17 一种常关型GaN HEMT及制造方法

Publications (2)

Publication Number Publication Date
CN116613192A CN116613192A (zh) 2023-08-18
CN116613192B true CN116613192B (zh) 2023-10-03

Family

ID=87682108

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310872371.8A Active CN116613192B (zh) 2023-07-17 2023-07-17 一种常关型GaN HEMT及制造方法

Country Status (1)

Country Link
CN (1) CN116613192B (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102388441A (zh) * 2009-04-08 2012-03-21 宜普电源转换公司 增强型GaN高电子迁移率晶体管器件及其制备方法
CN103296078A (zh) * 2012-02-23 2013-09-11 宜普电源转换公司 具有栅极隔离物的增强型GaN高电子迁移率晶体管器件及其制备方法
KR20160080404A (ko) * 2014-12-29 2016-07-08 엘지전자 주식회사 질화갈륨계 반도체소자의 제조방법
CN110310981A (zh) * 2019-07-08 2019-10-08 电子科技大学 氮面增强型复合势垒层氮化镓基异质结场效应管
EP3651205A1 (en) * 2018-11-07 2020-05-13 Infineon Technologies Austria AG Semiconductor device and method
CN114678415A (zh) * 2022-03-28 2022-06-28 江苏晶曌半导体有限公司 一种具有阵列浮空岛结构的氮化镓肖特基二极管器件
CN115036220A (zh) * 2021-03-05 2022-09-09 中国科学院苏州纳米技术与纳米仿生研究所 氮化镓电子器件及其制备方法
CN115472689A (zh) * 2022-08-23 2022-12-13 西安电子科技大学 一种具有超结结构的高电子迁移率晶体管及其制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102388441A (zh) * 2009-04-08 2012-03-21 宜普电源转换公司 增强型GaN高电子迁移率晶体管器件及其制备方法
CN103296078A (zh) * 2012-02-23 2013-09-11 宜普电源转换公司 具有栅极隔离物的增强型GaN高电子迁移率晶体管器件及其制备方法
KR20160080404A (ko) * 2014-12-29 2016-07-08 엘지전자 주식회사 질화갈륨계 반도체소자의 제조방법
EP3651205A1 (en) * 2018-11-07 2020-05-13 Infineon Technologies Austria AG Semiconductor device and method
CN110310981A (zh) * 2019-07-08 2019-10-08 电子科技大学 氮面增强型复合势垒层氮化镓基异质结场效应管
CN115036220A (zh) * 2021-03-05 2022-09-09 中国科学院苏州纳米技术与纳米仿生研究所 氮化镓电子器件及其制备方法
CN114678415A (zh) * 2022-03-28 2022-06-28 江苏晶曌半导体有限公司 一种具有阵列浮空岛结构的氮化镓肖特基二极管器件
CN115472689A (zh) * 2022-08-23 2022-12-13 西安电子科技大学 一种具有超结结构的高电子迁移率晶体管及其制备方法

Also Published As

Publication number Publication date
CN116613192A (zh) 2023-08-18

Similar Documents

Publication Publication Date Title
CN110190116B (zh) 一种高阈值电压常关型高电子迁移率晶体管及其制备方法
US9711633B2 (en) Methods of forming group III-nitride semiconductor devices including implanting ions directly into source and drain regions and annealing to activate the implanted ions
JP5576369B2 (ja) 常時オフ半導体デバイスおよびその作製方法
WO2016141762A1 (zh) Iii族氮化物增强型hemt及其制备方法
WO2010109566A1 (ja) 半導体装置及びその製造方法
CN109873034B (zh) 沉积多晶AlN的常关型HEMT功率器件及其制备方法
WO2018032601A1 (zh) GaN基增强型HEMT器件的制备方法
GB2547661A (en) Layered vertical field effect transistor and methods of fabrication
CN110429127B (zh) 一种氮化镓晶体管结构及其制备方法
CN109950323B (zh) 极化超结的ⅲ族氮化物二极管器件及其制作方法
CN210272373U (zh) 一种具有高耐压能力的高电子迁移率晶体管
CN116613192B (zh) 一种常关型GaN HEMT及制造方法
WO2021035946A1 (zh) 高耐压高电子迁移率晶体管及其制备方法
CN114121655B (zh) 一种基于增强型器件的自终止刻蚀方法及器件
CN106449406B (zh) 一种垂直结构GaN基增强型场效应晶体管及其制造方法
CN111446296B (zh) p型栅增强型氮化镓基高迁移率晶体管结构及制作方法
CN209766426U (zh) 一种沉积多晶AlN的常关型HEMT器件
CN110676166B (zh) P-GaN帽层的FinFET增强型器件及制作方法
EP2117039B1 (en) Semiconductor devices including shallow inplanted regions and methods of forming the same
WO2021139040A1 (zh) 一种氧化镓场效应晶体管及其制备方法
CN108695383B (zh) 实现高频mis-hemt的方法及mis-hemt器件
CN112289860B (zh) Ⅲ族氮化物增强型hemt器件及其制备方法
CN116613065B (zh) 一种增强型氮化镓hemt器件及制造方法
CN221596458U (zh) 一种增强型GaN HEMT器件
WO2024000431A1 (zh) 一种半导体器件及其制造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant