Nothing Special   »   [go: up one dir, main page]

CN114921477B - Brown orange aphid carotenoid oxygenase gene and dsRNA thereof - Google Patents

Brown orange aphid carotenoid oxygenase gene and dsRNA thereof Download PDF

Info

Publication number
CN114921477B
CN114921477B CN202210670159.9A CN202210670159A CN114921477B CN 114921477 B CN114921477 B CN 114921477B CN 202210670159 A CN202210670159 A CN 202210670159A CN 114921477 B CN114921477 B CN 114921477B
Authority
CN
China
Prior art keywords
brown orange
orange aphid
aphid
dsrna
seq
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210670159.9A
Other languages
Chinese (zh)
Other versions
CN114921477A (en
Inventor
丁碧月
王进军
尚峰
张永特
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southwest University
Original Assignee
Southwest University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southwest University filed Critical Southwest University
Priority to CN202210670159.9A priority Critical patent/CN114921477B/en
Publication of CN114921477A publication Critical patent/CN114921477A/en
Application granted granted Critical
Publication of CN114921477B publication Critical patent/CN114921477B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0069Oxidoreductases (1.) acting on single donors with incorporation of molecular oxygen, i.e. oxygenases (1.13)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • C12N15/1137Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing against enzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y113/00Oxidoreductases acting on single donors with incorporation of molecular oxygen (oxygenases) (1.13)
    • C12Y113/11Oxidoreductases acting on single donors with incorporation of molecular oxygen (oxygenases) (1.13) with incorporation of two atoms of oxygen (1.13.11)
    • C12Y113/11065Carotenoid isomerooxygenase (1.13.11.65)

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Virology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明公开了一种褐色橘蚜类胡萝卜素加氧酶基因,如SEQ ID NO:3所示;还公开了褐色橘蚜类胡萝卜素加氧酶基因的dsRNA,其序列如SEQ ID NO:6所示;还公开了dsRNA的合成方法:提取褐色橘蚜的总RNA,反转录成为cDNA作为扩增模板,以序列为SEQ ID NO:4的上游引物和以序列为SEQ ID NO:5的下游引物进行PCR扩增,PCR扩增产物进行电泳后回收产物,以胶回收产物为模板合成得到褐色橘蚜类胡萝卜素加氧酶基因的dsRNA。本发明首次鉴定得到褐色橘蚜类胡萝卜素加氧酶基因序列,提供的dsRNA基因沉默效率高,在研发新型杀虫剂方面有很好的应用前景。

Figure 202210670159

The invention discloses a brown orange aphid carotenoid oxygenase gene, as shown in SEQ ID NO: 3; also discloses the dsRNA of the brown orange aphid carotenoid oxygenase gene, whose sequence is shown in SEQ ID NO: 6 Shown; Also disclose the synthetic method of dsRNA: extract the total RNA of brown orange aphid, reverse transcribe into cDNA as amplification template, be the upstream primer of SEQ ID NO:4 with the sequence and be the upstream primer of SEQ ID NO:5 with the sequence The downstream primers were amplified by PCR, and the amplified PCR products were electrophoresed to recover the products, and the dsRNA of the brown orange aphid carotenoid oxygenase gene was synthesized using the gel recovered products as templates. The present invention identifies and obtains the brown orange aphid carotenoid oxygenase gene sequence for the first time, and the dsRNA gene silencing efficiency provided has high efficiency, and has a good application prospect in the research and development of new insecticides.

Figure 202210670159

Description

褐色橘蚜类胡萝卜素加氧酶基因及其dsRNACarotenoid Oxygenase Gene and dsRNA of Brown Orange Aphid

技术领域technical field

本发明涉及昆虫的生长发育调控和基因工程技术领域,特别涉及一种褐色橘蚜类胡萝卜素加氧酶基因及其dsRNA。The invention relates to the technical fields of growth and development regulation and genetic engineering of insects, in particular to a brown orange aphid carotenoid oxygenase gene and dsRNA thereof.

背景技术Background technique

褐色橘蚜Aphis citricidus是柑桔衰退病病毒Citrus tristeza virus的主要传播媒介,该病毒对世界柑桔产业造成严重的经济损失。褐色橘蚜应对逆境胁迫时出现典型的翅型可塑性,如:拥挤条件下,褐色橘蚜分化出有翅型,正常条件下褐色橘蚜为无翅型。翅型可塑性作为褐色橘蚜重要的生态对策与其爆发成灾及传播植物病毒密切相关。褐色橘蚜田间营孤雌生殖、加之有翅率高(约20%)、翅型可塑性强,世代历期短、繁殖率高等特点,使用化学药剂防治较为困难并且极易引起抗药性等问题(Shilts et al.,2018;Gao et al.,2021)。阐明褐色橘蚜翅型可塑性的分子调控机制,探索蚜虫防控的新靶标、寻获新型高效的蚜虫绿色防控技术是国内外的重大科技需求。The brown orange aphid, Aphis citricidus, is the main vector of Citrus tristeza virus, which causes severe economic losses to the world's citrus industry. The brown orange aphid showed typical plasticity of wing type when it responded to adversity stress. For example, under crowded conditions, the brown orange aphid differentiated into a winged type, but under normal conditions, the brown orange aphid was a wingless type. Wing plasticity, as an important ecological strategy of the brown orange aphid, is closely related to its outbreak and plant virus transmission. Brown orange aphid has the characteristics of parthenogenesis in the field, high wing rate (about 20%), strong plasticity of wing shape, short generation period, and high reproduction rate. It is difficult to control it with chemical agents and it is easy to cause problems such as drug resistance ( Shilts et al., 2018; Gao et al., 2021). Clarifying the molecular regulation mechanism of wing-shaped plasticity of brown orange aphids, exploring new targets for aphid control, and finding new and efficient green control technologies for aphids are major scientific and technological needs at home and abroad.

RNA干扰(RNA interference,RNAi)是近年来发现的一种重要基因沉默手段,是指在进化过程中高度保守的、由双链RNA(dsRNA,Double-stranded RNA,双链核糖核酸)诱发的、同源RNA高效特异性降解的现象,是通过dsRNA的介导特异性的降解对应序列的mRNA。由于使用RNAi技术可以特异性抑制特定基因的表达,所以该技术已被广泛用于探索基因功能和基因治疗领域。RNA interference (RNA interference, RNAi) is an important gene silencing method discovered in recent years. The phenomenon of high-efficiency and specific degradation of homologous RNA is through the mediation of dsRNA to specifically degrade the mRNA of the corresponding sequence. Since the expression of a specific gene can be specifically inhibited using RNAi technology, this technology has been widely used to explore gene function and the field of gene therapy.

β-胡萝卜素调控昆虫黑化、视觉体色、抗逆胁迫等重要生理进程(Heath et al.,2013;Tougeron et al.,2021)。β-胡萝卜素是昆虫体内含量最高的类胡萝卜素(含40碳的碳氢化合物和氧化衍生物)(Ding et al.,2020;Maoka,2020)。β-胡萝卜素参与粉纹夜蛾Trichoplusia ni的黑化反应,并调节其生长速率(Clark and Lampert,2018)。此外,β-胡萝卜素通过酶催化作用转变成维生素A,并调控昆虫的视觉功能,缺乏β-胡萝卜素会导致家蚕五龄幼虫单眼和成虫复眼对由光刺激产生的电反应能力丧失(Shimizu and Kato,1981)。β-胡萝卜素响应逆境胁迫因子诱导昆虫体色可塑性(Tsuchida,2016;Wybouw etal.,2019;孙明霞等,2020)。豌豆蚜红色型与绿色型间β-胡萝卜素含量差异较大,随着寄主营养条件变差,β-胡萝卜素含量显著降低,种群适合度降低(Ding et al.,2020);东亚飞蝗Locusta migratoria散居型呈现均匀绿色,群居型则呈现黑色背板和棕色腹面。进一步解析发现,飞蝗主要通过β-胡萝卜素与其结合蛋白的分离与结合调控体色变化(Yang etal.,2019)。申请人前期研究发现,胰岛素信号通路调控褐色橘蚜翅可塑性(Ding et al.,2017),并发现其上游调控因子miR-9b(Shang et al.,2020)。β-carotene regulates important physiological processes such as insect melanization, visual body color, and stress resistance (Heath et al., 2013; Tougeron et al., 2021). β-carotene is the most abundant carotenoid (hydrocarbons and oxidized derivatives containing 40 carbons) in insects (Ding et al., 2020; Maoka, 2020). β-carotene participates in the melanization response of Trichoplusia ni and regulates its growth rate (Clark and Lampert, 2018). In addition, β-carotene is converted into vitamin A through enzymatic catalysis and regulates the visual function of insects. The lack of β-carotene will lead to the loss of the electrical response ability of the fifth instar larvae of silkworm and adult compound eyes to light stimulation (Shimizu and Kato, 1981). β-carotene induces body color plasticity in insects in response to adversity stress factors (Tsuchida, 2016; Wybouw et al., 2019; Sun Mingxia et al., 2020). There is a large difference in β-carotene content between the red type and the green type of pea aphid. As the nutritional conditions of the host become poor, the β-carotene content decreases significantly, and the population fitness decreases (Ding et al., 2020); Locusta migratory locust Migratoria is uniformly green in solitary form, and black in back and brown ventral in gregarious form. Further analysis found that migratory locusts mainly regulate body color changes through the separation and binding of β-carotene and its binding protein (Yang et al., 2019). The applicant's previous research found that the insulin signaling pathway regulates the wing plasticity of the brown orange aphid (Ding et al., 2017), and found its upstream regulator miR-9b (Shang et al., 2020).

蚜虫通过真菌水平基因转移(Horizontal gene transfer)自身合成β-胡萝卜素。研究发现,大多数昆虫不能从头合成β-胡萝卜素,只能从食物中摄取或由体内共生微生物提供(Jeremy et al.,2013)。如家蚕Bombyx mori取食桑叶获得β-胡萝卜素,色素物质被中肠吸收后先进入血液,随后透过丝腺被丝胶蛋白吸收,从而使蚕茧着色;烟粉虱Bemisiatabaci初级共生菌Candidatus Portiera aleyrodidarum基因组中包含β-胡萝卜素生物合成关键基因,调控自身和共生宿主β-胡萝卜素的生物合成(Santos-Garcia et al.,2012;Sloan and Moran,2012)。近年来研究发现,部分刺吸式昆虫(螨)通过水平基因转移从真菌中获得相关基因合成β-胡萝卜素(Altincicek et al.,2012;Nováková and Moran,2012;Cobbs et al.,2013;Bryon et al.,2017)。在豌豆蚜Acyrthosiphon pisum基因组中发现真菌水平转移的编码脱氢酶和合成/环化酶的基因,均是β-胡萝卜素生物合成所必需的基因(Moran and Jarvik,2010),该发现为昆虫β-胡萝卜素生物合成与功能研究开辟了新领域。随后在其它蚜虫、二斑叶螨Tetranychus urticae和黑森瘿蚊Mayetiola destructor基因组中也发现了真菌转移β-胡萝卜素生物合成相关基因的现象(Altincicek et al.,2012;Cobbs et al.,2013;Bryon et al.,2017)。Aphids synthesize β-carotene by fungal horizontal gene transfer. Studies have found that most insects cannot synthesize β-carotene de novo and can only be ingested from food or provided by endosymbiotic microorganisms (Jeremy et al., 2013). For example, the silkworm Bombyx mori eats mulberry leaves to obtain β-carotene. The pigment substance is absorbed by the midgut and enters the blood first, and then is absorbed by sericin through the silk gland, thereby coloring the cocoon; the primary symbiotic bacterium Candidatus Portiera The aleyrodidarum genome contains key genes for β-carotene biosynthesis, which regulate the biosynthesis of β-carotene in itself and symbiotic hosts (Santos-Garcia et al., 2012; Sloan and Moran, 2012). In recent years, studies have found that some piercing-sucking insects (mite) obtain related genes from fungi to synthesize β-carotene through horizontal gene transfer (Altincicek et al., 2012; Nováková and Moran, 2012; Cobbs et al., 2013; Bryon et al., 2017). In the genome of the pea aphid Acyrthosiphon pisum, fungal horizontally transferred genes encoding dehydrogenase and synthesis/cyclase were found, both of which are essential for β-carotene biosynthesis (Moran and Jarvik, 2010). - Carotene biosynthesis and function research has opened up a new field. Subsequently, the phenomenon of fungal transfer of genes related to β-carotene biosynthesis was also found in the genomes of other aphids, the two-spotted spider mite Tetranychus urticae and the Hessian gall midge Mayetiola destructor (Altincicek et al., 2012; Cobbs et al., 2013; Bryon et al., 2017).

β-胡萝卜素通路关键酶系在不同物种中差异巨大(Miziorko et al.,2011;Sunet al.,2018;Ma et al.,2022)。两个牻牛儿基牻牛儿基焦磷酸(GGPP)分子在合成酶的作用下生成八氢番茄红素。在植物、藻类和细菌中,该酶仅具有合成酶功能(Sieiro et al.,2003)。而在真菌中,合成酶为双功能酶,既具有合成酶功能,又具有环化酶功能(Velayoset al.,2000;Arrach et al.,2001)。八氢番茄红素在脱氢酶的作用下脱氢生成番茄红素。在真菌和真细菌中,这一过程由一个脱氢酶基因催化生成,而在植物和藻类生物中这一过程则由不同的酶系分工完成(Sandmann et al.,2009)。环化酶可使番茄红素的一端或者两端发生环化作用,生成β-胡萝卜素、α-胡萝卜素和γ-胡萝卜素(Maoka et al.,2020),β-胡萝卜素则在加氧酶(NinaB)和β-胡萝卜素结合蛋白(β-CBP)的作用下形成复合物并进一步代谢成其他色素或能量物质(Clark et al.,2018;Chai et al.,2019;Yang et al.,2019)。分析34种蚜虫相关序列发现,脱氢酶、合成酶和环化酶基因是在蚜虫进化早期获得,经过不断的复制、重组和筛选,从而在不同种类的蚜虫中扩张或收缩出不同的基因,呈现多样化的β-胡萝卜素通路(Nováková and Moran,2012;Takemura et al.,2021)。The key enzymes of the β-carotene pathway vary greatly among different species (Miziorko et al., 2011; Sun et al., 2018; Ma et al., 2022). Two geranylgeranyl pyrophosphate (GGPP) molecules are synthesized into phytoene under the action of synthetase. In plants, algae and bacteria, the enzyme has only synthetase function (Sieiro et al., 2003). In fungi, however, synthetases are bifunctional enzymes with both synthetase and cyclase functions (Velayose et al., 2000; Arrach et al., 2001). Phytoene is dehydrogenated by dehydrogenase to produce lycopene. In fungi and eubacteria, this process is catalyzed by a dehydrogenase gene, while in plants and algae, this process is performed by different enzyme systems (Sandmann et al., 2009). Cyclase can cyclize one or both ends of lycopene to generate β-carotene, α-carotene and γ-carotene (Maoka et al., 2020), and β-carotene is oxygenated Under the action of enzyme (NinaB) and β-carotene binding protein (β-CBP), a complex is formed and further metabolized into other pigments or energy substances (Clark et al., 2018; Chai et al., 2019; Yang et al. , 2019). Analysis of 34 aphid-related sequences found that dehydrogenase, synthetase and cyclase genes were acquired in the early evolution of aphids, and after continuous replication, recombination and screening, different genes were expanded or contracted in different species of aphids, presents a diverse β-carotene pathway (Nováková and Moran, 2012; Takemura et al., 2021).

类胡萝卜素加氧酶(Carotenoid Oxygenase)能够氧化裂解类胡萝卜素产生维生素A(Vitamin A,VA)类物质。该酶作为一种可溶于细胞质中的重要酶类,在肠黏膜尤其空肠黏膜细胞中的活性最高。目前针对褐色橘蚜类胡萝卜素加氧酶蛋白的相关研究较少,也未见针对褐色橘蚜类胡萝卜素加氧酶基因的dsRNA的报道。Carotenoid Oxygenase (Carotenoid Oxygenase) can oxidatively crack carotenoids to produce vitamin A (Vitamin A, VA) substances. As an important enzyme soluble in cytoplasm, this enzyme has the highest activity in intestinal mucosa, especially in jejunal mucosal cells. At present, there are few related studies on the carotenoid oxygenase protein of the brown orange aphid, and there is no report on dsRNA targeting the carotenoid oxygenase gene of the brown orange aphid.

发明内容Contents of the invention

本发明针对褐色橘蚜β-胡萝卜素通路解析及其对翅型可塑性的调控作用这一关键科学问题,在系统鉴定褐色橘蚜β-胡萝卜素通路基因的基础上,运用RNAi在活体水平上构建褐色橘蚜β-胡萝卜素的通路;解析褐色橘蚜β-胡萝卜素通路响应逆境胁迫的表达模式;分析β-胡萝卜素对褐色橘蚜翅型可塑性的影响及胰岛素对β-胡萝卜素通路的调控。Aiming at the key scientific problem of brown orange aphid β-carotene pathway analysis and its regulating effect on wing shape plasticity, the present invention uses RNAi to construct on the basis of systematic identification of brown orange aphid β-carotene pathway gene at the living level The β-carotene pathway of the brown orange aphid; analysis of the expression pattern of the brown orange aphid β-carotene pathway in response to adversity stress; analysis of the effect of β-carotene on the brown orange aphid wing plasticity and the regulation of insulin on the β-carotene pathway .

本发明经过研究验证首次鉴定到了褐色橘蚜类胡萝卜素加氧酶基因(AcNinaB基因),并设计合成其dsRNA,通过实验验证,该dsRNA基因沉默效率高。基于此,本发明保护如下技术方案:The present invention identifies the brown orange aphid carotenoid oxygenase gene (AcNinaB gene) for the first time through research and verification, and designs and synthesizes the dsRNA thereof. It is verified by experiments that the dsRNA gene has high silencing efficiency. Based on this, the present invention protects the following technical solutions:

一种褐色橘蚜类胡萝卜素加氧酶基因,其核苷酸序列如SEQ ID NO:3所示。A brown orange aphid carotenoid oxygenase gene, the nucleotide sequence of which is shown in SEQ ID NO:3.

上述的褐色橘蚜类胡萝卜素加氧酶基因或褐色橘蚜类胡萝卜素加氧酶基因编码的蛋白作为靶标在如下任一中的应用:The application of the above brown orange aphid carotenoid oxygenase gene or the protein encoded by the brown orange aphid carotenoid oxygenase gene as a target in any of the following:

1)在调控褐色橘蚜翅型可塑性或制备调控褐色橘蚜翅型可塑性的产品中的应用;1) Application in regulating the plasticity of the brown orange aphid wing shape or preparing products for regulating the plasticity of the brown orange aphid wing shape;

2)在调控褐色橘蚜生长发育或制备调控褐色橘蚜生长发育调控剂中的应用;2) Application in regulating the growth and development of the brown orange aphid or preparing a regulator for regulating the growth and development of the brown orange aphid;

3)在防治褐色橘蚜或制备防治褐色橘蚜的产品中的应用。3) Application in preventing and treating brown orange aphid or preparing products for preventing and controlling brown orange aphid.

本发明还保护扩增上述的褐色橘蚜类胡萝卜素加氧酶基因的引物组,所述引物组的上游引物的核苷酸序列如SEQ ID NO:1所示,下游引物的核苷酸序列如SEQ ID NO:2所示。The present invention also protects the primer set for amplifying the above-mentioned brown orange aphid carotenoid oxygenase gene, the nucleotide sequence of the upstream primer of the primer set is shown in SEQ ID NO: 1, the nucleotide sequence of the downstream primer As shown in SEQ ID NO:2.

本发明还保护上述的褐色橘蚜类胡萝卜素加氧酶基因的PCR扩增方法,包括如下步骤:以褐色橘蚜总RNA反转录得到的cDNA为模板,以序列为SEQ ID NO:1的上游引物和以序列为SEQ ID NO:2的下游引物进行PCR扩增。The present invention also protects the PCR amplification method of the above-mentioned brown orange aphid carotenoid oxygenase gene, comprising the following steps: using the cDNA obtained by reverse transcription of the brown orange aphid total RNA as a template, and using the sequence as SEQ ID NO:1 The upstream primer and the downstream primer whose sequence is SEQ ID NO:2 carry out PCR amplification.

在上述的PCR扩增方法中,当PCR扩增的反应体系为25μl时,25μl的PCR反应体系包括:浓度为200-700ng/μl的cDNA模板1μl,浓度为0.15-0.25μM的上下游引物各1μl,DNA聚合酶LA Taq MIX 0.25μl,10×Buffer(Mg2+plus)3μl,dNTP 4μl以及去核酸酶水14.75μl;In the above-mentioned PCR amplification method, when the PCR amplification reaction system is 25 μl, the 25 μl PCR reaction system includes: 1 μl of cDNA template with a concentration of 200-700 ng/μl, upstream and downstream primers with a concentration of 0.15-0.25 μM 1 μl, DNA polymerase LA Taq MIX 0.25 μl, 10×Buffer (Mg 2+ plus) 3 μl, dNTP 4 μl and nuclease-free water 14.75 μl;

PCR条件为:95℃预变性3min;95℃变性30s、60℃退火30s、72℃延伸30s,共35个循环;72℃条件下延伸10min。The PCR conditions were: pre-denaturation at 95°C for 3 min; denaturation at 95°C for 30 s, annealing at 60°C for 30 s, and extension at 72°C for 30 s, a total of 35 cycles; extension at 72°C for 10 min.

本发明还保护一种褐色橘蚜类胡萝卜素加氧酶基因的dsRNA,以如SEQ ID NO:3所示的褐色橘蚜类胡萝卜素加氧酶基因片段为模板转录获得。The present invention also protects a dsRNA of the brown orange aphid carotenoid oxygenase gene, which is obtained by transcribing the brown orange aphid carotenoid oxygenase gene fragment as shown in SEQ ID NO:3 as a template.

优选地,所述dsRNA的核苷酸序列如SEQ ID NO:6所示。Preferably, the nucleotide sequence of the dsRNA is shown in SEQ ID NO:6.

上述的褐色橘蚜类胡萝卜素加氧酶基因的dsRNA在如下任一中的应用:The application of the dsRNA of the above-mentioned brown orange aphid carotenoid oxygenase gene in any of the following:

1)在调控褐色橘蚜翅型可塑性或制备调控褐色橘蚜翅型可塑性的产品中的应用;1) Application in regulating the plasticity of the brown orange aphid wing shape or preparing products for regulating the plasticity of the brown orange aphid wing shape;

2)在调控褐色橘蚜生长发育或制备调控褐色橘蚜生长发育调控剂中的应用;2) Application in regulating the growth and development of the brown orange aphid or preparing a regulator for regulating the growth and development of the brown orange aphid;

3)在防治褐色橘蚜或制备防治褐色橘蚜的产品中的应用。3) Application in preventing and treating brown orange aphid or preparing products for preventing and controlling brown orange aphid.

本发明还保护一种褐色橘蚜类胡萝卜素加氧酶基因的dsRNA的合成方法,包括如下步骤:以褐色橘蚜总RNA反转录得到的cDNA为模板,以序列为SEQ ID NO:4的上游引物和以序列为SEQ ID NO:5的下游引物进行PCR扩增,PCR扩增产物进行电泳后回收产物,以胶回收产物为模板合成得到褐色橘蚜类胡萝卜素加氧酶基因的dsRNA。The present invention also protects a dsRNA synthesis method of the brown orange aphid carotenoid oxygenase gene, comprising the following steps: using the cDNA obtained by reverse transcription of the brown orange aphid total RNA as a template, and using the sequence as SEQ ID NO:4 The upstream primer and the downstream primer whose sequence is SEQ ID NO: 5 were amplified by PCR, and the PCR amplified product was recovered after electrophoresis, and the dsRNA of the brown orange aphid carotenoid oxygenase gene was synthesized using the product recovered from the gel as a template.

在上述的褐色橘蚜类胡萝卜素加氧酶基因的dsRNA的合成方法的技术方案中,dsRNA合成反应体系为20μl,其中包括:胶回收得到的片段模板4μl(约1μg)、5×TranscrptAid Reaction Buffer 4μl、浓度为100mM的ATP/CTP/GTP/UTP Mix 8μl、TranscriptAid Enzyme Mix 2μl和DEPC-treated water 2μl;反应条件为:37℃孵育4h。In the above-mentioned technical scheme of the dsRNA synthesis method of the brown orange aphid carotenoid oxygenase gene, the dsRNA synthesis reaction system is 20 μl, which includes: 4 μl (about 1 μg) of the fragment template obtained by gel recovery, 5×TranscrptAid Reaction Buffer 4 μl, 8 μl of ATP/CTP/GTP/UTP Mix at a concentration of 100 mM, 2 μl of TranscriptAid Enzyme Mix and 2 μl of DEPC-treated water; the reaction conditions are: incubate at 37°C for 4 hours.

本发明的有益效果是:本发明首次鉴定得到褐色橘蚜类胡萝卜素加氧酶基因序列,并通过实验验证该基因参与调控褐色橘蚜翅型可塑性,根据该序列得到类胡萝卜素加氧酶基因的dsRNA,可以应用于对褐色橘蚜进行RNA干扰从而起到防治褐色橘蚜的效果。通过实验验证,该dsRNA基因沉默效率高,基因干扰后褐色橘蚜有明显表型变化,解决了褐色橘蚜目前没有有效的类胡萝卜素加氧酶基因的dsRNA的问题,在研发新型杀虫剂方面有很好的应用前景。The beneficial effects of the present invention are: the present invention first identified and obtained the gene sequence of the brown orange aphid carotenoid oxygenase, and verified through experiments that the gene participates in regulating the plasticity of the brown orange aphid wing, and obtained the carotenoid oxygenase gene according to the sequence The dsRNA can be applied to the RNA interference of the brown orange aphid so as to control the brown orange aphid. It has been verified by experiments that the dsRNA gene silencing efficiency is high, and the brown orange aphid has obvious phenotypic changes after gene interference, which solves the problem that the brown orange aphid currently does not have an effective dsRNA of the carotenoid oxygenase gene, and is developing a new type of insecticide It has a good application prospect.

附图说明Description of drawings

图1为褐色橘蚜AcNinaB基因在NCBI中Protein Blast比对图。Figure 1 is the Protein Blast comparison of the brown orange aphid AcNinaB gene in NCBI.

图2为褐色橘蚜AcNinaB基因氨基酸序列与其它昆虫AcNinaB蛋白系统发育树图。Fig. 2 is a phylogenetic tree diagram of the amino acid sequence of the AcNinaB gene of the brown orange aphid and the AcNinaB protein of other insects.

图3为本发明实施例中的饲喂dsRNA的装置。Fig. 3 is a device for feeding dsRNA in an embodiment of the present invention.

图4为褐色橘蚜有翅型和无翅型类胡萝卜素组分和含量分析。Figure 4 shows the composition and content analysis of carotenoids in winged and apterous brown orange aphids.

图5为褐色橘蚜β-胡萝卜素通路基因在种群密度变化(A)和翅二型(若虫(B)和成虫(C))中表达差异。Figure 5 shows the differences in the expression of the brown orange aphid β-carotene pathway genes in the population density change (A) and the two types of wings (nymph (B) and adult (C)).

图6干扰胰岛素受体基因2(InR2)对β-胡萝卜素通路基因表达量(A)和含量的影响(B)。Fig. 6 Effect of interfering insulin receptor gene 2 (InR2) on the expression (A) and content (B) of β-carotene pathway genes.

图7为褐色橘蚜饲喂AcNinaB基因的dsRNA后的AcNinaB基因相对表达量,其中dsGFP表示对照组,dsAcNinaB表示实验组。Fig. 7 shows the relative expression level of AcNinaB gene after the brown orange aphid was fed the dsRNA of AcNinaB gene, wherein dsGFP represents the control group, and dsAcNinaB represents the experimental group.

图8为褐色橘蚜饲喂AcNinaB基因的dsRNA后的有翅率,其中dsGFP表示对照组,dsAcNinaB表示实验组。Figure 8 shows the winged rate of the brown orange aphid fed with the dsRNA of the AcNinaB gene, wherein dsGFP represents the control group, and dsAcNinaB represents the experimental group.

图9为褐色橘蚜饲喂AcNinaB基因的dsRNA后的β-类胡萝卜素含量检测结果。Fig. 9 is the detection result of β-carotenoid content after the brown orange aphid is fed with the dsRNA of the AcNinaB gene.

图10为褐色橘蚜饲喂AcNinaB基因的dsRNA后表型表现图;其中1为对照组的正常褐色橘蚜,2为实验组的翅发育不正常的褐色橘蚜。Fig. 10 is a graph showing the phenotypic expression of the brown orange aphid fed with the dsRNA of the AcNinaB gene; wherein 1 is the normal brown orange aphid in the control group, and 2 is the brown orange aphid with abnormal wing development in the experimental group.

具体实施方式Detailed ways

下面结合实施例对本发明作进一步说明,但并不因此而限制本发明。The present invention will be further described below in conjunction with embodiment, but does not limit the present invention thereby.

下述实施例中的实验方法,如无特别说明,均为常规方法;所用化学、生物试剂,如无特殊说明,均为本领域常规试剂。The experimental methods in the following examples, unless otherwise specified, are conventional methods; the chemical and biological reagents used, unless otherwise specified, are conventional reagents in the art.

本发明实施例中主要化学试剂来源如下:Main chemical reagent sources are as follows in the embodiment of the present invention:

LA Taq MIX(Takara公司,日本)LA Taq MIX (Takara Company, Japan)

TRIzol kit(Invitrogen公司,美国)TRIzol kit (Invitrogen, USA)

RNeasy Plus Micro Kit(QIAGEN公司,德国)RNeasy Plus Micro Kit (QIAGEN, Germany)

PrimeSTAR Max Premix(Takara公司,日本)PrimeSTAR Max Premix (Takara, Japan)

胶回收纯化试剂盒(Takara公司,日本)Gel Recovery and Purification Kit (Takara, Japan)

Transcript Aid T7 High Yield Transcription Kit(Thermo fisherScientific公司,美国)Transcript Aid T7 High Yield Transcription Kit (Thermo fisher Scientific, USA)

Perfect real time RT reagent(Takara公司,日本)Perfect real time RT reagent (Takara, Japan)

Figure BDA0003693001070000051
qPCR Master Mix(Promega公司,美国)
Figure BDA0003693001070000051
qPCR Master Mix (Promega, USA)

TranscriptAid Enzyme Mix(Thermo fisher Scientific公司,美国)TranscriptAid Enzyme Mix (Thermo fisher Scientific, USA)

ATP/CTP/GTP/UTPMix(Thermo fisher Scientific公司,美国)ATP/CTP/GTP/UTPMix (Thermo fisher Scientific company, USA)

PrimeScriptRT Enzyme Mix I(Thermo fisher Scientific公司,美国)PrimeScriptRT Enzyme Mix I (Thermo fisher Scientific, USA)

Oligo dT Primer(Thermo fisher Scientific公司,美国,AM5730G)Oligo dT Primer (Thermo fisher Scientific company, USA, AM5730G)

Random 6mers(Thermo fisher Scientific公司,美国,SO142)Random 6mers (Thermo fisher Scientific company, the United States, SO142)

实施例一、褐色橘蚜类胡萝卜素加氧酶基因序列鉴定Example 1. Sequence Identification of Brown Citrus Aphid Carotenoid Oxygenase Gene

1)从褐色橘蚜基因组数据(西南大学昆虫学与害虫控制重点实验室内部数据库)中查找可能的类胡萝卜素加氧酶序列,通过tBlastn,在基因组当中查找到一条序列,使用在线软件https://www.ncbi.nlm.nih.gov/,通过Primer-BLAST设计引物:1) Find the possible carotenoid oxygenase sequence from the brown orange aphid genome data (the internal database of the Key Laboratory of Entomology and Pest Control, Southwest University), and find a sequence in the genome through tBlastn, using the online software https: http://www.ncbi.nlm.nih.gov/, design primers by Primer-BLAST:

PCR product size:Min:250,Max:500;Organism:Aphidoidea,得到引物序列。通过对设计得到的引物在软件DNAMAN中进行自身互补性检验和自由能检验:引物结构最小自由能=0.00千卡/摩,不存在自身互补性,两引物互补性中Max complementarity incontinuous:4bp,free energy=-1.60Kcal/mol,Max complementarity indiscontinuous:7bp得到引物AcNinaB-A(如SEQ ID NO:1所示)和AcNinaB-S(如SEQ ID NO:2所示)PCR引物。PCR product size: Min: 250, Max: 500; Organism: Aphidoidea, get the primer sequence. Carry out self-complementarity test and free energy test on the designed primers in the software DNAMAN: the minimum free energy of the primer structure = 0.00 kcal/mol, there is no self-complementarity, and the Max complementarity in the complementarity of the two primers is continuous: 4bp, free energy=-1.60Kcal/mol, Max complementarity indiscontinuous: 7bp obtained primer AcNinaB-A (as shown in SEQ ID NO: 1) and AcNinaB-S (as shown in SEQ ID NO: 2) PCR primers.

PCR product size:Min:150,Max:300;Organism:Aphidoidea,得到引物序列。通过对设计得到的引物在软件DNAMAN中进行自身互补性检验和自由能检验:引物结构最小自由能=0.00千卡/摩,不存在自身互补性,两引物互补性中Max complementarity incontinuous:4bp,free energy=-3.30Kcal/mol,Max complementarity indiscontinuous:7bp得到引物为AcNinaB-L(如SEQ ID NO:9所示)和AcNinaB-R(如SEQ IDNO:10所示)。PCR product size: Min: 150, Max: 300; Organism: Aphidoidea, get the primer sequence. Carry out self-complementarity test and free energy test on the designed primers in the software DNAMAN: the minimum free energy of the primer structure = 0.00 kcal/mol, there is no self-complementarity, and the Max complementarity in the complementarity of the two primers is continuous: 4bp, free energy=-3.30Kcal/mol, Max complementarity indiscontinuous: 7bp obtained primers are AcNinaB-L (as shown in SEQ ID NO: 9) and AcNinaB-R (as shown in SEQ ID NO: 10).

2)利用RNA提取试剂盒RNeasy Plus Micro Kit按照使用说明提取褐色橘蚜的总RNA,然后利用反转录试剂盒Perfect real time RT reagent按照使用说明将1μg总RNA反转录成为cDNA。2) Use the RNA extraction kit RNeasy Plus Micro Kit to extract the total RNA of the brown orange aphid according to the instructions, and then use the reverse transcription kit Perfect real time RT reagent to reverse transcribe 1 μg of the total RNA into cDNA according to the instructions.

3)以上述得到的cDNA为模板,设计全长扩增引物,利用上下游引物AcNinaB-A和AcNinaB-S进行PCR扩增;PCR条件为:95℃预变性3min;95℃变性30s、60℃退火10s、72℃延伸2min,共35个循环;72℃条件下延伸10min。PCR反应体系共25μl,包括:浓度为400-500ng/μl的cDNA模板1μl,浓度为0.15-0.25μM的上下游引物各1μl,DNA聚合酶LA Taq MIX 0.25μl,10×Buffer(Mg2+plus)3μl,dNTP 4μl以及去核酸酶水14.75μl;引物AcNinaB-A(如SEQ IDNO:1所示)和AcNinaB-S(如SEQ ID NO:2所示)的序列如下:3) Using the cDNA obtained above as a template, design full-length amplification primers, and use the upstream and downstream primers AcNinaB-A and AcNinaB-S for PCR amplification; the PCR conditions are: 95°C pre-denaturation for 3 minutes; 95°C denaturation for 30 seconds, 60°C Annealing for 10s, extension at 72°C for 2min, 35 cycles in total; extension at 72°C for 10min. A total of 25 μl of PCR reaction system, including: 1 μl of cDNA template with a concentration of 400-500 ng/μl, 1 μl of upstream and downstream primers with a concentration of 0.15-0.25 μM, 0.25 μl of DNA polymerase LA Taq MIX, 10×Buffer (Mg 2+ plus ) 3 μl, dNTP 4 μl and nuclease-free water 14.75 μl; the sequences of primers AcNinaB-A (shown as SEQ ID NO:1) and AcNinaB-S (shown as SEQ ID NO:2) are as follows:

AcNinaB-A:TCGCTGCTAAGAAACGGTCC,AcNinaB-A: TCGCTGCTAAGAAACGGTCC,

AcNinaB-S:ACAATACCAGCCATCCGAGC。AcNinaB-S: ACAATACCAGCCATCCGAGC.

4)将PCR产物在1%琼脂糖凝胶电泳中进行分离,得到1830bp左右的条带,将PCR产物送测序公司进行测序,测序结果如SEQ ID NO:3所示。4) The PCR product was separated in 1% agarose gel electrophoresis to obtain a band of about 1830bp, and the PCR product was sent to a sequencing company for sequencing. The sequencing result is shown in SEQ ID NO:3.

5)将测序结果通过手工校对,序列拼接,并在NCBI中进行Protein Blast相似性比对,比对结果如图1所示,可见扩增得到的基因片段与棉蚜(Aphis gossypii)NinaB基因(类胡萝卜素加氧酶基因)同源性最高,高达96%。与其他昆虫比对结果也发现,可与其他昆虫的NinaB基因比对上,说明本克隆获得的基因应为褐色橘蚜AcNinaB基因。5) The sequencing results were manually proofread and sequence spliced, and the Protein Blast similarity comparison was carried out in NCBI. The comparison results are shown in Figure 1. It can be seen that the amplified gene fragment is similar to the cotton aphid (Aphis gossypii) NinaB gene ( Carotenoid oxygenase gene) has the highest homology, up to 96%. Compared with other insects, it is also found that it can be compared with the NinaB gene of other insects, indicating that the gene obtained by this clone should be the AcNinaB gene of the brown orange aphid.

6)通过氨基酸系统发育树的构建,如图2所示,系统发育树分析表明,褐色橘蚜NinaB基因基因与半翅目其他昆虫的NinaB基因相聚集,说明褐色橘蚜的NinaB基因与半翅目其他昆虫以及其他目昆虫的NinaB基因高度同源。6) Through the construction of the amino acid phylogenetic tree, as shown in Figure 2, the phylogenetic tree analysis shows that the NinaB gene of the brown orange aphid is clustered with the NinaB genes of other insects of the order Hemiptera, indicating that the NinaB gene of the brown orange aphid is closely related to that of the hemiptera. The NinaB genes of other insect orders and other insect orders are highly homologous.

实施例二、褐色橘蚜类胡萝卜素加氧酶基因的dsRNA的合成Embodiment two, the synthesis of the dsRNA of brown orange aphid carotenoid oxygenase gene

1)在AcNinaB-A(如SEQ ID NO:1所示)和AcNinaB-S(如SEQ ID NO:2所示)序列5’端添加T7启动子序列,设计扩增合成类胡萝卜素加氧酶酶(NinaB)基因的上下游引物T7-AcNinaB-A1(如SEQ ID NO:4所示)、T7-AcNinaB-S1(如SEQ ID NO:5所示),合成引物,引物序列分别为:1) Add T7 promoter sequence at the 5' end of AcNinaB-A (as shown in SEQ ID NO: 1) and AcNinaB-S (as shown in SEQ ID NO: 2) sequence, design and amplify synthetic carotenoid oxygenase The upstream and downstream primers T7-AcNinaB-A1 (as shown in SEQ ID NO: 4), T7-AcNinaB-S1 (as shown in SEQ ID NO: 5) of the enzyme (NinaB) gene, synthetic primers, and the primer sequences are respectively:

T7-AcNinaB-A1:TAATACGACTCACTATAGGGTCGCTGCTAAGAAACGGTCC,T7-AcNinaB-A1: TAATACGACTCACTATAGGGTCGCTGCTAAGAAACGGTCC,

T7-AcNinaB-S1:TAATACGACTCACTATAGGGACAATACCAGCCATCCGAGC。T7-AcNinaB-S1: TAATACGACTCACTATAGGGACAATACCAGCCATCCGAGC.

2)利用RNA提取试剂盒RNeasy Plus Micro Kit按照使用说明提取褐色橘蚜的总RNA,然后利用反转录试剂盒Perfect real time RT reagent按照使用说明将1μg总RNA反转录成为cDNA,反转录体系为20μl,其中包括:total RNA 1μl(约1μg),5×PrimeScriptBuffer 4μl,PrimeScriptRT Enzyme Mix I 1μl,Oligo dT Primer(50μM)1μl,Random6mers(100μM)1μl,RNase Free ddH2O 12μl。2) Use the RNA extraction kit RNeasy Plus Micro Kit to extract the total RNA of the brown orange aphid according to the instructions, and then use the reverse transcription kit Perfect real time RT reagent to reverse transcribe 1 μg of the total RNA into cDNA according to the instructions, reverse transcribe The system is 20 μl, including: total RNA 1 μl (about 1 μg), 5×PrimeScriptBuffer 4 μl, PrimeScriptRT Enzyme Mix I 1 μl, Oligo dT Primer (50 μM) 1 μl, Random6mers (100 μM) 1 μl, RNase Free ddH 2 O 12 μl.

3)对步骤2)得到的cDNA进行PCR扩增,反应条件为:95℃预变性3min;95℃变性30s、60℃退火10s、72℃延伸2min,共35个循环;72℃条件下延伸10min;PCR反应体系共25μl,包括:浓度为400-500ng/μl的cDNA模板0.5μl,浓度为0.15-0.25μM的上下游引物(T7-AcNinaB-A1、T7-AcNinaB-S1)各1μl,PrimeSTAR Max Premix 12.5μl以及去核酸酶水10μl。3) Perform PCR amplification on the cDNA obtained in step 2), and the reaction conditions are: pre-denaturation at 95°C for 3 minutes; denaturation at 95°C for 30 seconds, annealing at 60°C for 10 seconds, and extension at 72°C for 2 minutes, a total of 35 cycles; extension at 72°C for 10 minutes ; A total of 25 μl of PCR reaction system, including: 0.5 μl of cDNA template with a concentration of 400-500 ng/μl, 1 μl of upstream and downstream primers (T7-AcNinaB-A1, T7-AcNinaB-S1) with a concentration of 0.15-0.25 μM, PrimeSTAR Max Premix 12.5μl and nuclease-free water 10μl.

4)将步骤3)中的PCR产物用胶回收纯化试剂盒按照说明书纯化回收之后作为合成dsRNA的转录模板,用体外合成RNA试剂盒Transcript Aid T7 High Yield TranscriptionKit按照使用说明转录合成并纯化得到褐色橘蚜AcNinaB基因的dsRNA(如SEQ ID NO:6所示)溶液,将dsRNA溶液浓度稀释到200-300ng/μl备用。dsRNA合成反应体系为20μl,其中包括:胶回收得到的片段模板4μl(约1μg)、5×TranscrptAid Reaction Buffer 4μl、浓度为100mM的ATP/CTP/GTP/UTP Mix 8μl、TranscriptAid Enzyme Mix 2μl和DEPC-treatedwater 2μl;反应条件为:37℃孵育4h。4) Purify and recover the PCR product in step 3) with the Gel Recovery and Purification Kit according to the instructions and use it as a transcription template for dsRNA synthesis. Use the in vitro synthesis RNA kit Transcript Aid T7 High Yield Transcription Kit to transcribe and purify according to the instructions to obtain brown orange dsRNA (as shown in SEQ ID NO: 6) solution of aphid AcNinaB gene, the concentration of the dsRNA solution is diluted to 200-300ng/μl for later use. The dsRNA synthesis reaction system is 20 μl, including: 4 μl (about 1 μg) of the fragment template recovered from the gel, 4 μl of 5×TranscrptAid Reaction Buffer, 8 μl of ATP/CTP/GTP/UTP Mix with a concentration of 100 mM, 2 μl of TranscriptAid Enzyme Mix and DEPC- Treated water 2μl; reaction conditions: 37 ℃ incubation for 4h.

同时按照上述方法合成并纯化得到GFP(绿色荧光蛋白)的dsRNA溶液作为阴性对照,反转录得到的cDNA进行PCR扩增时使用的上下游引物序列分别为GFP-ds-T7F(如SEQ IDNO:7所示)、GFP-ds-T7R(如SEQ ID NO:8所示),序列为:GFP-ds-T7F:Simultaneously according to above-mentioned method synthesis and purification obtains the dsRNA solution of GFP (green fluorescent protein) as negative control, the upstream and downstream primer sequence that the cDNA that reverse transcription obtains carries out PCR amplification uses respectively is GFP-ds-T7F (as SEQ ID NO: 7), GFP-ds-T7R (as shown in SEQ ID NO:8), the sequence is: GFP-ds-T7F:

TAATACGACTCACTATAGGGCAGTTCTTGTTGAATTAGATG;TAATACGACTCACTATAGGGCAGTTCTTGTTGAATTAGATG;

GFP-ds-T7R:GFP-ds-T7R:

TAATACGACTCACTATAGGGTTTGGTTTGTCTCCCATGATG。TAATACGACTCACTATAGGGTTTGGTTTGTCTCCCATGATG.

实施例三、褐色橘蚜类胡萝卜素加氧酶基因的dsRNA导入褐色橘蚜Embodiment 3, the dsRNA of the brown orange aphid carotenoid oxygenase gene is introduced into the brown orange aphid

利用如图3所示的装置对褐色橘蚜饲喂dsRNA,按照如下步骤操作:Utilize the device shown in Figure 3 to feed dsRNA to the brown orange aphid, follow the steps below:

1)取干净的50mL离心管,用剪刀将离心管1圆锥形底部剪去,取250μl PCR管2将管底剪掉,用双面胶将PCR管2的管口与离心管1管盖的内壁粘在一起,使得PCR管2套在离心管1内;1) Take a clean 50mL centrifuge tube, cut off the conical bottom of centrifuge tube 1 with scissors, take 250μl PCR tube 2 and cut off the bottom of the tube, use double-sided tape to connect the mouth of PCR tube 2 to the cap of centrifuge tube 1. The inner walls are glued together so that the PCR tube 2 is set in the centrifuge tube 1;

2)从PCR管2剪掉的管底处伸入移液枪注入上述制得的dsRNA溶液,将离心管1管底朝上地竖立放置;2) Extend the pipette gun from the bottom of the PCR tube 2 to inject the dsRNA solution prepared above, and place the centrifuge tube 1 upright with the bottom up;

3)取新鲜的柑橘嫩梢3,用无核酸酶水清洗干净吸干多余水分后插入PCR管2的dsRNA溶液中,然后用封口胶缠住PCR管2剪掉管底后留下的缺口,防止随后放入的褐色橘蚜进入PCR管2中;3) Take fresh citrus shoots 3, wash them with nuclease-free water and absorb excess water, then insert them into the dsRNA solution of PCR tube 2, then wrap the PCR tube 2 with sealing glue and cut off the gap left by the bottom of the tube, Prevent the brown orange aphid that puts in subsequently into PCR tube 2;

4)将20头褐色橘蚜挑入离心管1中,用5cm*5cm的80目纱网4盖住离心管1的管底,并用橡皮筋捆紧纱网4,保证褐色橘蚜正常呼吸同时防止其逃出离心管1;将该整个饲喂dsRNA的装置放入培养箱中,在25±1℃、湿度75±5%和光照:黑暗为14h:10h的条件下培养72h。4) Pick 20 brown orange aphids into the centrifuge tube 1, cover the bottom of the centrifuge tube 1 with a 5cm*5cm 80-mesh gauze 4, and tighten the gauze 4 with a rubber band to ensure the normal breathing of the brown orange aphid. Prevent it from escaping from the centrifuge tube 1; put the entire dsRNA-fed device into an incubator, and incubate for 72 hours at 25±1° C., humidity 75±5% and light:dark ratio of 14h:10h.

每20头褐色橘蚜为一个生物重复,设置4个饲喂AcNinaB基因dsRNA溶液的生物重复作为实验组。同时设置饲喂GFP的dsRNA溶液的处理作为对照组。Every 20 brown orange aphids was a biological replicate, and 4 biological replicates fed with AcNinaB gene dsRNA solution were set up as the experimental group. At the same time, the treatment of feeding the dsRNA solution of GFP was set as the control group.

实施例四、AcNinaB影响褐色橘蚜翅型分化研究Example 4, AcNinaB affects the differentiation of brown orange aphid wing type

翅型可塑性是翅二型昆虫应对不良栖息环境的反应(Vellichirammal et al.,2017;Parker and Brisson,2019;Reyes et al.,2019;Hammelman et al.,2020),如飞虱和蟋蟀的长翅型与短翅型,蚜虫的有翅型和无翅型等(袁一杨等,2020;Parker et al.,2021;Zhang et al.,2021)。种群密度变化是影响昆虫翅型可塑性的重要逆境胁迫因子(Hayes et al.,2019;Richard et al.,2019;Zhang et al.,2019;何衍彪等,2021)。Wing plasticity is a response of wing type II insects to adverse habitat conditions (Vellichirammal et al., 2017; Parker and Brisson, 2019; Reyes et al., 2019; Hammelman et al., 2020), such as planthoppers and crickets. Winged and short-winged types, winged and wingless types of aphids, etc. (Yuan Yiyang et al., 2020; Parker et al., 2021; Zhang et al., 2021). Population density change is an important stress factor affecting insect wing plasticity (Hayes et al., 2019; Richard et al., 2019; Zhang et al., 2019; He Yanbiao et al., 2021).

一、有翅型和无翅型褐色橘蚜β-胡萝卜素含量差异分析1. Difference analysis of β-carotene content between winged and apterous brown orange aphids

参照(Ding et al.,2021Parental silencing of a horizontally transferredcarotenoid desaturase gene causes a reduction of red pigment and fitness inthe pea aphid,Pest Management Science,76:2423-2433)的方法进行。分别挑取有翅若蚜(三龄、四龄)、有翅成蚜(高种群密度饲养)和无翅若蚜(三龄、四龄)、无翅成蚜(低种群密度饲养),称重后提取β-胡萝卜素,检测和比较翅二型褐色橘蚜β-胡萝卜素含量差异,每组设置4个生物重复,每个重复30头。将称重后的褐色橘蚜样品置于1.5mL离心管中,加入500μL 60%无水乙醇充分研磨,避光条件下超声处理30min。加入500μL正己烷萃取β-胡萝卜素。剧烈震荡后12,000g,4℃离心彻底分离含有β-胡萝卜素的正己烷层和下层乙醇提取液。转移上层提取液至新的离心管中,利用干燥浓缩仪避光浓缩后加入50μLMTBE充分溶解β-胡萝卜素,离心后吸取上清,用滤膜过滤除菌,HPLC检测β-胡萝卜素含量变化,采用YMC(Wilmington,NC,USA)C30β-胡萝卜素专用色谱柱,进样体积为10μL,柱温为40℃,流速为0.3mL/min,流动相A为乙腈:甲醇=3:1,流动相B为100%MTBE,采用梯度洗脱,根据峰面积和β-胡萝卜素标品的标准曲线计算β-胡萝卜素含量。Refer to (Ding et al., 2021 Parental silencing of a horizontally transferred carotenoid desaturase gene causes a reduction of red pigment and fitness in the pea aphid, Pest Management Science, 76:2423-2433). The winged nymphs (third and fourth instars), winged adults (raised at high population density), wingless nymphs (third and fourth instars), and wingless adults (raised at low population density) were picked respectively, and called After replanting, β-carotene was extracted, and the difference in β-carotene content of the brown orange aphid type II was detected and compared. Four biological replicates were set up in each group, with 30 heads in each replicate. Put the weighed brown orange aphid sample into a 1.5mL centrifuge tube, add 500μL of 60% absolute ethanol to fully grind, and ultrasonicate for 30min in the dark. Add 500 μL n-hexane to extract β-carotene. After vigorous shaking, centrifuge at 12,000g at 4°C to completely separate the n-hexane layer containing β-carotene and the ethanol extract of the lower layer. Transfer the upper layer extract to a new centrifuge tube, use a dry concentrator to concentrate in the dark, then add 50 μL MTBE to fully dissolve β-carotene, absorb the supernatant after centrifugation, filter and sterilize with a filter membrane, and detect the change of β-carotene content by HPLC. Adopt YMC (Wilmington, NC, USA) C30 β-carotene special chromatographic column, injection volume is 10 μ L, column temperature is 40 ℃, and flow rate is 0.3mL/min, mobile phase A is acetonitrile:methanol=3:1, mobile phase B is 100% MTBE, gradient elution is used, and the content of β-carotene is calculated according to the peak area and the standard curve of β-carotene standard.

通过HPLC比较褐色橘蚜有翅型和无翅型类胡萝卜素的组成和含量差异发现,无翅成蚜中有2种类胡萝卜素(出峰时间为20.49和37.14)显著高于有翅成蚜;结合已有的β-胡萝卜素标品的峰谱图可知,出峰时间为37.14的物质为β-胡萝卜素,另一物质尚未得到鉴定。结果表明β-胡萝卜素丰度在两种翅型褐色橘蚜间存在显著性差异,说明其参与调控褐色橘蚜翅型可塑性(图4)。Comparing the difference in composition and content of carotenoids between winged and apterous forms of brown orange aphids by HPLC, it was found that two carotenoids in apterous aphids (peaking times of 20.49 and 37.14) were significantly higher than those in winged aphids; Combined with the peak spectrum of the existing β-carotene standard product, it can be seen that the substance with a peak time of 37.14 is β-carotene, and the other substance has not been identified yet. The results showed that there was a significant difference in the abundance of β-carotene between the two winged brown orange aphids, indicating that it was involved in regulating the wing-like plasticity of the brown orange aphid (Fig. 4).

二、逆境胁迫对β-胡萝卜素通路基因的调控解析2. Analysis of the regulation of adversity stress on β-carotene pathway genes

参照(Shang et al.,2020The miR-9b microRNA mediates dimorphism anddevelopment of wing in aphids,Proceedings of the National Academy ofSciences.117(15):8404-8409)的方法。在申请人前期发现种群密度变化可以显著诱导褐色橘蚜翅型可塑性的基础上(Shang et al.,2020),本实验以种群密度变化为关键逆境胁迫因子,挑取刚蜕皮的无翅成蚜开展实验。分别按照种群密度:10头/皿(低密度)和80头/皿(高密度)处理24h后收集样品,每个处理4个生物重复。研磨后使用Trizol法提取总RNA,以反转录的cDNA为模板,使用NovoStart SYBR qPCR SuperMix进行RT-qPCR扩增,以EF1α和β-act作为内参,使用qBASE计算种群密度变化对β-胡萝卜素生物合成基因(5个合成/环化酶基因(CscA、CscB、CscC、CscD、CscE),2个脱氢酶基因(CdeA和CdeB)的转录调控。Refer to (Shang et al., 2020 The miR-9b microRNA mediates dimorphism and development of wing in aphids, Proceedings of the National Academy of Sciences. 117(15): 8404-8409). On the basis of the applicant's previous discovery that changes in population density can significantly induce wing-type plasticity in brown orange aphids (Shang et al., 2020), this experiment uses population density changes as the key adversity stress factor, and selected freshly molted wingless adult aphids start an experiment. According to the population density: 10 heads/dish (low density) and 80 heads/dish (high density), samples were collected after 24 hours of treatment, with 4 biological replicates for each treatment. After grinding, the total RNA was extracted using the Trizol method, and the reverse-transcribed cDNA was used as a template, and NovoStart SYBR qPCR SuperMix was used for RT-qPCR amplification, and EF1α and β-act were used as internal references, and the effect of population density changes on β-carotene was calculated using qBASE Transcriptional regulation of biosynthesis genes (5 synthesis/cyclase genes (CscA, CscB, CscC, CscD, CscE), 2 dehydrogenase genes (CdeA and CdeB).

当母代褐色橘蚜种群密度增大时,其后代有翅率显著升高。以种群密度作为环境胁迫因子研究β-胡萝卜素通路基因的转录调控,分析有翅和无翅若蚜以及有翅和无翅成蚜的表达差异发现,褐色橘蚜CscE和CdeB均在拥挤阶段和有翅成蚜中高表达,而CscD则在拥挤阶段和有翅若蚜表达量下调。同时β-胡萝卜素加氧酶(NinaB)和β-胡萝卜素结合蛋白(β-CBP)均在拥挤和有翅蚜中表达量上调(图5)。结合HPLC结果表明,β-胡萝卜素通路与褐色橘蚜翅型可塑性密切相关。When the population density of the mother brown orange aphid increased, the winged rate of its offspring increased significantly. Using population density as an environmental stress factor to study the transcriptional regulation of β-carotene pathway genes, and analyzing the expression differences between winged and apterous nymphs and winged and apterous adults, it was found that both CscE and CdeB of the brown orange aphid were in the crowded stage and Highly expressed in winged adult aphids, while CscD was down-regulated in the crowded stage and in winged nymphs. At the same time, the expressions of β-carotene oxygenase (NinaB) and β-carotene binding protein (β-CBP) were up-regulated in crowded and winged aphids (Fig. 5). Combined with the results of HPLC, the β-carotene pathway is closely related to the plasticity of the brown orange aphid's wing shape.

三、胰岛素活性对β-胡萝卜素通路基因表达及含量的调控3. The regulation of insulin activity on gene expression and content of β-carotene pathway

参照(Takemura et al.,2021,Elucidation of the whole carotenoidbiosynthetic pathway of aphids at the gene level and arthropodal food chaininvolving aphids and the red dragonfly.BMC Zoology.6:1-13.和Sun et al.,2021,Biosynthesis of aphid alarm pheromone is modulated in response to starvationstress under regulation by the insulin,glycolysis and isoprenoidpathways.Journal of Insect Physiology.128,104174.)的方法。使用RNA干扰关键基因InR2作为胰岛素活性的指示因子。合成InR2的dsRNA并用无核酶水稀释至800ng/mL。将柑桔嫩梢分别插入装有以上的1.5mL离心管中,持续饲喂24和48h后收集试虫,检测基因表达量和β-胡萝卜素含量变化,以饲喂dsGFP为对照,每组4个生物重复。Refer to (Takemura et al., 2021, Elucidation of the whole carotenoid biosynthetic pathway of aphids at the gene level and arthropodal food chain involving aphids and the red dragonfly. BMC Zoology.6:1-13. and Sun et al., 2 021, Biosynthesis of Aphid alarm pheromone is modulated in response to starvationstress under regulation by the insulin, glycolysis and isoprenoid pathways. Journal of Insect Physiology. 128, 104174.) method. The RNA interference key gene InR2 was used as an indicator of insulin activity. The dsRNA of InR2 was synthesized and diluted to 800 ng/mL with nuclease-free water. Insert the young shoots of citrus into the 1.5mL centrifuge tubes equipped with the above, and collect the test insects after continuous feeding for 24 and 48 hours, and detect the changes of gene expression and β-carotene content, with feeding dsGFP as the control, 4 in each group biological duplicates.

成功干扰褐色橘蚜胰岛素受体基因2(InR2)发现,β-胡萝卜素通路基因表达量发生变化,NinaB和β-CBP显著上调,导致β-胡萝卜素代谢加快,含量降低(图6),说明β-胡萝卜素通路确实受胰岛素活性的调控。Successfully interfered with the brown aphid insulin receptor gene 2 (InR2) and found that the expression of β-carotene pathway genes changed, NinaB and β-CBP were significantly up-regulated, resulting in accelerated metabolism and decreased content of β-carotene (Figure 6), indicating that The β-carotene pathway is indeed regulated by insulin activity.

实施例五、沉默效率以及表型的检测Example 5. Detection of silencing efficiency and phenotype

实施例三中饲喂dsRNA的装置在培养箱中培养72小时后,收集上述AcNinaB基因的dsRNA溶液处理过的实验组,以及GFP的dsRNA溶液处理的对照组的褐色橘蚜,使用TriZol法分别提取RNA之后利用Perfect real time RT reagent反转录得到相应的cDNA,反转录体系为20μl,其中包括:总RNA 1μl(约1μg),5×PrimeScript Buffer 4μl,PrimeScriptRTEnzyme Mix I 1μl,Oligo dT Primer(50μM)1μl,Random 6mers(100μM)1μl,RNase FreeddH2O 12μl。反应条件为:37℃15min,85℃5s。After the dsRNA feeding device in Example 3 was cultured in the incubator for 72 hours, the brown orange aphids of the experimental group treated with the dsRNA solution of the above-mentioned AcNinaB gene and the control group treated with the dsRNA solution of GFP were collected, and were extracted using the TriZol method. After the RNA was reverse transcribed using Perfect real time RT reagent to obtain the corresponding cDNA, the reverse transcription system was 20 μl, which included: 1 μl of total RNA (about 1 μg), 4 μl of 5×PrimeScript Buffer, 1 μl of PrimeScriptRTEnzyme Mix I, Oligo dT Primer (50 μM ) 1 μl, Random 6mers (100 μM) 1 μl, RNase FreeddH 2 O 12 μl. The reaction conditions are: 37°C for 15 minutes, 85°C for 5s.

利用qRT-PCR技术,检测AcNinaB基因在实验组、对照组中的相对表达量。qPCR中实验组的上下游引物为AcNinaB-L(如SEQ ID NO:9所示)和AcNinaB-R(如SEQ ID NO:10所示),对照组的上下游引物为GFP-ds-F(如SEQ ID NO:11所示)和GFP-ds-R(如SEQ ID NO:12所示),引物序列如下:Using qRT-PCR technology, the relative expression of AcNinaB gene in the experimental group and the control group was detected. The upstream and downstream primers of the experimental group in qPCR are AcNinaB-L (as shown in SEQ ID NO: 9) and AcNinaB-R (as shown in SEQ ID NO: 10), and the upstream and downstream primers of the control group are GFP-ds-F ( As shown in SEQ ID NO:11) and GFP-ds-R (as shown in SEQ ID NO:12), the primer sequences are as follows:

AcNinaB-L:CCATTAAGTGTCGGTGGCCT;AcNinaB-L: CCATTAAGTGTCGGTGGCCT;

AcNinaB-R:TGCTCCGTTATGCCGAAAGA;AcNinaB-R: TGCTCCGTTATGCCGAAAGA;

GFP-ds-F:CAGTTCTTGTTGAATTAGATG;GFP-ds-F:CAGTTCTTGTTGAATTAGATG;

GFP-ds-R:TTTGGTTTGTCTCCCATGATG。GFP-ds-R: TTTGGTTTGTCTCCCATGATG.

qRT-PCR反应条件为:95℃预变性2min;95℃变性30s、60℃退火30s,共40个循环。PCR反应体系为20μl,包括:cDNA模板1μl(250ng),前述上下游qPCR引物各1μl,去核酸酶水7μl和荧光染料

Figure BDA0003693001070000111
qPCR Master Mix 10μl。选用褐色橘蚜的EF1A基因为内参基因进行相对定量分析,分析方法则采用国际上惯用的2-ΔΔCt法。内参基因EF1A的qPCR引物序列:The qRT-PCR reaction conditions were: pre-denaturation at 95°C for 2 min; denaturation at 95°C for 30 s, annealing at 60°C for 30 s, a total of 40 cycles. The PCR reaction system is 20 μl, including: 1 μl (250ng) of cDNA template, 1 μl of the aforementioned upstream and downstream qPCR primers, 7 μl of nuclease-free water and fluorescent dye
Figure BDA0003693001070000111
qPCR Master Mix 10μl. The EF1A gene of the brown orange aphid was selected as the internal reference gene for relative quantitative analysis, and the analysis method used the 2 -ΔΔCt method commonly used in the world. qPCR primer sequence of internal reference gene EF1A:

EF1A-S:GATGCACCTGGTCACAGAGA,如SEQ ID NO:13所示;EF1A-S:GATGCACCTGGTCACAGAGA, as shown in SEQ ID NO:13;

EF1A-A:CCATCTTGTTCACACCAACG,如SEQ ID NO:14所示。EF1A-A:CCATCTTGTTCACACCAACG, as shown in SEQ ID NO:14.

qRT-PCR检测结果显示,褐色橘蚜的类胡萝卜素加氧酶基因(AcNinaB基因)在饲喂相应的dsRNA的实验组中的相对表达量相对于对照组(GFP)显著下调,而且下调高达50%左右,如图7所示。同时,通过观察发现,类胡萝卜素加氧酶基因的dsRNA处理的实验组的褐色橘蚜后代有翅率降低至3.75%,而对照组有翅率则为43%(结果如图8所示),β-类胡萝卜素含量上升3倍左右(结果如图9所示)。图10中1为对照组(dsGFP)的褐色橘蚜后代有翅情况,2为dsNinaB处理组的褐色橘蚜后代有翅情况,实验验证了实验组的褐色橘蚜的类胡萝卜素加氧酶基因的表达受到抑制,且AcNinaB基因参与蚜虫的翅型分化。实验结果也说明利用本发明方法对褐色橘蚜进行AcNinaB基因的dsRNA饲喂,能够有效导入dsRNA,达到RNA干扰的效果。The results of qRT-PCR detection showed that the relative expression of the carotenoid oxygenase gene (AcNinaB gene) of the brown orange aphid in the experimental group fed with the corresponding dsRNA was significantly down-regulated compared with the control group (GFP), and the down-regulation was as high as 50%. % or so, as shown in Figure 7. Simultaneously, found by observation, the brown orange aphid progeny wing rate of the experimental group treated with the dsRNA of the carotenoid oxygenase gene was reduced to 3.75%, while the wing rate of the control group was 43% (results as shown in Figure 8) , the content of β-carotenoids increased by about 3 times (the results are shown in Figure 9). Among Fig. 10, 1 is the situation that the offspring of the brown orange aphid of the control group (dsGFP) has wings, and 2 is the situation that the offspring of the brown orange aphid of the dsNinaB treatment group has wings, and the experiment has verified the carotenoid oxygenase gene of the brown orange aphid of the experimental group The expression of AcNinaB was suppressed, and the AcNinaB gene was involved in the wing-type differentiation of aphids. The experimental results also show that the method of the present invention is used to feed the dsRNA of the AcNinaB gene to the brown orange aphid, and the dsRNA can be effectively introduced to achieve the effect of RNA interference.

序列表sequence listing

<110> 西南大学<110> Southwest University

<120> 褐色橘蚜类胡萝卜素加氧酶基因及其dsRNA<120> Carotenoid Oxygenase Gene and dsRNA of Brown Orange Aphid

<160> 14<160> 14

<210> 1<210> 1

<211> 20<211> 20

<212> DNA<212>DNA

<213> 人工序列<213> Artificial sequence

<223> AcNinaB-A<223> AcNinaB-A

<400> 1<400> 1

tcgctgctaa gaaacggtcc 20tcgctgctaa gaaacggtcc 20

<210> 2<210> 2

<211> 20<211> 20

<212> DNA<212>DNA

<213> 人工序列<213> Artificial sequence

<223> AcNinaB-S<223> AcNinaB-S

<400> 2<400> 2

acaataccag ccatccgagc 20acaataccag ccatccgagc 20

<210> 3<210> 3

<211> 1809<211> 1809

<212> DNA<212>DNA

<213> 人工序列<213> Artificial sequence

<223> 褐色橘蚜AcNinaB基因<223> AcNinaB gene of brown orange aphid

<400> 3<400> 3

atgaaaaaaa cagctcggta tttttcaaag aagaaatact tattaaaaac aatattgacc 60atgaaaaaaa cagctcggta tttttcaaag aagaaatact tattaaaaac aatattgacc 60

tctaaaatca aatcaactat taaccggtat aaaaaatgtc aattttggtt gactaagggt 120tctaaaatca aatcaactat taaccggtat aaaaaatgtc aattttggtt gactaagggt 120

ttgtggcgcg tcgcaaataa ttggaaagag actgcaccgg cggcgagcag aaaaacttct 180ttgtggcgcg tcgcaaataa ttggaaagag actgcaccgg cggcgagcag aaaaacttct 180

ggaattgacg gtatgtttca aggattggac gaaaacagag acgtgttagt gaaaaggttg 240ggaattgacg gtatgtttca aggattggac gaaaacagag acgtgttagt gaaaaggttg 240

aatgctggtc agaaattata tcccaattgt gatacatcgg tctggctaag aaactgtacg 300aatgctggtc agaaattata tcccaattgt gatacatcgg tctggctaag aaactgtacg 300

catgacatac caactcccgt ccaagggaaa atcgaaggta agataccaga atggttatcg 360catgacatac caactcccgt ccaagggaaa atcgaaggta agataccaga atggttatcg 360

ggatcgctgc taagaaacgg tccaggaagt acacaagtgg gaaattatga atttaaacat 420ggatcgctgc taagaaacgg tccaggaagt acacaagtgg gaaattatga atttaaacat 420

atatttgaca gctctgcttt actgcacagg tttgcattca aaaatggagc agtttcatat 480atatttgaca gctctgcttt actgcacagg tttgcattca aaaatggagc agtttcatat 480

caatgtagat ttttagaatc aaatacatat aaacaaaata aagcagccca aagaattgtt 540caatgtagat ttttagaatc aaatacatat aaacaaaata aagcagccca aagaattgtt 540

attaccgaat ttggaaccag agcatgtcct gatccttgta aaacaatttt tcacagggtg 600attaccgaat ttggaaccag agcatgtcct gatccttgta aaacaatttt tcacagggtg 600

tctaatgtat ttaaatgggg agatgatcaa tcagataatg cgatgatatc tatttaccca 660tctaatgtat ttaaatgggg agatgatcaa tcagataatg cgatgatatc tattataccca 660

atcggcgatg aatattatgc atttaccgag aatccaataa tgatcaaaat taatcctaca 720atcggcgatg aatattatgc atttaccgag aatccaataa tgatcaaaat taatcctaca 720

actctcgaaa cacttaatac tatagatata gctcggatgg ctggtattgt tcaccatact 780actctcgaaa cacttaatac tatagatata gctcggatgg ctggtattgt tcaccatact 780

gctcacccac atatggcagc cgatggtgcg gttttcaatt tagcaactgt tccaaaaatt 840gctcacccac atatggcagc cgatggtgcg gttttcaatt tagcaactgt tccaaaaatt 840

gatggacctc attattgcgt ggttaaattt cctcgggttg attcagaaag tggatatcag 900gatggacctc attattgcgt ggttaaattt cctcgggttg attcagaaag tggatatcag 900

tattcgacgg acgaaatgtt tgggcgaatg tgcatcgtgg ctaccattaa gtgtcggtgg 960tattcgacgg acgaaatgtt tgggcgaatg tgcatcgtgg ctaccattaa gtgtcggtgg 960

cctctgcacc ctgggtatat gcattctttc ggcataacgg agcattattt catcatagtc 1020cctctgcacc ctgggtatat gcattctttc ggcataacgg agcattattt catcatagtc 1020

gaacaacctc taagtatttc attgtcaacc gccatgatta atagattcaa aggagatcca 1080gaacaacctc taagtatttc attgtcaacc gccatgatta atagattcaa aggagatcca 1080

atgtatagtg cactaaaatg gtttcaagac tgccctactc taatttactt gatttcgcga 1140atgtatagtg cactaaaatg gtttcaagac tgccctactc taatttactt gatttcgcga 1140

tctgatggca aaacggtgaa gacatttaaa tcagatgcat tcttttacct acatataata 1200tctgatggca aaacggtgaa gacatttaaa tcagatgcat tcttttacct acatataata 1200

aaccaatatg aagaagacga taacgtagtg atcgatattt gttgttaccg agatccttcc 1260aaccaatatg aagaagacga taacgtagtg atcgatattt gttgttaccg agatccttcc 1260

atgattgact gcatgttcat cgaagcatta caaaatctca ataaaaaccc agattatgca 1320atgattgact gcatgttcat cgaagcatta caaaatctca ataaaaaccc agattatgca 1320

gccatgtttc gcagcaggcc tttgagattt gtgttgccag ttaatcgtaa tcctactagt 1380gccatgtttc gcagcaggcc tttgagattt gtgttgccag ttaatcgtaa tcctactagt 1380

ggcgatatcg tgaacgagca cccgtatgtc agccccgaaa agctatgtga tttaggttgt 1440ggcgatatcg tgaacgagca cccgtatgtc agccccgaaa agctatgtga tttaggttgt 1440

gaaacaccca gaattaatga ctttaaaatt ggcacaaaat acagattttt ctatgcaata 1500gaaacaccca gaattaatga ctttaaaatt ggcacaaaat acagattttt ctatgcaata 1500

tcatcagatg ttgatgctga aaaccctggg acgctcatta aagtggatac gtacaataaa 1560tcatcagatg ttgatgctga aaaccctggg acgctcatta aagtggatac gtacaataaa 1560

acttgtaaaa catggtgcga aaagaacgta tatcctagtg aaccaatttt tgtttcttcg 1620acttgtaaaa catggtgcga aaagaacgta tatcctagtg aaccaatttt tgtttcttcg 1620

ccggacgctg aagacgaaga cgatggtgta attttgtcat caattatttg gggtggatcg 1680ccggacgctg aagacgaaga cgatggtgta attttgtcat caattatttg gggtggatcg 1680

gagtgtacac acaaagctgg agtaatagtt ttggatgcaa agagttggac agagataggg 1740gagtgtacac acaaagctgg agtaatagtt ttggatgcaa agagttggac agagataggg 1740

cgagctattt ttatcactca gtcaccagtt cctaaatgct tacatggatg gtatgctgat 1800cgagctattt ttatcactca gtcaccagtt cctaaatgct tacatggatg gtatgctgat 1800

gctgtttaa 1809gctgtttaa 1809

<210> 4<210> 4

<211> 40<211> 40

<212> DNA<212>DNA

<213> 人工序列<213> Artificial sequence

<223> T7-AcNinaB-A1<223> T7-AcNinaB-A1

<400> 4<400> 4

taatacgact cactataggg tcgctgctaa gaaacggtcc 40taatacgact cactataggg tcgctgctaa gaaacggtcc 40

<210> 5<210> 5

<211> 40<211> 40

<212> DNA<212>DNA

<213> 人工序列<213> Artificial sequence

<223> T7-AcNinaB-S1<223> T7-AcNinaB-S1

<400> 5<400> 5

taatacgact cactataggg acaataccag ccatccgagc 40taatacgact cactataggg acaataccag ccatccgagc 40

<210> 6<210> 6

<211> 407<211> 407

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequence

<223> 褐色橘蚜AcNinaB基因的dsRNA<223> dsRNA of the AcNinaB gene of the brown orange aphid

<400> 6<400> 6

tcgctgctaa gaaacggtcc aggaagtaca caagtgggaa attatgaatt taaacatata 60tcgctgctaa gaaacggtcc aggaagtaca caagtgggaa attatgaatt taaacatata 60

tttgacagct ctgctttact gcacaggttt gcattcaaaa atggagcagt ttcatatcaa 120tttgacagct ctgctttact gcacaggttt gcattcaaaa atggagcagt ttcatatcaa 120

tgtagatttt tagaatcaaa tacatataaa caaaataaag cagcccaaag aattgttatt 180tgtagatttt tagaatcaaa tacatataaa caaaataaag cagcccaaag aattgttatt 180

accgaatttg gaaccagagc atgtcctgat ccttgtaaaa caatttttca cagggtgtct 240accgaatttg gaaccagagc atgtcctgat ccttgtaaaa caatttttca cagggtgtct 240

aatgtattta aatggggaga tgatcaatca gataatgcga tgatatctat ttacccaatc 300aatgtattta aatggggaga tgatcaatca gataatgcga tgatatctat ttacccaatc 300

ggcgatgaat attatgcatt taccgagaat ccaataatga tcaaaattaa tcctacaact 360ggcgatgaat attatgcatt taccgagaat ccaataatga tcaaaattaa tcctacaact 360

ctcgaaacac ttaatactat agatatagct cggatggctg gtattgt 407ctcgaaacac ttaatactat agatatagct cggatggctg gtattgt 407

<210> 7<210> 7

<211> 41<211> 41

<212> DNA<212>DNA

<213> 人工序列<213> Artificial sequence

<223> GFP-ds-T7F<223> GFP-ds-T7F

<400> 7<400> 7

taatacgact cactataggg cagttcttgt tgaattagat g 41taatacgact cactataggg cagttcttgt tgaattagat g 41

<210> 8<210> 8

<211> 41<211> 41

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequence

<223> GFP-ds-T7R<223> GFP-ds-T7R

<400> 8<400> 8

taatacgact cactataggg tttggtttgt ctcccatgat g 41taatacgact cactataggg tttggtttgt ctcccatgat g 41

<210> 9<210> 9

<211> 20<211> 20

<212> DNA<212>DNA

<213> 人工序列<213> Artificial sequence

<223> AcNinaB-L<223> AcNinaB-L

<400> 9<400> 9

ccattaagtg tcggtggcct 20ccattaagtg tcggtggcct 20

<210> 10<210> 10

<211> 20<211> 20

<212> DNA<212>DNA

<213> 人工序列<213> Artificial sequence

<223> AcNinaB-R<223> AcNinaB-R

<400> 10<400> 10

tgctccgtta tgccgaaaga 20tgctccgtta tgccgaaaga 20

<210> 11<210> 11

<211> 21<211> 21

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequence

<223> GFP-ds-F<223> GFP-ds-F

<400> 11<400> 11

cagttcttgt tgaattagat g 21cagttcttgt tgaattagat g 21

<210> 12<210> 12

<211> 21<211> 21

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequence

<223> GFP-ds-R<223> GFP-ds-R

<400> 12<400> 12

tttggtttgt ctcccatgat g 21tttggtttgt ctcccatgat g 21

<210> 13<210> 13

<211> 20<211> 20

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequence

<223> EF1A-S<223> EF1A-S

<400> 13<400> 13

gatgcacctg gtcacagaga 20gatgcacctg gtcacagaga 20

<210> 14<210> 14

<211> 20<211> 20

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequence

<223> EF1A-A<223> EF1A-A

<400> 14<400> 14

ccatcttgtt cacaccaacg 20ccatcttgtt cacaccaacg 20

Claims (9)

1.一种褐色橘蚜类胡萝卜素加氧酶基因,其特征在于,其核苷酸序列如SEQ ID NO:3所示。1. A brown orange aphid carotenoid oxygenase gene, characterized in that its nucleotide sequence is as shown in SEQ ID NO:3. 2.权利要求1所述的褐色橘蚜类胡萝卜素加氧酶基因或褐色橘蚜类胡萝卜素加氧酶基因编码的蛋白作为靶标在调控褐色橘蚜翅型可塑性或制备调控褐色橘蚜翅型可塑性的产品中的应用。2. The brown orange aphid carotenoid oxygenase gene or the protein encoded by the brown orange aphid carotenoid oxygenase gene as claimed in claim 1 is used as a target in regulating the plasticity of the brown orange aphid wing type or preparing and regulating the brown orange aphid wing type Applications in plastic products. 3.一种引物组在扩增权利要求1所述的褐色橘蚜类胡萝卜素加氧酶基因中的应用,其特征在于:所述引物组的上游引物的核苷酸序列如SEQ ID NO:1所示,下游引物的核苷酸序列如SEQ ID NO:2所示。3. the application of a primer set in the brown orange aphid carotenoid oxygenase gene described in amplification claim 1, is characterized in that: the nucleotide sequence of the upstream primer of described primer set is as SEQ ID NO: 1, the nucleotide sequence of the downstream primer is shown in SEQ ID NO:2. 4.权利要求1所述的褐色橘蚜类胡萝卜素加氧酶基因的PCR扩增方法,其特征在于,包括如下步骤:以褐色橘蚜总RNA反转录得到的cDNA为模板,以序列为SEQ ID NO:1的上游引物和以序列为SEQ ID NO:2的下游引物进行PCR扩增。4. the PCR amplification method of brown orange aphid carotenoid oxygenase gene described in claim 1 is characterized in that, comprises the following steps: the cDNA that obtains with brown orange aphid total RNA reverse transcription is template, with sequence as The upstream primer of SEQ ID NO:1 and the downstream primer with sequence as SEQ ID NO:2 carry out PCR amplification. 5.如权利要求4所述的PCR扩增方法,其特征在于:当PCR扩增的反应体系为25μl时,25μl的PCR反应体系包括:浓度为200-700ng/μl的cDNA模板1μl,浓度为0.15-0.25μM的上下游引物各1μl,DNA聚合酶LA Taq MIX 0.25μl,10×Buffer 3μl,dNTP 4μl以及去核酸酶水14.75μl;5. PCR amplification method as claimed in claim 4, is characterized in that: when the reaction system of PCR amplification is 25 μ l, the PCR reaction system of 25 μ l comprises: concentration is the cDNA template 1 μ l of 200-700ng/μl, and concentration is 0.15-0.25μM upstream and downstream primers 1μl each, DNA polymerase LA Taq MIX 0.25μl, 10×Buffer 3μl, dNTP 4μl and nuclease-free water 14.75μl; PCR条件为:95℃预变性3min;95℃变性30s、60℃退火30s、72℃延伸30s,共35个循环;72℃条件下延伸10min。The PCR conditions were: pre-denaturation at 95°C for 3 min; denaturation at 95°C for 30 s, annealing at 60°C for 30 s, and extension at 72°C for 30 s, a total of 35 cycles; extension at 72°C for 10 min. 6.一种褐色橘蚜类胡萝卜素加氧酶基因的dsRNA,其特征在于,以如SEQ ID NO:3所示的褐色橘蚜类胡萝卜素加氧酶基因片段为模板转录获得,所述dsRNA的核苷酸序列如SEQID NO:6所示。6. A dsRNA of the brown orange aphid carotenoid oxygenase gene, characterized in that, the brown orange aphid carotenoid oxygenase gene fragment as shown in SEQ ID NO:3 is obtained by template transcription, and the dsRNA The nucleotide sequence is shown in SEQID NO:6. 7.权利要求6所述的褐色橘蚜类胡萝卜素加氧酶基因的dsRNA在调控褐色橘蚜翅型可塑性或制备调控褐色橘蚜翅型可塑性的产品中的应用。7. The application of the dsRNA of the brown orange aphid carotenoid oxygenase gene according to claim 6 in regulating the plasticity of the brown orange aphid wing or preparing a product for regulating the brown orange aphid wing plasticity. 8.一种褐色橘蚜类胡萝卜素加氧酶基因的dsRNA的合成方法,其特征在于,包括如下步骤:以褐色橘蚜总RNA反转录得到的cDNA为模板,以序列为SEQ ID NO:4的上游引物和以序列为SEQ ID NO:5的下游引物进行PCR扩增,PCR扩增产物进行电泳后回收产物,以胶回收产物为模板合成得到褐色橘蚜类胡萝卜素加氧酶基因的dsRNA。8. A synthetic method of dsRNA of brown orange aphid carotenoid oxygenase gene, is characterized in that, comprises the steps: the cDNA that obtains with brown orange aphid total RNA reverse transcription is template, is SEQ ID NO with sequence: The upstream primer of 4 and the downstream primer whose sequence is SEQ ID NO: 5 were used for PCR amplification, and the PCR amplification product was subjected to electrophoresis to recover the product, and the product recovered from the gel was used as a template to synthesize the brown orange aphid carotenoid oxygenase gene dsRNA. 9.如权利要求8所述的褐色橘蚜类胡萝卜素加氧酶基因的dsRNA的合成方法,其特征在于,dsRNA合成反应体系为20μl,其中包括:胶回收得到的片段模板4μl、5×TranscrptAidReaction Buffer 4μl、浓度为100mM的ATP/CTP/GTP/UTP Mix8μl、TranscriptAid EnzymeMix 2μl和DEPC-treated water 2μl;反应条件为:37℃孵育4h。9. The method for synthesizing the dsRNA of the brown orange aphid carotenoid oxygenase gene as claimed in claim 8, wherein the dsRNA synthesis reaction system is 20 μl, which includes: 4 μl of fragment templates obtained by gel recovery, 5×TranscrptAidReaction Buffer 4μl, ATP/CTP/GTP/UTP Mix 8μl with a concentration of 100mM, TranscriptAid EnzymeMix 2μl and DEPC-treated water 2μl; the reaction conditions were: incubate at 37°C for 4h.
CN202210670159.9A 2022-06-14 2022-06-14 Brown orange aphid carotenoid oxygenase gene and dsRNA thereof Active CN114921477B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210670159.9A CN114921477B (en) 2022-06-14 2022-06-14 Brown orange aphid carotenoid oxygenase gene and dsRNA thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210670159.9A CN114921477B (en) 2022-06-14 2022-06-14 Brown orange aphid carotenoid oxygenase gene and dsRNA thereof

Publications (2)

Publication Number Publication Date
CN114921477A CN114921477A (en) 2022-08-19
CN114921477B true CN114921477B (en) 2023-05-16

Family

ID=82814854

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210670159.9A Active CN114921477B (en) 2022-06-14 2022-06-14 Brown orange aphid carotenoid oxygenase gene and dsRNA thereof

Country Status (1)

Country Link
CN (1) CN114921477B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117551652A (en) * 2023-11-20 2024-02-13 内蒙古农业大学 GdBR-C gene of Onion spp. and its application in RNAi-mediated pest control
CN119286866A (en) * 2024-12-13 2025-01-10 青岛农业大学 Application of dsRNA in inhibiting reproductive capacity of bemisia tabaci

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2885399A1 (en) * 2012-08-14 2015-06-24 Marrone Bio Innovations, Inc. Bacillus megaterium bioactive compositions and metabolites
CN112056352A (en) * 2020-09-14 2020-12-11 西华大学 Preparation method of carotenoid-rich cordyceps militaris biscuits
CN113367254A (en) * 2021-06-22 2021-09-10 四川省农业科学院植物保护研究所 Composition for feeding coccinella septempunctata, preparation method thereof and feed

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001048162A2 (en) * 1999-12-24 2001-07-05 Syngenta Participations Ag Method for the production of vitamin a
WO2008103643A1 (en) * 2007-02-20 2008-08-28 Monsanto Technology, Llc Invertebrate micrornas
US10602743B2 (en) * 2012-08-14 2020-03-31 Marrone Bio Innovations, Inc. Method of inducing drought/salt tolerance using Bacillus megaterium
CN105191974A (en) * 2014-06-06 2015-12-30 青岛鑫润土苗木专业合作社 Pesticide preparation for preventing and controlling pea aphids
CN105420255B (en) * 2016-01-12 2019-03-15 西南大学 Chitin synthase gene and dsRNA of brown orange aphid
CN106282137B (en) * 2016-08-02 2019-09-13 郑州轻工业学院 A kind of preparation method and application of carotenoid 9, 10' dioxygenase
CN106689823B (en) * 2016-11-16 2021-06-08 西北农林科技大学 A kind of lady beetle larvae feeding feed and preparation method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2885399A1 (en) * 2012-08-14 2015-06-24 Marrone Bio Innovations, Inc. Bacillus megaterium bioactive compositions and metabolites
CN112056352A (en) * 2020-09-14 2020-12-11 西华大学 Preparation method of carotenoid-rich cordyceps militaris biscuits
CN113367254A (en) * 2021-06-22 2021-09-10 四川省农业科学院植物保护研究所 Composition for feeding coccinella septempunctata, preparation method thereof and feed

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
类胡萝卜素在异色瓢虫鞘翅中的沉积与转运规律及对瓢虫发育、存活与生殖的影响;孙元星;中国博士学位论文全文数据库 农业科技辑;全文 *

Also Published As

Publication number Publication date
CN114921477A (en) 2022-08-19

Similar Documents

Publication Publication Date Title
CN114921477B (en) Brown orange aphid carotenoid oxygenase gene and dsRNA thereof
CN116949051B (en) The OBP-12 gene of Bemisia tabaci and its application in controlling Bemisia tabaci
Lou et al. Identification of microRNAs response to high light and salinity that involved in beta-carotene accumulation in microalga Dunaliella salina
Shao et al. milR4 and milR16 mediated fruiting body development in the medicinal fungus Cordyceps militaris
CN104561007A (en) Lymantria dispar linnaeus CYP6B53 gene dsRNA and application thereof in nuisanceless control
CN115927029A (en) Recombinant saccharomyces cerevisiae for producing cannabigerol acid and construction method and application thereof
CN105420255B (en) Chitin synthase gene and dsRNA of brown orange aphid
CN106916824A (en) Citrus fruit fly Taiman genes and its variable sheer body detecting method and its dsRNA
CN106676112B (en) Citrus fruit fly Taiman gene and its qRT-PCR detection method and its siRNA
CN117683775B (en) A VIGS silencing system of DpPDS gene in Chinese yam and its application
CN108949769B (en) Cotton bollworm ecdysone regulatory factor E78-C gene cDNA and application thereof
CN114507669B (en) Syntaxin-binding protein RpSDP of the stink bug and its application
Su et al. Comparative expression analysis identifies the respiratory transition-related miRNAs and their target genes in tissues of metamorphosing Chinese giant salamander (Andrias davidianus)
Wang et al. ARGONAUTE genes in Salvia miltiorrhiza: identification, characterization, and genetic transformation
CN109536506A (en) It is a kind of regulate and control Macrobrachium nipponensis growth and development para-insulin acceptor gene and its application
CN112063602B (en) Asian locusta migratoria small G protein Ras and coding gene and application thereof
CN109913480B (en) A kind of locust uridine diphosphate glucuronyltransferase gene and its application
CN110951730B (en) dsRNA of V-ATPase-A Gene of Leptopterus serrata and its artificial diet and application
CN105441575B (en) A method for functional verification of the brown orange aphid gene
CN109929871B (en) Method for mediating double-stranded RNA to enter Chinese purple beetle body
CN109750044B (en) Brown orange aphid Hunchback gene, dsRNA and synthesis method and novel aphid RNAi method
CN107083396B (en) Application of ZmPDIL gene in prevention and treatment of maize dwarf mosaic disease
CN113755530B (en) Application of knocking out or silencing bee hive beetle odor binding protein gene 1 in prevention and treatment of bee hive beetles
CN107236756B (en) An RNAi vector for gene silencing of Nannochloropsis and its application
CN117447573A (en) Transcription factor WRKY6 for regulating capsanthin synthase gene and application thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant