Nothing Special   »   [go: up one dir, main page]

CN114530572A - 用于水系金属电池的复合改性负极 - Google Patents

用于水系金属电池的复合改性负极 Download PDF

Info

Publication number
CN114530572A
CN114530572A CN202210117307.4A CN202210117307A CN114530572A CN 114530572 A CN114530572 A CN 114530572A CN 202210117307 A CN202210117307 A CN 202210117307A CN 114530572 A CN114530572 A CN 114530572A
Authority
CN
China
Prior art keywords
zinc
negative electrode
temperature
battery
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210117307.4A
Other languages
English (en)
Other versions
CN114530572B (zh
Inventor
吴川
赵然
杨菁菁
白莹
吴锋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Institute of Technology BIT
Original Assignee
Beijing Institute of Technology BIT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Institute of Technology BIT filed Critical Beijing Institute of Technology BIT
Priority to CN202210117307.4A priority Critical patent/CN114530572B/zh
Publication of CN114530572A publication Critical patent/CN114530572A/zh
Application granted granted Critical
Publication of CN114530572B publication Critical patent/CN114530572B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • H01M10/38Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/42Alloys based on zinc
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/628Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

用于水系金属电池的复合改性负极。该负极制备方法包括通过溶胶凝胶法制备碳包覆的复合型材料前驱体,再将前驱体在保护气氛下煅烧后形成黑色粉末,最后将黑色粉末与粘结剂和溶剂一起形成涂敷剂涂敷在锌箔上形成改性负极。本发明通过所制备复合改性负极的协同作用实现了双层金属沉积,并抑制了枝晶生长;导电碳引入的同时进一步减小电池的极化电压,实现电池长期稳定循环。

Description

用于水系金属电池的复合改性负极
技术领域
本发明总体涉及一种水系金属电池,尤其涉及该电池的改性负极。
背景技术
为了解决过度依赖化石燃料导致的环境污染加剧和气候变化,近年来对清洁和可持续能源的需求迅速增加。作为可再生能源的太阳能、风能、潮汐能等因其固有的间歇性、不可预测性和分散性限制了其进一步使用,而电化学储能由于可靠和可管理的能源输送而极具竞争力。目前,锂离子电池由于其高能量密度和成熟的制造技术,在从便携式电子设备(手机和笔记本电脑等)到电动汽车的二次电池应用中占据主导地位。但由于金属锂资源不足、成本高、制备条件苛刻、有机电解质有毒、易燃、存在安全隐患等问题,寻找安全、低成本的替代电池体系亟待解决。
水系二次电池具有无毒、低成本、高安全性和高离子导电性等优点,是很有前途的锂电池替代品。锌离子和铝离子作为多价离子,理论上每个离子单位可以转移多个电荷,意味着对于相同数量的反应离子,容量将分别达到锂离子的两倍或三倍。其中,锌的离子半径较小
Figure BDA0003496939650000011
具有相对较高的容量密度(5855mAh cm-3,820mAh g-1),与标准氢电极(SHE)相比,锌的氧化还原电位为-0.763V,更适合于水溶液电解质。但是在金属电镀、剥离的过程中,通常会存在以下问题:(1)锌离子不均匀沉积会导致锌枝晶的形成,枝晶累积会刺穿隔膜引发短路,另外增大的比表面积也会加速电解液消耗;(2)发生析氢反应,使局部氢氧根浓度增加,并在充电过程中形成不溶性物质;(3)副产物附着在金属箔表面,使电极表面钝化。在金属铝表面,也伴随析氢和钝化问题。
发明内容
本发明的目的是提供一种水系金属电池尤其是锌离子电池的改性负极,其至少能够克服上述某种或某些缺陷。
根据本发明的第一方面,提供了一种锌离子电池的负极制备方法,包括:
提供锌箔;
将碳源、钛源、钠源和磷源溶于无水乙醇中形成混合溶液,其中碳源、钛源和钠源相对于磷源的摩尔比分别为0.5~1、0.5~1和0.2~0.5;
使混合溶液在60~80℃油浴条件进行溶胶凝胶反应直至形成白色凝胶;
干燥凝胶后获得前驱体;
将前驱体在保护气氛下进行煅烧处理,煅烧条件为从室温以2℃/min~5℃/min的升温速度升温至320~380℃,保温3~5h之后以同样的升温速度连续升温至680~720℃,保温7~9h获得黑色粉末;
将所得黑色粉末与粘结剂和溶剂进行混合得到涂敷剂;
将所得涂敷剂均匀涂敷在锌箔上形成涂层,其中溶剂挥发之后涂层厚度为10μm~50μm。
根据本发明的方法,其中所得干燥产物与粘结剂的质量比优选在9.5:0.5至7:3之间。
根据本发明的方法,其中粘结剂可以选自由聚偏氟乙烯(PVDF)与聚环氧乙烷(PEO)和羧甲基纤维素(CMC)组成的组中的至少一种。
根据本发明的方法,其中用于形成涂敷剂的溶剂可以为N-甲基吡咯烷酮(NMP)或水,优选采用NMP。
根据本发明的方法,执行干燥处理时可以采用真空或非真空干燥,温度可设置为50℃~200℃,优选60℃~80℃;干燥时间可以为2h~48h,优选12h~24h。
根据本发明的方法,其中涂敷剂可以采用刮涂、旋涂、喷涂等合适方式以可控的厚度涂覆于负极或锌箔表面。
作为本发明的替代实施例,也可以采用葡萄糖、抗坏血酸、盐酸多巴胺或酒石酸来替换柠檬酸。醋酸钠也可以替换为碳酸钠、柠檬酸钠、羧甲基纤维素钠或磷酸二氢钠。磷酸也可以替换为磷酸二氢铵。
作为本发明的替代实施例,还可以采用铝箔替代锌箔来制备用于铝电池的负极。
根据本发明的另一方面,提供了一种锌离子电池的负极,其由上述方法所制备。
根据本发明的又一方面,提供了一种水系锌离子电池,其包括上述负极。
根据本发明的电池,还可以包括选自由硫酸锌、氯化锌、醋酸锌和三氟甲磺酸锌组成的组中的至少一种所形成的电解水溶液。优选由硫酸锌形成电解液。
另外隔膜材料可以采用玻璃纤维、滤纸或者无纺布。
此外,作为本发明的替代实施例,本发明亦可应用于铝离子电池或者含有锌离子的多离子型电池,如锌、铝离子的混合离子电池。应用于铝离子电池时的电解液盐可以为氯化铝、硫酸铝、硝酸铝、高氯酸铝以及三氟甲磺酸铝等;应用于多离子电池时则可以采用锌盐以及铝盐的混合物。
根据本发明所制得的黑色粉末材料为碳包覆的复合型材料(NaTi2(PO4)3@C),这种快离子导体的离子通道重新分配电极/电解液界面附近的锌离子通量,实现金属在金属箔及界面层或涂层之间的均匀沉积;同时利用引入的碳增加活性位点,降低局部电流密度,均匀电场分布,引导金属在碳空位处均匀沉积。通过这种协同作用,可获得双层金属沉积层,抑制枝晶生长;导电碳的引入同时进一步减小电池的极化电压,实现电池长期稳定循环。
根据本发明所制备的水系金属电池负极能够减小金属对称电池极化电压,提高循环稳定性;降低全电池的电荷转移电阻,提升循环性能和倍率性能。
总之,本发明的方法操作简单,成本低,经双重保护改性修饰的金属负极抗腐蚀且有效抑制了副反应发生。
附图说明
图1为本发明实施例1中获得的黑色粉末的TEM图。
图2为本发明实施例8中20μm复合改性层保护的金属电极与对比例1的无修饰电极以及对比例2使用的未包碳改性金属电极的极化电压图。
具体实施方式
以下将结合实施例、对比例和附图,对本发明进行详细说明。应当理解的是,这些内容仅用于说明和解释而非限制本发明。
以下实施例和对比例中,LAND CT2001A测试仪购自武汉市蓝电电子有限公司。金属负极基体为锌箔。
实施例1
(1)将4mmol柠檬酸、4mmol钛酸四丁酯、2mmol醋酸钠和6mmol磷酸分别溶于40,40,20,20mL无水乙醇中,充分搅拌待其溶解后按顺序混合。将混合后的溶液在70℃下油浴搅拌加热,直至形成白色凝胶。将凝胶在70℃下干燥过夜,获得复合型前驱体。
(2)将前驱体在管式炉中煅烧处理(Ar保护气),获得碳包覆的复合型材料NTP@C。煅烧条件为从室温以2℃/min的升温速度升温至350℃,保温4h;之后以同样的升温速度升温连续升温至700℃,保温8h获得黑色粉末(NTP@C)。
(3)将NTP@C和PVDF以9:1的质量比混合,并加入适量NMP,通过搅拌制备涂敷剂浆料,采用刮涂法将涂敷剂浆料均匀涂覆于锌箔上制备改性负极。
(4)80℃下真空干燥过夜,在锌箔上得到涂层厚度为10μm的改性层或保护层。之后,将改性负极(覆盖有改性涂层的锌箔)冲裁为直径11mm的极片,用于组装电池。
(5)在空气中组装CR2025型纽扣电池,覆盖有改性涂层的极片用作正极和负极,玻璃纤维用作隔膜,2摩尔每升硫酸锌用作电解液。静置12h后在LAND CT2001A测试仪上进行测试。
实施例2
步骤(2)中煅烧条件为从室温以2℃/min的升温速度升温至350℃,保温4h;之后以同样的升温速度升温连续升温至600℃,保温8h获得黑色粉末。其它同实施例1。
实施例3
步骤(2)中煅烧的条件为从室温以2℃/min的升温速度升温至350℃,保温4h;之后以同样的升温速度升温连续升温至800℃,保温8h获得黑色粉末。其它同实施例1。
实施例4
步骤(2)中煅烧的条件为从室温以5℃/min的升温速度升温至350℃,保温4h;之后以同样的升温速度升温连续升温至700℃,保温8h获得黑色粉末。其它同实施例1。
实施例5
步骤(2)中煅烧的条件为从室温以10℃/min的升温速度升温至350℃,保温4h;之后以同样的升温速度升温连续升温至700℃,保温8h获得黑色粉末。其它同实施例1。
实施例6
步骤(3)中粘结剂为PEO,溶剂为NMP。其它同实施例1。
实施例7
步骤(3)中粘结剂为CMC,溶剂为水。其它同实施例1。
实施例8
调节步骤(3)中涂敷剂的涂敷量,使得步骤(4)所得涂层厚度为20μm。其它同实施例1。
除了对称电池测试,本实施例还同时组装了CR2025纽扣电池进行全电池测试。其中,α二氧化锰作为正极,NTP@C修饰后的锌金属作为负极,2摩尔每升硫酸锌和0.2摩尔每升硫酸锰用作电解液,玻璃纤维用作隔膜。静置12h后在LAND CT2001A测试仪上进行测试。
实施例9
调节步骤(3)中涂敷剂的涂敷量,使得步骤(4)所得涂层厚度为30μm。
实施例10
调节步骤(3)中涂敷剂的涂敷量,使得步骤(4)所得涂层厚度为40μm。
实施例11
调节步骤(3)中涂敷剂的涂敷量,使得步骤(4)所得涂层厚度为50μm。
对比例1
在空气中组装CR2025型纽扣电池,将未修饰的锌片用作正极和负极,玻璃纤维用作隔膜,2摩尔每升硫酸锌用作电解液。静置12h后在LAND CT2001A测试仪上进行测试。
除了对称电池测试,本对比例还同时组装了CR2025纽扣电池进行全电池测试。其中,α二氧化锰作为正极,未修饰的锌金属作为负极,2摩尔每升硫酸锌和0.2摩尔每升硫酸锰用作电解液,玻璃纤维用作隔膜。静置12h后在LAND CT2001A测试仪上进行测试。
对比例2
步骤(2)中前驱体在马弗炉中煅烧处理(空气气氛),获得未包覆的材料NTP。其中,煅烧的条件为从室温以2℃/min的升温速度升温至350℃,保温4h;之后以同样的升温速度升温连续升温至700℃,保温8h获得白色粉末。调节步骤(3)中涂敷剂的涂敷量,使得步骤(4)所得涂层厚度为20μm。其它同实施例1所述的方法。
除了对称电池测试,本对比例还同时组装了CR2025纽扣电池进行全电池测试。其中,α二氧化锰作为正极,NTP修饰后的锌金属作为负极,2摩尔每升硫酸锌和0.2摩尔每升硫酸锰用作电解液,玻璃纤维用作隔膜。静置12h后在LAND CT2001A测试仪上进行测试。
表1:各实施例与各对比例中金属对称电池稳定后极化电压与循环时长表
Figure BDA0003496939650000071
表2:全电池循环性能对比表
Figure BDA0003496939650000081
图1为本发明实施例1中获得的黑色粉末的TEM图。图2为本发明实施例8中20μm复合改性层保护的金属电极与对比例1的无修饰电极以及对比例2使用的未包碳改性金属电极的极化电压图。
通过表1和2及图1和2可以看出:
煅烧温度过高或过低均会对电池的极化电压和循环性能有负面影响,优选700℃。
升温速率过快会导致样品颗粒团聚,无法保证有效均匀锌离子通量,会对电池的极化电压和循环性能产生负面影响,优选低升温速率(2℃/min)方法。
粘结剂的类型对电池的极化电压以及循环时长均无明显影响,说明了本发明对粘结剂的选择具有灵活性。
涂层厚度的优选为20μm。
双重保护涂层的引入能够改善电池的循环性能,碳的引入可以提供协同作用,与NTP共同诱导锌均匀沉积。图1的TEM图表明,纳米颗粒粒径在20~30nm左右,柠檬酸同时起到螯合剂和碳源的作用,能够控制晶粒尺寸,并形成碳基体和包覆层。
NTP@C修饰后的锌金属对称电池在水系电解液中的极化电压范围为15~40mV,较对比例1中未修饰的锌电极相比明显降低。电极片循环后的XRD结果表明,NTP及NTP@C修饰后电极表面的副产物碱式硫酸锌明显减少,副反应被抑制。NTP@C保护的水系锌金属对称电池可稳定循环600h以上,循环稳定性较未修饰的锌和NTP修饰的锌分别提升了6倍和3倍。全电池测试结果表明,保护层的引入明显提升了电池的循环稳定性,在循环100 000个周次后,基于NTP@C修饰的全电池的容量保持率仍有70%。而基于未修饰的锌负极的全电池的容量仅在不到500个循环周次就迅速衰减至初始比容量的30%以下。以上实施例说明,通过碳包覆的复合型材料保护金属负极,可通过NTP与碳的协同作用改善金属负极中的问题,抑制枝晶生成,减少副反应,明显降低极化电压,显著提高金属电池的循环稳定性。

Claims (7)

1.一种锌离子电池的负极制备方法,包括:
提供锌箔;
将碳源、钛源、钠源和磷源溶于无水乙醇中形成混合溶液,其中碳源、钛源和钠源相对于磷源的摩尔比分别为0.5~1、0.5~1和0.2~0.5;
使混合溶液在60~80℃油浴条件进行溶胶凝胶反应直至形成白色凝胶;
干燥凝胶后获得前驱体;
将前驱体在保护气氛下进行煅烧处理,煅烧条件为从室温以2℃/min~5℃/min的升温速度升温至320~380℃,保温3~5h之后以同样的升温速度连续升温至680~720℃,保温7~9h获得黑色粉末;
将所得黑色粉末与粘结剂和溶剂进行混合得到涂敷剂;
将所得涂敷剂均匀涂敷在锌箔上形成涂层,其中溶剂挥发之后涂层厚度为10μm~50μm。
2.根据权利要求1所述的方法,其中所得黑色粉末与粘结剂的质量比在9.5:0.5至7:3之间。
3.根据权利要求1所述的方法,其中粘结剂选自由聚偏氟乙烯与聚环氧乙烷和羧甲基纤维素组成的组中的至少一种。
4.根据权利要求1所述的方法,其中用于形成涂敷剂的溶剂为N-甲基吡咯烷酮和/或水。
5.一种锌离子电池的负极,由根据权利要求1-4之一的方法所制备。
6.一种锌离子电池,包括根据权利要求5所述的负极。
7.根据权利要求6的电池,还包括选自由硫酸锌、氯化锌、醋酸锌和三氟甲磺酸锌组成的组中的至少一种所形成的电解水溶液。
CN202210117307.4A 2022-02-08 2022-02-08 用于水系金属电池的复合改性负极 Active CN114530572B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210117307.4A CN114530572B (zh) 2022-02-08 2022-02-08 用于水系金属电池的复合改性负极

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210117307.4A CN114530572B (zh) 2022-02-08 2022-02-08 用于水系金属电池的复合改性负极

Publications (2)

Publication Number Publication Date
CN114530572A true CN114530572A (zh) 2022-05-24
CN114530572B CN114530572B (zh) 2024-01-26

Family

ID=81622998

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210117307.4A Active CN114530572B (zh) 2022-02-08 2022-02-08 用于水系金属电池的复合改性负极

Country Status (1)

Country Link
CN (1) CN114530572B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116495714A (zh) * 2023-04-04 2023-07-28 陕西则明未来科技有限公司 一种非晶磷酸钛钠的制备及应用
CN117458009A (zh) * 2023-11-02 2024-01-26 中国科学院苏州纳米技术与纳米仿生研究所 复合锌电极及其制备方法和应用
CN118040092A (zh) * 2024-03-19 2024-05-14 江苏贾儒科技有限公司 一种高性能水系锌离子电池

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108461734A (zh) * 2018-03-20 2018-08-28 华中科技大学 一种磷酸钛钠/碳复合材料的制备方法及应用
CN108615855A (zh) * 2016-12-10 2018-10-02 中国科学院大连化学物理研究所 一种碳包覆制备的磷酸钛钠材料及制备和应用
CN110311098A (zh) * 2018-03-25 2019-10-08 北京金羽新能科技有限公司 一种碳包覆磷酸钛钠复合材料及其制备的钠离子电池
CN111900388A (zh) * 2020-05-26 2020-11-06 北京理工大学 一种锌离子电池负极材料、其制备及应用
CN111900406A (zh) * 2020-08-03 2020-11-06 常州工学院 一种碳包覆硅酸锰材料的制备方法与应用
WO2021227594A1 (zh) * 2020-05-11 2021-11-18 中国科学院过程工程研究所 一种复合正极材料及其制备方法和在锌离子电池中的应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108615855A (zh) * 2016-12-10 2018-10-02 中国科学院大连化学物理研究所 一种碳包覆制备的磷酸钛钠材料及制备和应用
CN108461734A (zh) * 2018-03-20 2018-08-28 华中科技大学 一种磷酸钛钠/碳复合材料的制备方法及应用
CN110311098A (zh) * 2018-03-25 2019-10-08 北京金羽新能科技有限公司 一种碳包覆磷酸钛钠复合材料及其制备的钠离子电池
WO2021227594A1 (zh) * 2020-05-11 2021-11-18 中国科学院过程工程研究所 一种复合正极材料及其制备方法和在锌离子电池中的应用
CN111900388A (zh) * 2020-05-26 2020-11-06 北京理工大学 一种锌离子电池负极材料、其制备及应用
CN111900406A (zh) * 2020-08-03 2020-11-06 常州工学院 一种碳包覆硅酸锰材料的制备方法与应用

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116495714A (zh) * 2023-04-04 2023-07-28 陕西则明未来科技有限公司 一种非晶磷酸钛钠的制备及应用
CN117458009A (zh) * 2023-11-02 2024-01-26 中国科学院苏州纳米技术与纳米仿生研究所 复合锌电极及其制备方法和应用
CN118040092A (zh) * 2024-03-19 2024-05-14 江苏贾儒科技有限公司 一种高性能水系锌离子电池

Also Published As

Publication number Publication date
CN114530572B (zh) 2024-01-26

Similar Documents

Publication Publication Date Title
CN102738458B (zh) 一种富锂正极材料的表面改性方法
CN113054165B (zh) 一种锌二次电池的负极极片及其制备方法与应用
CN114530572B (zh) 用于水系金属电池的复合改性负极
CN110642236B (zh) 一种锌基水系电池负极材料及其制备方法
CN108199041B (zh) 一种改性磷酸铁锂材料、制备方法及应用
CN109659542A (zh) 一种核壳结构的高电压钴酸锂正极材料及其制备方法
CN102891307A (zh) 一种高电压锂离子电池复合正极材料及锂离子电池
CN106784726B (zh) 磷酸氧钒锂改性富锂锰基层状锂离子电池正极材料及其制备方法
CN108878877A (zh) 一种水系锌离子二次电池用正极活性材料以及一种水系锌离子二次电池
CN108807920B (zh) Laso包覆八面体结构镍锰酸锂复合材料及制备方法
CN108807928B (zh) 一种金属氧化物及锂离子电池的合成
CN108172803A (zh) 一种表面改性的包覆型富锂材料及其制备方法和锂离子电池
CN111081971B (zh) 水系锌离子电池的电极的制备方法、电极与电池
CN104852040B (zh) 一种高倍率锂离子电池的镍锰酸锂正极材料的制备方法
CN104505500A (zh) 纳米熔融复合包覆改性锂离子电池正极材料及其制备方法
CN102738454B (zh) 锂离子电池正极材料的表面包覆材料及制备方法
CN107507958B (zh) 一种用于锂硫电池的原位粉体包覆与极板制备一体化方法
CN112635698B (zh) 一种锌二次电池的负极极片及其制备方法和用途
CN110518295A (zh) 一种可充锌基电池
CN109860584A (zh) 一种高能量密度锂离子二次电池
CN115241435A (zh) 一种层状Na3M2XO6氧化物包覆改性的锰酸钠正极材料及其制备方法
CN115679380A (zh) 一种晶面取向金属锌的制备方法及应用
CN112103482B (zh) 稀土金属或过渡金属掺杂的磷酸钛锂/碳复合材料及其制备方法和应用
CN114300669A (zh) 一种可充电水系锌锰电池及其组装方法
CN109904386A (zh) 一种含锡层状氧化物材料及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant