Nothing Special   »   [go: up one dir, main page]

CN114939415B - 胺化反应的催化剂及其催化方法 - Google Patents

胺化反应的催化剂及其催化方法 Download PDF

Info

Publication number
CN114939415B
CN114939415B CN202210644708.5A CN202210644708A CN114939415B CN 114939415 B CN114939415 B CN 114939415B CN 202210644708 A CN202210644708 A CN 202210644708A CN 114939415 B CN114939415 B CN 114939415B
Authority
CN
China
Prior art keywords
catalyst
reaction
amination
total weight
germanium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210644708.5A
Other languages
English (en)
Other versions
CN114939415A (zh
Inventor
宋薛
王定军
李洪花
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CANAN NEW MATERIAL (HAGNZHOU) Inc
Original Assignee
CANAN NEW MATERIAL (HAGNZHOU) Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CANAN NEW MATERIAL (HAGNZHOU) Inc filed Critical CANAN NEW MATERIAL (HAGNZHOU) Inc
Priority to CN202210644708.5A priority Critical patent/CN114939415B/zh
Publication of CN114939415A publication Critical patent/CN114939415A/zh
Application granted granted Critical
Publication of CN114939415B publication Critical patent/CN114939415B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/835Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with germanium, tin or lead
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/86Chromium
    • B01J23/868Chromium copper and chromium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/61310-100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C213/00Preparation of compounds containing amino and hydroxy, amino and etherified hydroxy or amino and esterified hydroxy groups bound to the same carbon skeleton
    • C07C213/02Preparation of compounds containing amino and hydroxy, amino and etherified hydroxy or amino and esterified hydroxy groups bound to the same carbon skeleton by reactions involving the formation of amino groups from compounds containing hydroxy groups or etherified or esterified hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/321Polymers modified by chemical after-treatment with inorganic compounds
    • C08G65/325Polymers modified by chemical after-treatment with inorganic compounds containing nitrogen
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

本申请涉及胺化反应催化剂的组合物、所述催化剂的制备方法,以及醇、醛或酮等与胺或氨在所述催化剂催化下制备相应胺的方法。所述催化剂包括镍、铜和锗,其中锗的量为以所述催化剂总重量计的0.5%~30%。本申请的催化剂活性范围宽,通过控制催化剂制备和催化胺化方法本身中的某些变量,可进一步优化和改善胺化反应的活性和选择性。本申请的催化剂不仅表现出很高的转化活性,而且同时有优异的选择性,可生产较大量的目标胺产物和相时少量的不想要的副产物。此外,该催化剂允许使用比常用量少的氢气和/或氨或胺而取得相同的活性和选择性。

Description

胺化反应的催化剂及其催化方法
技术领域
本申请涉及胺化反应催化剂的组合物、所述催化剂的制备方法,以及醇、醛或酮等与胺或氨在所述催化剂催化下制备相应胺的方法。
背景技术
氨或胺可与醛或酮缩合生成亚胺,亚胺中的碳氮双键类似于醛、酮中的碳氧双键,在催化氢化或氢化试剂作用下被还原为相应的一级、二级或三级胺﹐这个反应称为还原胺化反应。一元醇、多元醇、醇胺或由这些醇衍生的化合物在还原条件下也会发生类似的催化胺化反应,并且已发现适用于醛或酮还原胺化反应的催化剂一般也适用于醇的胺化。
在还原胺化反应的催化剂中,贵金属催化剂表现出优异的活性和选择性,如贵金属钯催化剂等,但是由于贵金属价格昂贵,大规模使用成本过高,因此非贵金属催化剂的开发成为还原胺化反应催化剂的主要研究对象。在还原胺化反应催化剂的开发中,早期多使用在多孔氧化物载体上负载活性组分,采用浸渍法来制备催化剂。
例如,中国专利申请公开号:CN1138499A,名称:用于醇、酮和醛的胺化的催化剂,其公开的催化剂包含在多孔氧化物上的0.001~25%重量的钌和0~5%重量的选自下列一组物质的助催化剂:铁、铑、钯、铂、铱、锇、铜、银、金、铬、钼、钨、铼、锌、镉、铅、锰、锡、锂、钠、钾、铷、铯、磷、砷、锑、铋、碲、铊以及它们的混合物。
例如,中国专利申请公开号:CN106669731A,名称:一种用于聚醚多元醇胺化的催化剂及其制备方法和利用该催化剂制备聚醚胺的方法,其公开的催化剂包含活性组分和载体,所述活性组分为Ni和Cu和Pd,催化剂的制备方法包括如下步骤:用金属溶液或金属熔液浸渍载体,得到催化剂前体;干燥、焙烧得到的催化剂前体。
例如,中国专利申请公开号:CN1186453A,名称:催化剂及生产胺的方法,其公开的催化剂制备方法包括(i)将包括铼、钴、铜和/或钌、硼和镍的金属混合物浸渍在载体材料上,所述载体材料优选选自α-氧化铝、氧化硅、氧化硅-氧化铝、硅藻土和氧化硅-氧化钛;和(ii)在氢气存在下在有效温度(优选在150至500℃范围内)下加热所述催化剂足够长时间(优选30分钟至6小时)使所述催化剂活化。
浸渍法制备该类催化剂时,由于金属负载量一般较高,容易造成多孔氧化物载体孔道减小或者堵塞,改变了氧化物的孔径等参数,使得活性组分分散度不高,导致活性较低,稳定性也较差。另外,还原胺化反应伴随着脱氢、脱水及氢化的过程,在还原胺化反应期间形成的水分或通过过多的水分进行的副反应容易使上述催化剂失去活性,最终降低反应效率。因此随着研究的深入,还原胺化反应的催化剂的研究主要转向以共沉淀方法制备催化剂,并且催化剂活性组分使用主要基于铜(Cu)、镍(Ni)、钴(Co)等元素。
例如,美国专利申请公开号:US4153581A,名称:由醇、醛、酮及其混合物生产胺的方法,其公开的催化剂通过沉淀法制备,包含20%到90%左右的钴,8%到72%的铜;1%至约16%的选自铁、锌、锆及其混合物的第三组分。因钴价格昂贵,增加了生产成本,不利于所述催化剂的工业生产应用。
例如,美国专利申请公开号:US4152353A,名称:由醇、醛、酮及其混合物生产胺的方法,其公开的催化剂包含20%到49%的镍;36%到79%的铜;和1%至约15%的选自铁、锌、锆及其混合物的第三组分。
例如,中国专利申请公开号:CN1215719A,名称:胺的制备,其公开的催化剂包含锆、铜和镍,其中催化活性组合物包括:20~85重量%的含氧锆化合物,以ZrO2计,1~30重量%的含氧铜化合物,以CuO计,14~70重量%的含氧镍化合物,以NiO计,其中Ni与Cu的摩尔比大于1,0~10重量%的含氧铝和/或锰的化合物,以Al2O3和/或MnO2计,以及不含氧的钴或钼化合物。
上述这些催化剂活性组分采用的金属元素价格相对较低,据其公开的数据看也取得了不错的效果,但是其并没有解决醇类胺化过程中对氢解副产物的选择性问题,更没有解决伯醇胺化制备伯胺过程中存在副产物较多,导致较差的产物、纯化以及目标胺产物低产率的问题。现有技术的催化剂在制备工艺、金属负载量、催化剂稳定性、抗水合性以及抗金属流失性能等一个或多个方面需要进一步提高。
中国专利申请公开号:CN1604814A,名称:胺化催化剂的进展,其公开的催化剂包含镍、铜、锆和/或铬、氧和锡。与现有技术的催化剂相比,所述催化剂的组合,有效提高了二乙二醇胺化反应的转化率和胺化产物的选择性,但所述催化反应仍存在一些副产物。
目前醇类胺化反应存在转化率不高,副产物多的缺陷,例如一乙醇胺(MEA)与氨在氢化催化剂存在下胺化反应制备乙二胺(EDA)时,不可避免地产生各种多亚烷基多胺副产物,这些副产物特别是环状胺,如哌嗪和氨乙基哌嗪,其工业价值较低,此外生成这些副产物会消耗目标产物乙二胺并导致目标产物难以被分离。然而,目标产物的高选择性与一乙醇胺的低转化率相关联,避免生成环状胺的常用方法又会导致乙二胺的总产率下降。因此需开发出在保持相当高的转化率的同时具备更高选择性的催化剂。
发明内容
现有技术的胺化反应催化剂的成本高,或者存在无法同时兼顾获得目标产物的高选择性和保持良好的胺化转化率的技术问题,为此,本申请采用的还原胺化反应的催化剂包含镍、铜、锗,所述催化剂使得在胺化反应过程中产生的氢解副产物的减少,增加了对目标胺化产物的选择性水平,且具有良好的催化剂稳定性。
一方面,本申请提出了一种胺化反应的催化剂,所述催化剂包括镍、铜,所述催化剂还包括锗,锗的量为以所述催化剂总重量计的0.5%~30%。
进一步,所述锗的量为以所述催化剂总重量计的1%~10%。
进一步,所述镍的含量为以催化剂总重量计的50%~70%;所述铜的含量为以催化剂总重量计的5%~20%;所述催化剂还包括锆和/或铬,锆和/或铬的含量低于催化剂总重量的20%。
进一步,所述催化剂通过浸渍法或共沉淀法或溶胶凝胶法制备;所述催化剂为固体,表面积为50m2/g~200m2/g,优选为70m2/g~150m2/g。
另一方面,本申请还提出了一种胺化反应的催化方法,包括以醇和胺或氨为反应原料,使用上述的催化剂催化进行反应。
进一步,所述醇为具有1至18个碳原子的链烷醇、5至12个碳原子的环烷醇、烷醇胺、多元醇及其二醇醚、聚亚烷基二醇醚。
进一步,催化剂在用于催化反应前,先在100℃~300℃,还原时间为8h~24h。
进一步,催化剂在用于催化反应前先在150℃~250℃下还原12h~24h,使用纯氢气或者惰性气体与氢气的混合气进行所述还原过程,所述惰性气体选自氮气、氦气、氖气、氩气或氪气之一,惰性气体的体积含量为5%~95%。
进一步,采用连续固定床工艺,反应物连续通入到固定床反应器中进行反应,反应温度为150℃~300℃;反应绝对压力为1MPa~30MPa;原料中醇的空速为0.1h-1~3.0h-1;胺或氨与醇的摩尔比为(1~60):1;氢气与醇的摩尔比为(0.01~10):1。
进一步,反应温度为180℃~250℃;反应绝对压力为8MPa~18MPa;原料中醇的空速为0.5h-1~2.0h-1;胺或氨与醇的摩尔比为(5~20):1;氢气与醇的摩尔比为(0.1~3):1。
上述技术方案具有如下优点或有益效果:本申请的催化剂活性范围宽,可以较低的浓度使用,允许使用更好地平衡的反应物;并可使用合理的反应条件进行该方法。通过控制催化剂制备和催化胺化方法本身中的某些变量,可进一步优化和改善胺化反应的活性和选择性。本申请的催化剂不仅表现出很高的转化活性,而且同时有优异的选择性,可生产较大量的目标胺产物和相时少量的不想要的副产物。此外,该催化剂允许使用比常用量少的氢气和/或氨或胺而取得相同的活性和选择性。本申请的催化剂是氢化催化剂,可视具体情况而定用于除胺化工艺之外的其它工艺。
具体实施方式
下面根据实例详细描述本申请,需要说明的是,下面描述的实施例对有经验的人来说是示例性的,旨在用于解释本申请,但本申请不限于这些实例。
羟值测定方法:参见GB/T 12008.3-2009。
总胺值测定方法:采用0.5mol/L的盐酸溶液对产品进行滴定,通过消耗的盐酸质量即可计算出产品的总胺值。
仲/叔胺值测定方法:将产品与等质量的水杨醛混合搅拌2h后,采用0.5mol/L的盐酸溶液对产品进行滴定,通过消耗的盐酸质量即可计算出产品的仲胺和叔胺值之和。
伯胺选择性=(总胺值-仲/叔胺值)/总胺值×100%。
醇转化率:产品总胺值/原料总羟值×100%。
本申请所述的催化剂的制备方法,包括行业所熟知的浸渍法、沉淀法等,优选沉淀法。本申请所述的催化剂使用沉淀法的具体制备过程包括:通过金属盐的水溶液或金属盐配合物的水溶液,所述金属包括活性金属镍、铜、锗、锆/铬等和沉淀剂混合后得到沉淀物,沉淀剂包括碳酸钠、氢氧化钠、碳酸氢钠、氨水等,后通过洗涤、烘干煅烧步骤得到催化剂原粉。然后根据后续工艺将催化剂原粉成型,可以通过压片、挤条、滚球等工艺得到颗粒状催化剂。
所述金属盐包括但不限于上述金属的卤化物、硝酸盐或有机酸盐、氧化物等,优选所述金属的硝酸盐、甲酸盐或草酸盐,特别优选所述金属的硝酸盐;所述金属盐配合物为所述金属的无机酸盐或有机酸盐通过与配体作用形成的水溶性化合物,优选为使用氨或有机胺为配体的水溶性金属盐配合物。其中锗的原料包括但不限于锗的卤化物、氧化锗、锗酸盐和有机锗化合物。
催化剂在用于醇的胺化反应前在100℃~300℃,优选150℃~250℃下进行还原,还原时间为8h~24h,优选12h~24h。还原过程使用含有氢气的气体,例如纯氢气或者惰性气体与氢气的混合气,所述惰性气体包含但不限于氮气、氦气、氖气、氩气或氪气等,优选为氮气,惰性气体的体积含量为5%~95%;优选50%~95%。
对比实施例1:含有Ni+Cu+Zr的催化剂
在室温和有效混合的条件下,将581.6g的Ni(NO3)2·6H2O、74.4g的Cu(NO3)2·3H2O、60.2g的含锆15%的乙酸锆溶液和去离子水组成的1.8L溶液加入354.6g碳酸钠于1.8L去离子水的溶液中,经约2h。过滤得到浆状物以除去母液,并用3L去离子水将所述固体再浆液化并再过滤,重复5次。然后将固体碳酸盐混合物在110℃~150℃干燥12h,然后锻烧(以2℃/min升至460℃),保温5h,以使所述碳酸盐分解为氧化物。氧化物混合物造粒后与3wt%石墨混合,压片成Φ3*3圆柱颗粒。表1给出了该实施例催化剂用ICP测出元素含量及比表面积表征结果:
表1对比实施1元素含量及比表面积
实施例1:含有Ni+Cu+Zr+Ge的催化剂
在与对比实施例1催化剂组成上相比,本实施例的催化剂中加入了Ge组分,以GeCl4为反应物向反应体系加入Ge。在室温下和有效混合的条件下,将581.6g的Ni(NO3)2·6H2O、74.4g的Cu(NO3)2·3H2O、60.2g的含锆15%的乙酸锆溶液、17.18g的GeCl4和去离子水组成的1.8L溶液加入354.60g碳酸钠于1.8L去离子水的溶液中,经约2h。过滤得到浆状物以除去母液,并用3L去离子水将所述固体再浆液化并再过滤,重复5次。然后将固体碳酸盐混合物在110℃~150℃干燥12h,然后锻烧(以2℃/min升至460℃),保温5h,以使所述碳酸盐分解为氧化物。氧化物混合物造粒后与3wt%石墨混合,压片成Φ3*3圆柱颗粒。表2给出了该实施例催化剂用ICP测出元素含量及比表面积表征结果:
表2实施例1元素含量及比表面积
对比实施例2:含有Ni+Cu+Cr的催化剂
在室温下和有效混合的条件下,将581.6g的Ni(NO3)2·6H2O、120g的Cu(NO3)2·3H2O、48.5g的Cr(NO3)3·9H2O和去离子水组成的1.8升溶液加入354.6g碳酸钠于1.8L去离子水的溶液中,经约2h。过滤得到浆状物以除去母液,并用3L去离子水将所述固体再浆液化并再过滤,重复5次。然后将固体碳酸盐混合物在110℃~150℃干燥12h,然后锻烧(以2℃/min升至460℃),保温5h,以使所述碳酸盐分解为氧化物。氧化物混合物造粒后与3wt%石墨混合,压片成Φ3*3圆柱颗粒。表3给出了该实施例催化剂用ICP测出元素含量及比表面积表征结果:
表3对比实施例2元素含量及比表面积
实施例2:含有Ni+Cu+Cr+Ge的催化剂
在室温下和有效混合的条件下,将581.6g的Ni(NO3)2·6H2O、120g的Cu(NO3)2·3H2O、48.5g的Cr(NO3)3·9H2O、19.32g的GeCl4和去离子水组成的1.8升溶液加入354.6g碳酸钠于1.8L去离子水的溶液中,经约2h。过滤得到浆状物以除去母液,并用3升去离子水将所述固体再浆液化并再过滤,重复5次。然后将固体碳酸盐混合物在110℃~150℃干燥12h,然后锻烧(以2℃/min升至460℃),保温5小时,以使所述碳酸盐分解为氧化物。氧化物混合物造粒后与3wt%石墨混合,压片成Φ3*3圆柱颗粒。表4给出了该实施例催化剂用ICP测出元素含量及比表面积表征结果:
表4实施例2元素含量及比表面积
对比实施例3:含有Ni+Cu的催化剂
在室温下和有效混合的条件下,将581.6g的Ni(NO3)2·6H2O、74.4g的Cu(NO3)2·3H2O和去离子水组成的1.8升溶液加入354.6g碳酸钠于1.8L去离子水的溶液中,经约2h。过滤得到浆状物以除去母液,并用3L去离子水将所述固体再浆液化并再过滤,重复5次。然后将固体碳酸盐混合物在110℃~150℃干燥12h,然后锻烧(以2℃/分钟升至460℃),保温5h,以使所述碳酸盐分解为氧化物。氧化物混合物造粒后与3wt%石墨混合,压片成Φ3*3圆柱颗粒。表5给出了该实施例催化剂用ICP测出含量及比表面积表征结果:
表5对比实施例3元素含量及比表面积
实施例3含有Ni+Cu+Ge的催化剂
在室温下和有效混合的条件下,将581.6g的Ni(NO3)2·6H2O、120g的Cu(NO3)2·3H2O、19.32g的GeCl4和去离子水组成的1.8升溶液加入354.6g的碳酸钠于1.8L去离子水的溶液中,经约2h。过滤得到的浆状物以除去母液,并用3升去离子水将所述固体再浆液化并再过滤,重复5次。然后将固体碳酸盐混合物在110℃~150℃干燥12h,然后锻烧(以2℃/min升至460℃),保温5h,以使所述碳酸盐分解为氧化物。氧化物混合物造粒后与3wt%石墨混合,压片成Φ3*3圆柱颗粒。表6给出了该实施例催化剂用ICP测出元素含量及比表面积表征结果:
表6实施例3元素含量及比表面积
对比实施例4
以聚醚多元醇PPG-230(二官能度,分子量230)的胺化反应为例,进行催化剂性能对比。在固定床反应器中装填散堆体积为30mL上述对比实施例1中的粒径Φ3*3圆柱催化剂颗粒,在250℃条件下,用10%氢气和90%氮气混合气进行还原处理,还原时间12h。还原结束后将反应温度降至220℃,体系压力升至15MPa并开始进料,PPG-230空速为1h-1,液氨/PPG-230摩尔比为8:1,氢气/PPG-230摩尔比为0.8:1,反应物经蒸馏去除过量的氨与水,使用气相色谱分析,60h后取样分析,结果如下表7。
实施例4
以聚醚多元醇PPG-230(二官能度,分子量230)的胺化反应为例,进行催化剂性能对比。在固定床反应器中装填散堆体积为30mL上述实施例1中的粒径Φ3*3圆柱催化剂颗粒,在250℃条件下,用10%氢气和90%氮气混合气进行还原处理,还原时间12h。还原结束后将应温度降至220℃,体系压力升至15MPa并开始进料,PPG-230空速为1h-1,液氨/PPG-230摩尔比为8:1,氢气/PPG-230摩尔比为0.8:1,反应物经蒸馏去除过量的氨与水,使用气相色谱分析,60h后取样分析,结果如下表7。
表7、对比实施例4与实施例4胺化反应的相关数据
由表7可见,本申请制备的催化剂整体活性明显优于对比例1的催化剂。如在实例1与对比实施例1用于聚丙二醇(PPG-230)胺化反应比较中,本申请的催化剂令人意外地给出了显著提高的转化率和伯胺选择性,意味着低水平的氢解副产物生成。
对比实施例5
以聚醚多元醇PPG-2000的胺化反应为例,进行催化剂性能对比。在固定床反应器中装填散堆体积为30mL上述对比实施例2中的粒径Φ3*3圆柱催化剂颗粒,在230℃条件下,用20%氢气和80%氮气混合气进行还原处理,还原时间14h。还原结束后将应温度升至250℃,体系压力升至14MPa并开始进料,PPG-2000空速为1.5h-1,液氨/PPG-2000摩尔比为10:1,氢气/PPG-2000摩尔比为1:1,反应物经蒸馏去除过量的氨与水,使用气相色谱分析,60h后取样分析,结果如下表8。
实施例5
以聚醚多元醇PPG-2000的胺化反应为例,进行催化剂性能对比。在固定床反应器中装填散堆体积为30mL上述实施例2中的粒径Φ3*3圆柱催化剂颗粒,在230℃条件下,用20%氢气和80%氮气混合气进行还原处理,还原时间14h。还原结束后将应温度升至250℃,体系压力升至14MPa并开始进料,PPG-2000空速为1.5h-1,液氨/PPG-2000摩尔比为10:1,氢气/PPG-2000摩尔比为1:1,反应物经蒸馏去除过量的氨与水,使用气相色谱分析,60h后取样分析,结果如下表8。
表8、对比实施例5与实施例5胺化反应的相关数据
由表8可见,本申请制备的催化剂整体活性明显优于对比例2的催化剂。如在实例2与对比实施例2用于聚醚多元醇(PPG-2000)胺化反应比较中,本申请的催化剂令人意外地给出了显著提高的转化率和伯胺选择性,意味着低水平的氢解副产物生成。
对比实施例6
以二乙二醇(DEG)的胺化反应为例,进行催化剂性能对比。在固定床反应器中装填散堆体积为30mL上述对比实施例3中的粒径Φ3*3圆柱催化剂颗粒,在220℃条件下,用30%氢气和70%氮气混合气进行还原处理,还原时间20h。还原结束后将应温度降至210℃,体系压力升至12MPa并开始进料,DEG空速为1.2h-1,液氨/DEG摩尔比为12:1,氢气/DEG摩尔比为1.5:1,反应物经蒸馏去除过量的胺与水,使用气相色谱分析,60h后取样分析,结果如下表9。
实施例6
以二乙二醇(DEG)的胺化反应为例,进行催化剂性能对比。在固定床反应器中装填散堆体积为30mL上述实施例3中的粒径Φ3*3圆柱催化剂颗粒,在220℃条件下,用30%氢气和70%氮气混合气进行还原处理,还原时间20h。还原结束后将应温度降至210℃,体系压力升至12MPa并开始进料,DEG空速为1.2h-1,液氨/DEG摩尔比为12:1,氢气/DEG摩尔比为1.5:1,反应物经蒸馏去除过量的氨与水,使用气相色谱分析,60h后取样分析,结果如下表9。
表9、对比实施例6与实施例6胺化反应的相关数据
由表9可见,本申请制备的催化剂整体活性明显优于对比例3的催化剂。如在实例3与对比实施例3用于二乙二醇(DEG)胺化反应比较中,本申请的催化剂令人意外地给出了显著提高的转化率和选择性,有效降低了氢解副产物生成。
在催化剂稳定性的测试中,经过较长时间的反应后,催化剂仍保持稳定的转化率和选择性,说明锗的存在,提高了转化率和选择性的同时,有效提升了催化剂的稳定性。
上文所述的催化剂形状可以为任意形状,具体形状根据催化不同元醇及胺化试剂的反应器(比如根据实际需要可以是釜式,固定床,流化床,列管式或者鼓泡塔式等)进行设计选择,包括但不限于片状、条状和三叶草形等中的一种或两种或多种。
本申请的催化剂可用于包括但不限于醇、醛或酮的胺化,特别的,本申请的催化剂适用于具有宽范围分子量的宽范围的单官能和多官能醇的胺化,所述醇可以是(1)具有1至18个碳原子的链烷醇,例如乙醇、丙醇、丁醇、戊醇、己醇、2-乙基己醇、十三醇和硬脂醇;(2)具有5至12个碳原子的环烷醇,如环己醇;(3)烷醇胺,例如乙醇胺、丙醇胺、异丙醇胺、己醇胺、二乙醇胺和二异丙醇胺;(4)多元醇及其二醇醚,特别是二醇,包括但不限于乙二醇、丙二醇、丁二醇、戊二醇、己二醇、二乙二醇、三乙二醇、聚乙二醇和聚丙二醇;甲基乙二醇醚,乙二醇醚、丁二醇醚;(5)聚亚烷基二醇醚,例如聚乙二醇醚、聚丙二醇醚和聚丁二醇醚。
尽管上面已经示出和描述了本申请的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本申请的限制。在不脱离本申请精神和范围的前提下,本申请还会有各种变化和改进,这些变化和改进都落入要求保护的本申请范围内。

Claims (5)

1.一种胺化反应的催化剂,所述催化剂包括镍、铜,其特征在于:所述催化剂还包括锗,镍的含量为以催化剂总重量计的50%~70%;铜的含量为以催化剂总重量计的5%~20%,锗的量为以所述催化剂总重量计的1%~10%;所述催化剂通过浸渍法或共沉淀法或溶胶凝胶法制备;所述催化剂为固体,其比表面积为50m2/g~200m2/g;所述胺化反应的反应原料为醇和胺或氨,所述醇为具有1至18个碳原子的链烷醇、5至12个碳原子的环烷醇、烷醇胺、多元醇及其二醇醚、聚亚烷基二醇醚。
2.根据权利要求1所述的一种胺化反应的催化剂,其特征在于:所述锗的量为以所述催化剂总重量计的3.0%~4.9%。
3.根据权利要求1所述的一种胺化反应的催化剂,其特征在于:所述催化剂还包括锆和/或铬,锆和/或铬的含量低于催化剂总重量的20%。
4.一种胺化反应的催化方法,包括以醇和胺或氨为反应原料,其特征在于:使用包括镍、铜、锗的催化剂催化,其中镍的含量为以催化剂总重量计的50%~70%;铜的含量为以催化剂总重量计的5%~20%,锗的量为以所述催化剂总重量计的1%~10%;所述醇为具有1至18个碳原子的链烷醇、5至12个碳原子的环烷醇、烷醇胺、多元醇及其二醇醚、聚亚烷基二醇醚;所述催化剂在用于催化反应前先在150℃~250℃下还原12h~24h,使用纯氢气或者惰性气体与氢气的混合气进行所述还原过程,所述惰性气体选自氮气、氦气、氖气、氩气或氪气之一,惰性气体的体积含量为5~95%;胺或氨与醇的摩尔比为(5~20):1;氢气与醇的摩尔比为(0.1~3):1。
5.根据权利要求4所述的胺化反应的催化方法,其特征在于:采用连续固定床工艺,反应物连续通入到固定床反应器中进行反应,反应温度为180℃~250℃;反应绝对压力为8MPa~18MPa;原料中醇的空速为0.5h-1~2.0h-1
CN202210644708.5A 2022-06-08 2022-06-08 胺化反应的催化剂及其催化方法 Active CN114939415B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210644708.5A CN114939415B (zh) 2022-06-08 2022-06-08 胺化反应的催化剂及其催化方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210644708.5A CN114939415B (zh) 2022-06-08 2022-06-08 胺化反应的催化剂及其催化方法

Publications (2)

Publication Number Publication Date
CN114939415A CN114939415A (zh) 2022-08-26
CN114939415B true CN114939415B (zh) 2024-06-21

Family

ID=82908529

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210644708.5A Active CN114939415B (zh) 2022-06-08 2022-06-08 胺化反应的催化剂及其催化方法

Country Status (1)

Country Link
CN (1) CN114939415B (zh)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107754813A (zh) * 2016-08-18 2018-03-06 万华化学集团股份有限公司 一种用于聚醚胺合成的负载型催化剂及其制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7196033B2 (en) * 2001-12-14 2007-03-27 Huntsman Petrochemical Corporation Advances in amination catalysis
EP2225031A1 (de) * 2007-12-21 2010-09-08 Basf Se Verfahren zur herstellung eines amins
CN101683618A (zh) * 2008-09-24 2010-03-31 华东理工大学 一种用于氨基醇低温氧化脱氢制氨基酸盐的催化剂
KR101178940B1 (ko) * 2010-05-26 2012-08-31 충북대학교 산학협력단 알킬아민 제조용 촉매 및 이의 제조방법
CN104056628A (zh) * 2014-05-29 2014-09-24 浙江大学 一种用于乙酸加氢制乙酸乙酯反应的催化剂及其制备方法和应用
CN114425397B (zh) * 2020-10-15 2023-11-28 中国石油化工股份有限公司 非贵金属催化剂及其制备方法和丙烷脱氢制备丙烯的方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107754813A (zh) * 2016-08-18 2018-03-06 万华化学集团股份有限公司 一种用于聚醚胺合成的负载型催化剂及其制备方法

Also Published As

Publication number Publication date
CN114939415A (zh) 2022-08-26

Similar Documents

Publication Publication Date Title
KR100924620B1 (ko) 개선된 아민화반응 촉매
RU2573637C2 (ru) Способ синтеза высших этаноламинов
US11820725B2 (en) Process for catalytic hydrogenation of halonitroaromatics
JP7105811B2 (ja) エチレンアミンの製造方法
CN87108109A (zh) 改性的醛加氢催化剂及方法
CN107899575B (zh) 用于醛和醇一步氧化酯化生成酯的纳米金催化剂及其制备方法和应用
US7381852B2 (en) Process for hydrogenating an aldehyde
TWI549751B (zh) 用於將醛類氫化為醇類之促進型銅/鋅催化劑、其製造方法及使用該催化劑將醛類氫化為醇類之方法
CN108043411B (zh) 一种正丁醛加氢制备正丁醇的催化剂及其制备方法
CN114939415B (zh) 胺化反应的催化剂及其催化方法
KR101522762B1 (ko) 다가성 알코올의 수소화 분해 생성물의 제조 공정 및 시스템
EP0171297A2 (en) A method for preparing dual colloid catalyst compositions
EP3878831A1 (en) Improved nickel-copper-manganese-catalyst for the preparation of alcohols by hydrogenation of the corresponding aldehydes and ketones
JP5197308B2 (ja) 多価アルコールの水素化分解物の製造方法
CN114643066B (zh) 一种加氢催化剂及其制备方法和应用以及环己基甲酸的制备方法
US20060111595A1 (en) Catalyst for the production of 1,3-propanediol by catalytic hydrogenation of 3-hydroxypropanal
JP2023167854A (ja) アセトン水素化触媒及びイソプロパノールの製造方法
CN114618491A (zh) 铜基催化剂的制备方法及铜基催化剂催化加氢制备烷醇的方法
JPH07112953A (ja) ヒドロキシ酢酸の製造方法およびこれに用いる触媒
MXPA06000481A (es) Metodo para la hidrodescomposicion de formiatos de amonio en mezclas de reaccion que contienen poliol.

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant