CN114423490A - 使用耳状刺激设备递送疗法的系统和方法 - Google Patents
使用耳状刺激设备递送疗法的系统和方法 Download PDFInfo
- Publication number
- CN114423490A CN114423490A CN202080064294.8A CN202080064294A CN114423490A CN 114423490 A CN114423490 A CN 114423490A CN 202080064294 A CN202080064294 A CN 202080064294A CN 114423490 A CN114423490 A CN 114423490A
- Authority
- CN
- China
- Prior art keywords
- electrode
- ear
- nerve
- stimulation
- therapy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/18—Applying electric currents by contact electrodes
- A61N1/32—Applying electric currents by contact electrodes alternating or intermittent currents
- A61N1/36—Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
- A61N1/36036—Applying electric currents by contact electrodes alternating or intermittent currents for stimulation of the outer, middle or inner ear
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/02—Details
- A61N1/04—Electrodes
- A61N1/0404—Electrodes for external use
- A61N1/0408—Use-related aspects
- A61N1/0456—Specially adapted for transcutaneous electrical nerve stimulation [TENS]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/18—Applying electric currents by contact electrodes
- A61N1/32—Applying electric currents by contact electrodes alternating or intermittent currents
- A61N1/36—Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
- A61N1/36014—External stimulators, e.g. with patch electrodes
- A61N1/3603—Control systems
- A61N1/36031—Control systems using physiological parameters for adjustment
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/18—Applying electric currents by contact electrodes
- A61N1/32—Applying electric currents by contact electrodes alternating or intermittent currents
- A61N1/36—Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
- A61N1/36014—External stimulators, e.g. with patch electrodes
- A61N1/3603—Control systems
- A61N1/36034—Control systems specified by the stimulation parameters
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Radiology & Medical Imaging (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Otolaryngology (AREA)
- Electrotherapy Devices (AREA)
Abstract
用于向患者递送疗法的系统和方法利用由耳状刺激设备递送的对患者的耳朵区域中的神经结构的经皮刺激,该耳状刺激设备具有耳内组件和耳机组件,该耳内组件具有设置在患者的耳朵中的第一电极,该耳机组件具有放置在耳廓周围的第二电极。脉冲发生器可以通过向第一电极递送用于刺激(多个)第一神经结构的第一刺激脉冲系列和向第二电极递送用于刺激(多个)第二神经结构的第二刺激脉冲系列来控制疗法的递送。第一电极和第二电极与耳朵上和/或耳朵周围的组织非穿刺接触。
Description
相关申请的交叉引用
本申请要求2020年4月10日提交的题为“使用电刺激减少炎症的设备和方法(Devices And Methods For Reducing Inflammation Using Electrical Stimulation)”的美国专利申请序列号16/846,220的优先权,其是2019年7月14日提交的题为“用于治疗药物使用障碍的设备和方法(Device and Method for the Treatment of Substance UseDisorders)”的美国专利申请序列号16/510,930的部分继续申请,并要求其优先权。所有上述确定的申请均通过引用整体并入本文。
背景技术
根据国家药物使用和健康调查,大约210万美国人对阿片类止痛药(OPR)上瘾,513,000人对海洛因上瘾。2017年有创纪录的72,000例用药过量死亡,全国上升约10%;很大程度上是由新的合成阿片引起的。美国国立卫生研究院(NIH)报告称,仅在美国,每天就有超过115例死亡与阿片有关。阿片对其使用者产生强烈的生理依赖性;正是这种依赖性使得想要停止使用这种类型的药物的使用者在没有健康护理专业人员干预的情况下非常难做到停止使用,如果不是不可能的话。
停止阿片摄入引起的生理反应称为阿片戒断。阿片戒断通常非常不愉快,并且在一些无人照料的情况下可能导致死亡。阿片在该国的过度使用已经达到了如此的程度,以至于政府将当前的形势称为国家危机。需要干预来帮助缓解正处于停止阿片消耗的过程中的个体所感觉到的阿片戒断症状。
鉴于对健康、社会和经济福利的重大影响,解决成瘾治疗和康复战略已成为政府机构的主要优先事项。阿片成瘾的治疗包括药物疗法和心理社会及行为适应方法,心理社会及行为适应方法包括:住院治疗、互助和12步治疗计划。在许多情况下,这些干预措施可以单独施用或与药物疗法结合施用。心理社会阿片成瘾治疗方法显示出了价值,并且是一个重要的治疗选择。然而,需要更高特异性、一致性和患者依从性的治疗。
发明内容
目前,美国正在经历自20世纪90年代以来在处方药和非处方药的使用中持续上升的阿片流行。对安全和有效的阿片戒断治疗的需求是要求严格的,并且在很大程度上未得到满足。根据国家药物使用和健康调查(NSDUH),大约210万美国人对阿片类止痛药(OPR)上瘾,513,000人对海洛因上瘾。在2005年,估计有1000万慢性疼痛患者每天接受OPR的长期治疗。从2005年到2017年,阿片消耗量持续增加,表明这一数字现在可能超过1,100万。
限制接受治疗者总体比例的一个主要原因是能够开出药物疗法处方的执业医师数量有限。此外,处方阿片对呼吸抑制和异常心脏活动造成不同程度的风险,因此只能从许可的阿片治疗计划(OTP)中获得。许多社区缺乏OTP,这给扩大美沙酮的使用带来了重大挑战。相比之下,丁丙诺啡是一种部分阿片类激动剂,其显示了与美沙酮相比更好的安全性,并且可以在基于办公室的环境(office-based setting)中开处方。然而,丁丙诺啡包括联邦对医生可以治疗的患者数量的限制,执业护士没有资格开处方,以及丁丙诺啡与初级保健治疗的整合不足。
阿片戒断的药物治疗包括美沙酮的完全激动剂治疗、丁丙诺啡的部分激动剂治疗和纳曲酮的完全拮抗剂治疗。美沙酮和丁丙诺啡是半合成的阿片衍生物,其与阿片受体结合,使上瘾的人能够停止滥用阿片,而不会出现戒断症状。丁丙诺啡可以产生典型的阿片作用和副作用,例如欣快感和呼吸抑制,然而,其最大作用小于诸如如美沙酮或海洛因的完全激动剂。丁丙诺啡的激动剂效应的特定剂量反应曲线随着药物剂量的增加而线性增加,直至达到平稳状态。
丁丙诺啡可以阻断完全阿片激动剂(即美沙酮和海洛因)的作用,并且如果在完全激动剂在血液中时给阿片成瘾的个体施用,可以引发戒断症状。丁丙诺啡比其他阿片具有更高的亲和力,因此将竞争受体并占据该受体,从而阻止其他阿片结合。如果丁丙诺啡的量不足以占据和满足受体,则会出现戒断症状;在这种情况下,给予额外的丁丙诺啡直到戒断症状消失。
最后,纳曲酮是一种阿片拮抗剂,它竞争阿片受体并从这些受体上取代阿片药物,从而逆转阿片的作用。纳曲酮能够拮抗所有阿片受体,但对μ-而不是κ-和δ-受体具有更高的亲和力。通过阻断μ-阿片受体,纳曲酮降低了多巴胺的回报。纳曲酮的活动被认为是母体及其6β-纳曲醇代谢物共同作用的结果。纳曲酮的作用机制类似于纳洛酮(阿片类拮抗剂;发现于Suboxone),除了它的作用时间更长。纳曲酮可通过长效注射剂施用,该注射剂被制成微球,单次注射后可持续1个月。
由于治疗选项不足和缺乏,找到一种有效的非药物方法对于改善和扩大对阿片戒断和成瘾的治疗至关重要。有证据表明,通过神经刺激可以快速有效地缓解与阿片戒断相关的体征和症状。
经皮神经刺激需要一种经皮设备,该装置使用植入皮肤的小针头递送神经刺激。经皮神经刺激系统存在许多缺点和限制,包括:针的位置很关键,因此针的插入必须由受过训练的专业医务人员执行;针头必须是无菌的;针头无菌要求相当于最短的设备保质期;移动或移位的针需要受过训练的诊所工作人员的注意;许多患者对针头有天生的恐惧;当前可用的系统不能重复使用、充电或使用超过其直接电池寿命;当前可用的系统不允许完全可定制的刺激设置;当前可用的系统无法确定和报告是否正在递送刺激;当前可用的系统不能收集设备符合性数据(device compliance data);并且当前可用的系统没有被设计成易于使用、具有美学和外观吸引力,这影响了患者的依从性。
此外,患者的依从性是临床成功的主要障碍之一,所提出的设备已被设计为当设备未按规定使用时,包括设备故障和电极错位时,警告治疗诊所工作人员。由于本文所述的新颖设备和疗法解决方案可以长期使用,并且可以容易地被使用者应用,因此新颖疗法/设备组合有助于用于减少消耗、分离消耗和避免长期使用。
在一个方面,本公开涉及用于减少药物消耗、减少与药物戒断相关的症状以及用于长期维持以防止药物复发的耳神经纤维的经皮刺激。所提出的新颖神经调节治疗不需要穿刺真皮层,并且所需的精度使得任何外行人都可以应用该设备并接受疗法。在一个方面,该系统不需要无菌,易于应用,并且用户可以在没有临床医生的情况下应用。所提出的治疗方法以及治疗设备克服了所有上述缺点。考虑到大量未满足的医疗需求(即阿片的过度使用),这里提出的治疗设备没有以这里提供的方式提供的事实,表明了所提出的治疗的非显而易见性。
在一些实施方式中,治疗设备可以用于治疗和/或管理其他适应症的症状。在一些实施方式中,治疗设备可用于由对耳神经纤维的经皮刺激来提供用于治疗新生儿戒断综合征的疗法。耳针灸(auricular acupuncture)最近被研究作为新生儿戒断综合征的辅助疗法。Filippelli,A.C.等人(2012)的题为“非插入式针灸和新生儿戒断综合征:来自市中心安全网医院的病例系列”,发表在全球健康和医学进展,48–52.2012的出版物中所示的使用传统针的非插入式针灸(NIA),通过引用将其并入本文。
在一项研究中提供了治疗设备可提供用于治疗新生儿戒断综合征的疗法的证据,在该研究中,将手持式激光应用于患有新生儿戒断综合征的新生儿的耳朵,导致一些婴儿在其治疗过程中变得更加放松,如以下中所述:Raith,W.和Urlesberger,b的题为“激光针灸作为因母体替代疗法而患有新生儿戒断综合征(NAS)的新生儿的辅助疗法:针灸的附加值”,发表于《针灸医学》,2012,32(6),523-524,通过引用将其并入本文。虽然需要更深入的研究来评估非插入式针灸作为用于新生儿戒断综合征的有效辅助疗法,但早期结果显示了,有望利用耳神经通路治疗新生儿戒断综合征。
提供了用于快速释放内源性产生的阿片受体激动剂的疗法系统和方法。在一些实施方式中,疗法系统包括治疗设备,该治疗设备允许几乎任何人以相对较低的成本容易且可靠地应用所提出的疗法。优于现有神经调节治疗和相关设备的一些优点是:在设备的应用、定制疗法设置和设备的实际穿戴中的易用性;最小的感染风险;用户能够安全地自我施用或重新开始治疗而不需要回到诊所;显著延长的保存期;由于非侵入性而减少了患者的焦虑;长期使用选项;可定制的疗法设置;如果疗法中断或停止,通知用户、护理人员和临床医生的能力;向临床工作人员或用户报告总体使用情况以供分析的能力;以及用户不必回到诊所以延长治疗或在他们感觉需要的任何给定时间使用它的能力,这些优点呈现出优于现有神经调节疗法的主要优势,打开了长期维持治疗的大门。
在一个方面,疗法设备被配置成基于变化的刺激参数提供刺激疗法以释放不同类型和数量的内源性阿片肽。CNS中有三类内源性阿片肽:脑啡肽、内啡肽和强啡肽。在一项研究中显示了支持性的动物数据,该研究检测了不同刺激频率对释放的内源性阿片肽的类型和数量的影响,如Han,J.S.和Wang,Q.的题为“通过确定频率的外围刺激的特异性神经肽的动员”,生理学1992,7(4),176-180的出版物中所述,通过引用将该出版物并入本文。电针灸(EA)刺激在后肢的两个特定穴位递送。大鼠接受2、15和100赫兹(Hz)的刺激。在刺激前和刺激期间收集脊髓灌注液。显示了刺激频率和阿片肽释放类型的明显差异,包括2Hz对释放脑啡肽和β-内啡肽有效,100Hz释放强啡肽最有效。在刺激期间未对甩尾(tail-flick)表现出反应的无反应大鼠中,没有观察到阿片肽的增加。尽管15Hz能够释放脑啡肽和强啡肽阿片肽,但另一项研究显示2Hz/100Hz的交替刺激使镇痛效果最大化,Han,J.S.的在Neuroscience letters,2004,361(1-3),258-261中发表的题为“针灸和内啡肽”的该研究,通过引用并入本文。疼痛缓解是通过递送神经刺激来释放内源性阿片肽和填充空缺的阿片受体来实现的,这一科学证据后来成为用于减少与阿片戒断相关联的症状的一个经过验证的假设。
在一项随机临床试验中,递送经皮穴位电刺激(TEAS)作为使用丁丙诺啡-纳洛酮的阿片解毒的辅助手段,Meade,C.S.等人的题为“经皮穴位电刺激作为阿片解毒的辅助治疗的随机试验”,Journal of Substance Abuse Treatment,2010,38(1),12-21报告了该临床试验,通过引用将其并入本文。基于上述临床前证据,TEAS以交替的低(2Hz)和高(100Hz)递送,每天30分钟,持续3-4天。在出院后2周,在活动TEAS组中,患者使用任何药物的可能性减少了77%,相比之下,假治疗组减少了33%。此外,活动TEAS改善了疼痛感觉和整体健康。
在优选实施例中,疗法系统包括治疗设备,该治疗设备具有被配置成与患者接触的耳状组件和被配置成与治疗设备通信的脉冲发生器或控制器。在一些实施方式中,治疗设备可以被提供为组装单元或者被配置成在使用前连接的几个组件。在一个示例中,耳状组件可以被提供在密封的袋中,并且脉冲发生器可以被提供为将耳状组件连接到脉冲发生器上的连接器。在一个方面,该系统被配置成具有可移除的刺激器,而不需要移除耳状组件,反之亦然。在一个示例中,耳机可以在连接到脉冲发生器之前或之后放置在患者的耳廓周围。
在一些实施方式中,治疗设备可用于提供包括被配置成刺激调节强啡肽释放的通路的第一刺激和被配置成刺激调节内啡肽释放的通路的第二刺激的疗法。在一些实施方式中,治疗设备可用于提供包括被配置成刺激调节强啡肽释放的通路的第一刺激和被配置成刺激调节脑啡肽释放的通路的第二刺激的疗法。在其他实施方式中,治疗设备可用于提供包括被配置成刺激调节强啡肽释放的通路的第一刺激和被配置成刺激调节脑啡肽和内啡肽释放的通路的第二刺激的疗法。
在一个示例中,第一刺激可以是高频刺激,第二刺激可以是低频刺激。在一个示例中,调节强啡肽释放的通路可以包括耳颞神经、枕小神经和耳大神经中的至少一种。在一个示例中,调节强啡肽释放的通路可以包括经由刺激臂旁核来刺激强啡肽通路。在一个示例中,调节内啡肽和脑啡肽释放的通路可以包括迷走神经的耳支、枕小神经和耳大神经中的至少一种。在一个示例中,调节内啡肽和脑啡肽释放的通路可以包括经由刺激下丘脑弓状核来刺激内啡肽和脑啡肽通路。
为了提供疗法,提供者可以根据需要调整疗法参数,并使用脉冲发生器或外围设备上的控制器开始疗法。在一些实施方式中,疗法包括提供两个或更多个同时和/或同步的刺激。在一个方面,疗法可以涉及在患者皮肤的第一部分施加具有第一参数组的第一刺激,以及在患者皮肤的第二部分施加具有第二参数组的第二刺激。当疗法完成时,用户可以移除耳机并将耳机从脉冲发生器上断开。在一个示例中,可以在下一次会话中用新的耳机替换使用过的耳机。
在一些实施例中,可以单侧(左侧或右侧)应用治疗,而在其他实施例中,可以应用双侧治疗。在双侧应用的情况下,可以使用两个设备;这两个设备可以被同步进行更好的全身响应。具有多通道的单个器件或多路复用输出的单个器件也可以用于双侧应用。
前面对说明性实施方式的一般描述及其下面的详细描述仅仅是本公开教导的示例性方面,而不是限制性的。
附图说明
包含在说明书中并构成说明书一部分的附图示出了一个或多个实施例,并与说明书一起解释了这些实施例。附图不一定是按比例绘制的。附图中所示的任何数值维度仅用于说明目的,可能代表也可能不代表实际的或优选的数值或维度。在适用的情况下,一些或所有特征可能没有被示出以帮助描述基础特征。在附图中:
图1A是根据一个示例的识别耳朵的结构的图;
图1B是耳朵的神经分配图,其中是迷走神经相关的神经结构、耳颞神经结构、枕小神经相关的神经结构和耳大神经相关的神经结构;
图1C、图1D、图1E、图1F和图1G是根据一个示例,标识用于调节内源性阿片受体激动剂的释放的神经结构和通路以及调节抗炎、肺和认知过程的通路的图,其中内源性阿片受体激动剂调节疼痛;
图2A是根据一个示例的治疗设备的图,该治疗设备包括具有由第一连接器连接到外耳装置的耳机的耳状组件,以及通过第二连接器连接到耳状组件的耳机的脉冲发生器;
图2B是根据一个示例的图2A所示的治疗设备的替代视图,示出了包括第一电极或耳甲艇电极的外耳装置,以及包括第二电极和至少另一个电极的耳机;
图2C是根据一个示例的治疗设备的图,该治疗设备包括被配置成虚拟地分组在一起以形成一个或多个有效电极的多个电极;
图2D是根据一个示例的治疗设备的一部分的侧视图,该治疗设备包括在一对电极之间的触觉反馈致动器;
图2E是具有带耳屏附件(haptic feedback)的耳机的示例治疗设备的图;
图3A是根据一个示例的具有耳机和外耳装置的耳状组件的图,其形状被配置成有助于将治疗设备和相应的电极固定到相应的耳朵结构;
图3B是根据一个示例的穿戴在患者的耳朵上的耳状组件的图示;
图3C和图3D示出了包括用于接触耳屏组织的电极的示例耳状组件;
图4A、图4B和图4C是根据另一示例的外耳装置的图,该外耳装置具有被配置成有助于将外耳装置和相应支撑电极固定到相应的耳朵结构的形状;
图5A和图5B是根据一个示例的治疗设备的组件的分解图,包括皮肤、PCB层、由两个元件组成的粘合层、皮肤粘合剂和多个导电粘合元件;
图6是根据一个示例的由柔性PCB制成的耳状组件的一部分的图;
图7A、图7B和图7C是根据一个示例的封装在保护覆盖物中的柔性PCB的图;
图8A和图8B是根据一个示例的被配置成便于放置耳甲艇电极的结构加载组件的视图;
图9A、图9B和图9C是根据一个示例的被配置成便于放置耳甲艇电极的压缩加载组件的视图;
图10A、图10B和图10C是根据一个示例的包括通过计算云和/或外围设备与第三方通信的治疗设备的系统的图;
图11是根据一个示例的与耳廓组件的柔性PCB的组件通信的脉冲发生器的组件的示意图;
图12是根据一个示例的用于提供疗法的电极配置和等效电路的图;
图13是根据一个示例的使用单个时钟触发多个通道的方法的图;
图14A是根据一个示例的用于提供疗法的方法的流程图,该疗法包括在第一组织位置处提供第一刺激和在第二组织位置处提供第二刺激,该第一刺激被配置成刺激用于调节第一内源性肽的第一释放的第一通路,该第二刺激被配置成刺激用于调节第二内源性肽的第二释放的第二通路;
图14B是用于刺激第一组织位置的靶位置的示例;
图14C是用于刺激第二组织位置的靶位置的示例;
图14D是根据一个示例的用于提供疗法的方法的流程图,该方法包括在第一组织位置处提供第一刺激,使得下丘脑弓状核(ARC)处的神经活动性被调节,使得其刺激中脑导水管周围灰质区(PAG)以调节脑啡肽和/或内啡肽的第一释放,以及在第二组织位置处提供第二刺激,使得臂旁核(PbN)处的神经活动性被调节,使得其也刺激中脑导水管周围灰质区(PAG)以调节强啡肽的第二释放;
图14E是用于提供增加支气管顺应性的疗法的示例方法的流程图;
图14F是用于提供减少促炎过程的疗法的示例方法的流程图;和
图15是根据一个示例显示使用的所提出的系统收集的数据的条形图。
具体实施方式
以下结合附图阐述的描述旨在描述所公开主题的各种说明性实施例。结合每个说明性实施例描述了具体的特征和功能;然而,对于本领域技术人员来说显而易见的是,可以在没有这些具体特征和功能的情况下实施所公开的实施例。
在整个说明书中对“一个实施例”或“实施例”的引用意味着结合实施例描述的特定特征、结构或特性包括在所公开主题的至少一个实施例中。因此,在说明书各处出现的短语“在一个实施例中”或“在实施例中”不一定指同一实施例。此外,在一个或多个实施例中,特定的特征、结构或特性可以以任何合适的方式组合。此外,旨在所公开主题的实施例涵盖其修改和变化。
必须注意,如在说明书和所附权利要求中所使用的,单数形式“一”、“一个”和“该”包括复数指示物,除非上下文另外明确指出。也就是说,除非另有明确说明,否则本文使用的词语“一”、“一个”、“该”等具有“一个或多个”的含义。此外,应当理解的是,本文中可能使用的诸如“左”、“右”、“顶”、“底”、“前”、“后”、“侧”、“高度”、“长度”、“宽度”、“上”、“下”、“内部”、“外部”、“内”、“外”等术语仅描述参考点,并不一定将本公开的实施例限制于任何特定的方位或配置。此外,诸如“第一”、“第二”、“第三”等术语仅仅标识本文公开的多个部分、组件、步骤、操作、功能和/或参考点中的一个,并且同样不一定将本公开的实施例限制到任何特定的配置或方位。
此外,术语“大概”、“大约”、“近似”、“微小变化”和类似术语通常指的是包括在某些实施例中的20%、10%或优选5%的范围内的确定值以及其间的任何值的范围。
结合一个实施例描述的所有功能都旨在适用于下面描述的附加实施例,除非明确声明或者特征或功能与附加实施例不兼容。例如,在结合一个实施例明确描述了给定的特征或功能,但没有结合替代实施例明确提及的情况下,应该理解的是,发明人意图结合替代实施例来部署、利用或实现该特征或功能,除非该特征或功能与替代实施例不兼容。
在一些实施方式中,用于刺激患者耳朵上和周围的神经结构的治疗系统、设备和方法被设计成在不穿刺耳朵上或周围的真皮层的情况下提供刺激。例如,该刺激可以诱导诸如内啡肽的肽的内源性释放。电极可以摩擦地和/或粘附地保持在患者耳朵上和周围的皮肤上,以靶向各种神经结构。与依赖于皮肤穿刺电极的现有技术系统相比,该电极可以具有相当大的表面积,从而在疗法期间通过单个电极刺激多个神经末梢。例如,多个神经末梢可以直接位于电极所在皮肤的下方和/或在皮肤的下方并与其紧密相邻。在一些实施例中,通过靶向多个神经末梢,每个电极的定位不一定需要精确。因此,例如,患者或护理人员能够根据期望/需要(例如,为了睡觉、淋浴等)应用和移除设备。此外,靶向多个神经末梢是有利的,因为刺激神经的多个分支比刺激单个分支(当使用诸如针电极的针尖电极时就是这种情况)引起更强的反应。
这些神经区域的经皮刺激能够实现多种有益的治疗。在一些示例中,这些包括急性或慢性疼痛、炎症和认知困难的治疗。图1C-图1E是标识用于调节内源性阿片受体激动剂的释放的神经结构和通路,以及调节炎症和认知过程的通路的图,其中内源性阿片受体激动剂调节疼痛。孤束核(NTS)接受来自许多区域(包括三叉神经-颈复合体(TCC)、颈迷走神经以及迷走神经耳支(ABVN))的传入连接。TCC是位于颈和脑干区的一个区域,三叉神经和枕叶纤维形成突触,包括耳颞神经、枕小神经和耳大神经。TCC投射(project)到脑干的多个区域,包括但不限于中缝大核(NRM)、蓝斑(LC)、脑导水管周围灰质(PAG)、基底核(NBM)、疑核(NA)和臂旁核(PbN)。除此之外,NTS还投射到NRM、LC和PAG,以及更高的中枢,如包括弓状核(ARC)的下丘脑,其接收来自NTS的大部分非下丘脑内传入。此外,在不同的脑干核团之间存在许多相互连接(例如,PAG、LC、NRM、NBM、PbN、PPN、NA);例如,LC、PAG和NRM投射到NA。
这些连接使得这种神经回路对调节疼痛极其重要,因为内啡肽、脑啡肽和强啡肽的产生受这种回路的调节。此外,这种神经回路对于学习和记忆以及唤起和觉醒都至关重要。例如,蓝斑(LC)中的活动产生的去甲肾上腺素、中缝大核(NRM)中的活动产生的血清素(5-HT)和脚桥核(PPN)或NBM中的活动产生的乙酰胆碱(Ach)之间的相互作用对记忆和学习极其重要。除其它外,唤起和觉醒是由大脑中的去甲肾上腺素调节的。
存在去往心脏、肺、肠和脾的下行间接连接。间接连接包括在到达靶目标之前别处至少有一个突触的连接。这意味着调节这些神经回路的活动可以影响相应的器官。具体而言,可以调节心率(例如,可以降低心率并增加心率变异性);可以通过增加支气管组织的顺应性来增加肺部的氧气吸收,从而增加氧气输送的有效性,因此增加了更多氧气被吸收到血液中的可能性;可以通过起源于迷走神经背侧运动核(DMV)的下行通路来增加肠能动性;因为DMV的活动受NTS活动的调节,所以通过调节NTS中的活动可以影响肠中的能动性;以及通过经由NTS下行调节脾活动可以实现循环促炎细胞因子的减少。
心率变异性(HRV)是自主神经系统(ANS)状态的反映。ANS的交感神经分支,在压力情况下更活跃,趋向于增加心率(HR)和降低HRV;对于ANS的副交感神经分支来说,情况正好相反,它倾向于降低心率和增加HRV。较高的HRV与几种疾病的发病率和死亡率以及健康状况有关,并被用作健康生物标志物。
在疼痛调节中至少有三种不同的阿片受体,Mu(μ),Delta(δ)和Kappa(κ)。身体为这三种受体中的每一种产生内源性激动剂肽。这些肽称为内啡肽,主要与Mu(μ)受体结合;脑啡肽,主要与Delta(δ)受体结合;强啡肽,主要与Kappa(κ)受体结合。疼痛研究表明,这些内源性肽的产生遵循不同的通路。内啡肽和脑啡肽的产生是由下丘脑弓状核(ARC)中的活动介导的,而臂旁核中的活动介导强啡肽的产生。此外,电刺激实验显示强啡肽的产生比内啡肽和/或脑啡肽的产生更有效地由更高的频率介导;这表明强啡肽通路被较高频率更有效地激活,而内啡肽和脑啡肽通路被较低频率更有效地激活。
在一些实施方式中,该治疗设备可用于诱导神经元可塑性或Neuroplasticity,用于激发认知改善、中风恢复、PTSD、恐惧症、ADHD、ADD、包括治疗阿尔茨海默氏病的痴呆。神经可塑性是学习的基础;因此,在训练期间增强神经可塑性的策略有可能大大加快学习速率。早期的研究已经成功地证明了侵入性或植入性迷走神经刺激(VNS)可以驱动鲁棒的、特定的神经可塑性。VNS的短暂爆发与训练相结合,以参与前可塑性神经调节回路,并加强参与学习的特定神经网络。这种对神经可塑性的精确控制,加上与几乎任何训练范式配对的灵活性,将VNS确立潜在的靶向神经可塑性训练范式。
迷走神经是位于颈部颈动脉附近的脑神经。迷走神经的直接刺激激活孤束核(NTS),其具有向基底核(NB)和蓝斑(LC)的投射。NB和LC是释放乙酰胆碱和去甲肾上腺素的深层脑结构,乙酰胆碱和去甲肾上腺素是对学习和记忆很重要的前可塑性神经递质。使用长期植入的电极套囊刺激迷走神经在人类中被安全地用于治疗癫痫和抑郁症,并且在中风后耳鸣和运动障碍的临床试验中显示出成功。迷走神经的耳支支配外耳的皮区,该皮区是被称为耳甲艇的区域,是受其支配的区域之一。迷走神经左耳支的非侵入性刺激可以驱动与侵入性迷走神经刺激相似的大脑区域中的活动。最近,已经证明耳神经刺激在治疗许多人类疾病中是有益的。
在一些实施方式中,治疗设备可用于恢复自主平衡,例如心力衰竭、心房纤维性颤动(AF)、焦虑、压力、胃能动力、抑郁、丛集性头痛和偏头痛。耳屏(例如,外耳的前部隆起)的经皮电刺激(其被迷走神经的耳支部分地削弱)可以在人类受试者的脑干中引发诱发电位。基于这些观察,显示出经皮低水平VNS刺激抑制了心房颤动的诱发,该经皮低水平VNS刺激是通过刺激犬耳屏处的迷走神经耳支实现的。非侵入性经皮低水平VNS刺激可增加AF阈值(缓和AF风险),并减轻犬和人的AF负担。在健康受试者中,经皮低水平VNS刺激也可以增加心率变异性和减少交感神经流出。
在一些实施方式中,治疗设备用于减少由病毒或细菌感染引起的炎症。在感染的初始阶段,身体反应包括促炎细胞因子的分泌。在某些情况下,控制这种炎症反应,使其减少,可以帮助身体更快地愈合。炎症反应是一把双刃剑,因为必须根除被病毒和细菌感染的细胞。然而,过度的促炎反应实际上会导致死亡。特别是在呼吸道感染中,促炎细胞因子可能导致病原体复制的增加。此外,促炎细胞因子的积聚可能损害肺功能。研究表明,一些个体(例如,老年人)的促炎反应通常是过度的。在许多这种情况下,正是这种促炎反应比感染本身造成更大的伤害,导致受感染对象的潜在死亡。例如,在应对冠状病毒疾病2019(COVID-19)和严重急性呼吸综合征(SARS)时,人体会产生过度的促炎反应。事实上,迄今为止收集的证据表明,在一些患有严重COVID-19的个体中,身体通过释放促炎细胞因子的加剧释放来做出反应。在某些情况下,减少炎症反应,例如通过减少循环的促炎细胞因子,将减少治愈时间和/或将减少受感染者可能需要使用辅助呼吸疗法(例如对呼吸机的需要)的时间。一般来说,患者使用呼吸机的平均时间少于5天;然而,在COVID-19的情况下,患者使用呼吸机的时间长达3到4倍;即15至20天。医疗保健中心通常配备有足够的呼吸机,以满足需要它们平均不到5天的人群的需求。COVID-19患者需要呼吸机的时间增加是COVID-19总死亡率的一个因素,因为许多需要呼吸机的患者无法获得呼吸机。经由调节NTS活动,本文所述的治疗设备和方法不仅可以a)增加支气管组织的顺应性,以最终为身体提供更多氧气,而且b)减少肺部炎症。例如,调节NTS活动可以减少循环促炎细胞因子的量。这两种效果使得本文所述的新颖治疗设备和方法在呼吸道感染(例如,中东呼吸综合征冠状病毒(MERS)、严重急性呼吸综合征(SARS)、COVID-19或慢性阻塞性肺病(COPD))的治疗中起到辅助疗法的作用。
如图1F所示,支气管的顺应性是经由调节自主肺通路来产生的。具体地,本文呈现的新颖治疗刺激具有向NTS的投射的ABVN和/或ATN。NTS投射到LC、PAG和NRM。这些脑干核向位于疑核(NA)中的气道相关节前神经元递送抑制信号。NA经由主要通过迷走神经的传出通路向气道平滑肌发送信号,引起支气管扩张。
如图1G所示,抗炎作用是经由抗炎通路(也称为胆碱能抗炎通路)的激活来提供的。具体地,本文所述的新颖治疗刺激ABVN和/或ATN,如前所述,其具有向NTS的投射;这些投射经由传出通路引发胆碱能抗炎作用;主要是通过迷走神经。当迷走神经介导脾功能时,发生全身性抗炎作用,从而减少循环促炎细胞因子的量。此外,在传出通路到达的器官处发生局部抗炎作用;例如在肺、肠和心脏。
为了刺激上面讨论的各种神经结构,在一些实施方式中,治疗设备可以被设计成安置靠在患者耳朵上或周围的各种表面。图1A是标识耳朵结构的图,其中示出了耳甲艇、耳屏、对耳轮、耳轮、外耳道和耳垂。图1B是耳朵的神经分布图,其中有例如在耳甲艇内的迷走神经相关的神经结构,例如耳廓的喙部的耳颞神经结构。在图1E中,示出了与枕小神经相关的神经结构和与耳大神经相关的神经结构,例如在耳廓后部。
转到图2A和图2B,根据一个示例,示出了治疗设备200,其包括耳状组件201以及脉冲发生器210,耳状组件具有由第一连接器206连接到外耳装置204的耳机202,脉冲发生器210由第二连接器214连接到耳状组件201的耳机202。在一些实施例中,第一连接器206可释放地连接在耳机202与外耳装置204之间。例如,第一连接器206的近端(耳机202侧)或远端(外耳装置204端)中的至少一个可以被设计用于可释放的连接。在其他实施例中,第一连接器206与耳机202和外耳装置204集成,充当用于桥接耳机202与外耳装置204之间的电连接的导管。类似地,在一些实施例中,第二连接器214可释放地连接在耳机202与脉冲发生器210之间。例如,第二连接器214的近端(耳机202侧)或远端(脉冲发生器210端)中的至少一个可以被设计用于可释放的连接。在其他实施例中,第二连接器214与耳机202脉冲发生器210集成,充当用于桥接耳机202与脉冲发生器210之间的电连接的导管。在设计用于可释放连接的实施例中,第一连接器206或第二连接器214中的任一个可以包括其近端或远端中的至少一个,其具有与治疗设备200上的对应端口的键连接(keyed connection),用于紧密(例如,非旋转)连接或用于确保电对准。在设计用于可释放连接的一些实施例中,第一连接器206或第二连接器214被设计用于锁定连接。例如,锁定连接可以是防水锁定连接,以防止由于出汗、下雨等造成的短路。
在一些实施例中,耳机202和/或外耳装置204由便宜的材料设计,允许该装置是一次性的;降低每次治疗的成本并消除维护需求。一次性装置也提供了更好的卫生条件。
在一些实施例中,外耳装置204包括第一电极220,第一电极220被配置成接近迷走神经相关的神经结构,以实现对迷走神经相关的神经结构的电刺激,并且耳机202包括第二电极222,第二电极222被配置成接近与耳颞神经相关的神经结构,以实现对耳颞神经的电刺激。耳机204还可以包括至少另一个电极224、226,至少另一个电极224、226被配置成接近与耳大神经和/或其分支以及枕小神经和/或其分支相关的神经结构,以实现对这些结构的电刺激。在一个示例中,脉冲发生器210可以包括返回电极230,其被配置成向电极220-226提供返回路径或参考。在另一个实施例中,电极220-226形成对,使得例如电极220和226形成对以用于递送双极刺激;在该示例中,第二对可以由电极222和224形成,使得通过它们提供双极刺激。
在又一个实施例中,电极224和226可以组合成单个电极,并用作电极220和222的共享对,以产生双相脉冲。
转到图2E,一些实施例还包括至少一个耳屏附件,用于接触和刺激耳屏。例如,如图2E所示,包含被配置用于刺激耳屏组织的耳屏电极282的耳屏附件284从治疗设备280的耳机286延伸。在一些实施例中,耳屏附件284可以被折叠,使得它与耳屏的面向外的组织和/或耳屏的面向内的组织接触。例如,接触耳屏可以实现对耳颞神经和/或迷走神经分支的电刺激。例如,可以提供耳屏电极282而不是图2A和图2B的治疗设备200的第一电极220,并且耳屏电极282可与电极226配置成一对。在另一个实施例中(未示出),除了第一电极220之外,还可以提供耳屏电极282,在这种情况下,两者可以共享电极226作为它们的对,以产生双相脉冲。在其他实施例中,用作电极282的对以产生双相脉冲的另一个电极(未示出)可以放置在例如电极226下方。
在说明性示例中,诸如图2A和图2B的耳郭组件201的治疗设备可以如下穿戴。将耳机202应用在患者的耳廓周围,压在患者的皮肤上,使得暴露的皮肤粘合剂和粘合剂/水凝胶粘附到皮肤上。接下来,将外耳装置204放置在耳朵中,使得外耳装置204的第一部分位于外耳道外的空腔(cavum)中。最后,弯曲或压缩支撑耳甲艇电极的外耳装置204的第二或远端部分,直到其进入耳朵的耳甲艇中。在一些实施方式中,耳机202包括在皮肤粘合剂、耳甲艇电极和非耳甲艇电极中的一个或多个上的一个或多个保护衬垫,这些衬垫在使用前被移除。
转到图2C,根据一个示例,治疗设备可以包括被配置成虚拟地分组在一起以形成一个或多个有效电极的多个电极。在示例性实施例中,治疗设备可以包括多个电极208,这些电极可以分组在一起以形成一个或多个有效电极240a-c。在一个示例中,电极分组240a可以等同于电极222,电极分组240b可以等同于电极224,电极分组240c可以等同于电极226。
将更小的电极分组的好处包括能够具有多个电极,每个电机具有其自己的独立控制的电流源,这允许电流被引导,以提供更好的空间分辨率和靶向能力。也可以将电极做得更大或组合电极,使得例如在一个实施例中,电极1206和1208组合成一个大触点。在一个示例中,两个或更多个电极(208、224、226)的分组可以使用诸如现场可编程门阵列(FPGA)的处理器(诸如FPGA 1112)来完成。
在一个优选实施例中,治疗设备包括耳状组件201,该组件具有多个电极,这些电极被配置成与外耳中和外耳周围的真皮接触。耳状组件201包括以下电极中的至少一个:被配置成接近迷走神经相关神经结构的电极,例如在耳甲艇(也称为the concha of thecymba、concha cymba或cymba)204处,电极222被配置成接近与耳颞神经相关的神经结构;电极224和226,被配置成接近与耳大神经和/或其分支以及枕小神经和/或其分支相关的神经结构。此外,治疗设备包括具有管理软件的脉冲发生器或控制器,用于向用户提供以下至少一项:定制疗法输出;接收疗法递送的确认;以及接收和保存全部刺激日志、诊断和事件。
在一些实施方式中,根据一个示例(图2D),治疗设备250可以包括在一对电极228之间的一个或多个触觉反馈致动器270。在一个方面,一个或多个触觉反馈致动器270可以以重复的模式从第一位置270移动272到第二位置270’。在一个示例中,重复模式可以帮助掩盖由电极刺激所感受到的感觉。在一个方面,一个或多个触觉反馈致动器270可以被配置成隔离或电分离电极228之间的导电分流通路,包括导电凝胶260的部分之间。
在一个方面,耳状组件可以包括耳机和外耳装置,耳机和外耳装置具有被配置成有助于将治疗设备和电极固定到相应的耳朵结构的形状。在示例性实施例中,耳状组件300可以包括具有形状310、320、330的耳机和外耳装置,形状310、320、330被配置成帮助将治疗设备和电极220、222、224、226固定到相应的耳朵结构(参见图3A-图3B)。耳机和外耳装置的成形部分310、320、330、332被配置成与耳朵的结构(302、304、306、308、309)接合,以便于提供治疗的电极的牢固放置。在另一个示例性实施例中,外耳装置400可以具有被配置成有助于固定外耳装置400并允许被支撑的(多个)电极保持与相应耳朵结构接触的结构形状(参见图4A-图4C)。外耳装置400包括第一构件402,该第一构件402在远端肘部406处连接到臂404,该臂404具有第二构件408,该第二构件408被配置成安置在耳朵的突出部和凹口410a-b内。
在一些实施例中,耳状组件可以包括耳屏元件,该耳屏元件被配置成在耳朵的耳屏上延伸或环绕耳屏。在说明性示例中,图3C示出了包括耳屏延伸部342的耳机340。例如,耳屏延伸部342可以被配置成接触耳屏的面向外部的表面。在另一个示例中,耳屏延伸部分342可以是可折叠的,使得它围绕耳屏的表面弯曲。在这种配置中,耳屏延伸部分可以具有面向电极的内表面和面向电极的外表面中的一个或两个。转到图3D,在另一个示例中,耳状组件350包括耳机352,耳机352包括耳屏桥接部分356和外耳装置354。
在一些实施方式中,耳机部件500包括用于覆盖具有电极503a-d(220、222、224、226、228)的PCB层504的皮肤502、由两个元件组成的粘合层、具有与粘合元件508对应的孔506的皮肤粘合剂505,所述粘合元件508被配置用于增强电极503a-d与皮肤的电接口(参见图5A-图5B)。在一些实施例中,粘合元件508可以包括导电水凝胶。在另一个实施例中,水凝胶被注入止痛剂以获得更舒适的刺激。在一个示例中,水凝胶位于柔性PCB上的一个或多个接触表面的顶部。在一个示例中,皮肤502可以由柔性件或材料制成,例如硅树脂。
在一个示例中,柔性PCB 602可以包括抑制电尖峰的电子组件以及识别和/或唯一识别PCB的组件(见图6)。PCB 602上暴露的导电表面612、620、622、624用作将水凝胶508连接到PCB 602的接触点。PCB 602延伸形成电缆状结构604,以将电极220的耳甲艇组件610集成在与迷走神经结构204相关的神经分支附近,而不需要在组装期间焊接和/或连接电极220。在一个实施例中,电缆状结构形成位于耳朵内部部分的锚定结构606。在这个示例中,PCB 602经由细长键连接器630连接到脉冲发生器210。在另一个实施例中,多于一个电极可以位于耳甲艇组件610上。在这种情况下,可以向PCB 602添加额外的组件,以容纳额外的电极,包括PCB 602上的额外迹线。在一个示例中,额外的连接可以沿着电缆状结构604延伸,并且连接器630可以具有额外的触针。在另一个实施例中,可以添加模拟多路复用器来控制和/或引导或重定向刺激脉冲朝向期望的电极和/或电极组。
在一些实施例中,耳机组件500上的电路602由印刷电子器件形成。
在一个示例中,柔性PCB可以封装在保护性覆盖物中,如图7A-图7C所示。保护性覆盖物可以由诸如硅树脂的柔性材料制成。保护性覆盖物可以是具有不同厚度和密度的封装,以便提供触摸的舒适性和对PCB的鲁棒性和保护。封装是用至少一种材料完成的。在一些实施例中,至少使用一个模具和至少一个成型步骤来完成封装。
在一个方面,外耳装置可以包括便于将耳甲艇电极放置到耳朵部分的组件。例如,外耳装置可以被设计成与耳朵的外耳摩擦接合,从而将外耳装置保持在患者耳道外部的外耳中。在示例性实施例中,外耳装置可以包括结构加载组件800,其有助于将耳甲艇电极204摩擦保持在耳朵的部分上(参见图8A-图8B)。诸如弹簧加载之类的压缩加载具有额外的优点,即它是自配合的,允许牢固和舒适地配合不同尺寸的耳朵。所呈现的形状(即ω形状814、816)具有额外的优点,即它可以由金属和非金属材料制成。可以使用金属和/或非金属材料或者金属和非金属材料的组合来制造其他合适的形状,以允许结构加载动作。这些材料例如可以包括形状保持材料或形状记忆材料。在这个示例中,在用例如硅树脂804封装之后的电缆状结构604被布线,使得PCB 602不需要结合锚定结构606。在这种情况下,电缆状结构804穿过手柄状特征810,用户可以利用该手柄状特征来拿组件800并将其放置在用户的耳朵上。
将锚定结构812放置在耳朵中,并且将与迷走神经结构204相关的神经分支附近的电极放置在耳甲艇中。使用耳道外部的锚定结构而不是一部分进入耳道进行放置有三个目的:舒适、功能性(它不阻挡声音)和安全性(使松动部分进入耳道的风险最小)。除了手柄810和锚定结构812之外,组件800具有两个具有结构加载效应的ω形结构814、816,连接结构加载组件814和816的扁平结构802,以及将电极204附接到组件800的扁平结构818。结构加载结构814有助于将组件800的其余部分(即802、816、818、204)向中间引导(即,朝向用户的头部),而结构加载结构816有助于将电极204引导向耳甲艇裂隙(cymba crevice)内侧的头部(即,朝向耳甲艇裂隙的上部)。
在示例性实施例中,外耳装置可以包括压缩加载组件900,其有助于将耳甲艇电极204放置在用户的耳朵上(参见图9A-图9B)。诸如弹簧加载的压缩加载具有额外的优点,即它是自配合的,允许对不同尺寸的耳朵进行牢固和舒适的配合。呈现的形状(即经典弹簧)通常由金属材料制成。可以使用金属材料、非金属材料或金属和非金属材料的组合来制造其它合适的形状,以允许压缩加载动作。这些材料可以包括形状保持或形状记忆材料。在这个示例中,在用例如硅树脂904封装之后的电缆状结构604被布线,使得PCB602不需要结合锚定结构606。在这种情况下,电缆状结构904穿过支架910,支架910可被用户用来拿组件900并将其放置在用户的耳朵上。将锚定结构912放置在耳朵中,将与迷走神经结构相关的神经分支附近的电极204放置在耳甲艇中。使用耳道外部的锚定结构而不是一部分进入耳道进行放置有三个目的:舒适、功能性(它不阻挡声音)和安全性(使松动组件进入耳道的风险最小)。除了手柄910和锚定结构912之外,组件900具有两个弹簧914、916、连接两个弹簧914和916的扁平结构902以及将电极204连接到组件900的扁平结构918。弹簧914有助于将组件900的其余部分(即,902、916、918、204)向中间引导(即,朝向用户的头部),而弹簧916有助于将电极204引导向耳甲艇裂隙内侧的头部(即,朝向耳甲艇裂隙的上部)。在一些实施例中,单根金属丝920被成形为使得形成组件910、912、914、916和918(参见图9C)。在一些实施例中,金属丝被封装到触感舒适且柔性的材料(例如,硅树脂)中。在一些实施例中,支架910更长,例如,它可以桥接整个锚定结构912,以便更有效和舒适地操作。
在一些实施方式中,脉冲发生器210包括电池、被配置成产生与耳廓组件201的电极通信的疗法刺激的电路。在一些实施例中,脉冲发生器包括至少一个天线,该天线被配置成接收编码刺激参数的编程指令。在一个方面,该系统是可充电的,以允许长期使用。
在示例性实施例中,耳状组件201连接到电脉冲发生器210,电脉冲发生器210产生去往耳状组件201上的电极的疗法刺激。在一些实施方式中,脉冲发生器210与患者的耳廓紧密相邻地共位(co-located)。例如,脉冲发生器210可以被设计到类似于头戴式耳机带或耳罩带的头部或后部的头戴式装置中,或者可释放地连接到该头戴式装置。在另一个示例中,脉冲发生器210可以可释放地保持在患者戴的帽子或头巾的口袋中。在其他实施例中,脉冲发生器210放置在用户身体上,例如在锁骨正下方的胸部区域。在另一个实施例中,脉冲发生器210可以夹在用户的衣服上,或者放在用户的裤子口袋中,或者放在专门设计的袋子中。在进一步的实施例中,脉冲发生器被构建在耳状组件201中。
在一些实施例中,脉冲发生器210包括用于用户控制疗法的输入/输出(I/O)接口。例如,I/O接口可以包括用于调整疗法的多个控制器,例如按钮、仪表盘或触摸板。在一些示例中,I/O接口可以包括模式选择、时间长度选择或刺激强度控制中的一个或多个。在进一步的示例中,可以为调整外耳装置的电极和耳机的电极提供单独的控制。
在一些实施例中,可以经由无线通信远程配置脉冲发生器210。在一些实施例中,无线远程设备可以周期性地请求疗法状态,并且在一些实施例中,包括任何改变的状态可以被传送给第三方,例如正在监测应用于用户的疗法的医疗保健提供者。例如,经由脉冲发生器210提供的疗法可以至少部分地使用诸如移动设备、平板电脑或个人计算机的外围设备来控制或调整。例如,模式和/或刺激强度可以由临床用户(例如,医生、护士、职业治疗师等)调整,而刺激的定时(例如,通电和断电和/或时间长度设置)可以经由脉冲发生器210的I/O接口由用户控制。在另一个示例中,对脉冲发生器210的软件更新可以经由无线通信递送。在一些示例中,无线通信可以包括射频(RF)通信(例如,蓝牙)或近场通信(NFC)。无线通信可以经由安装在外围设备上的应用来实现。
在一些实施例中,治疗设备的其他组件可由外围设备配置或者能够与外围设备通信。例如,由治疗设备收集的数据可以被传送到外围设备,并由此经由计算云与诸如医疗保健专业人员和/或医疗保健提供者的第三方交换
转到图10A-图10C,在一些实施方式中,治疗系统可以包括与网络1020和/或一个或多个外围设备1010通信的治疗设备1000。某些外围设备1010还可以实现治疗设备1000与一个或多个第三方之间的通信。外围设备1010的示例包括个人计算机、平板电脑或电话。在一些实施例中,(多个)外围设备1010包括健康监测设备,例如Fitbit、Apple Watch或Garmin智能手表。在一些实施例中,(多个)外围设备1010包括健康监测设备,例如血糖仪、霍尔特监测器、心电图(EKG)监测器或脑电图(EEG)监测器。此外,在一些实施例中,外围设备1010包括可经由网络1020访问的远程服务器、服务器群或云服务。某些外围设备1010可以使用短程无线通信,例如射频(RF)(例如,蓝牙、Wi-Fi、Zigbee等)或近场通信(NFC)直接与治疗设备1000通信。某些外围设备1010可以通过另一个外围设备1010与治疗设备1000通信。例如,使用蓝牙通信,来自治疗装置1000的信息可以经由网络1020(例如,使用Wi-Fi、以太网或蜂窝连接)被转发到云服务。在一些示例中,网络1020可以包括局域网(LAN)、广域网(WAN)、城域网(MAN)或互联网。在一些实施例中,网络是用于以安全(例如,符合HIPAA)的方式在诸如医院的医疗环境中传送信息的临床LAN。
在图10A所示的示例中,治疗设备1000被示出为包括经由连接器连接到脉冲发生器1004的耳状组件1002,并且脉冲发生器1004无线连接到(多个)外围设备1010和/或网络1020。例如,这种配置可以使患者、护理人员或临床用户能够调整设置和/或监测由脉冲发生器1004控制的治疗。例如,在外围设备1010上运行的应用程序可以向用户提供一个或多个可调节的控制,用于调节脉冲发生器1004经由耳状组件1002向患者递送的疗法。此外,由耳状组件1002和/或脉冲发生器1004收集的反馈数据,例如传感器反馈,可以由脉冲发生器1004提供给外围设备1010中的一个或多个。例如,反馈可以包括与被治疗设备1000治疗的患者的症状相关的传感器信号。监测与这些信号相关的传感器度量的临床用户可以使用由应用程序提供的一个或多个可调控件来相应地手动调整疗法的递送。此外,在一些实施方式中,外围设备1010之一可以使用反馈来生成通知,以供患者、护理人员或临床医生查看。例如,该通知可以包括低电量通知、设备移除通知或故障通知。在说明性示例中,治疗设备1000可以监测阻抗测量,从而允许闭环神经刺激。例如,关于移除或故障的通知可以在确定阻抗测量指示治疗设备1000的一个或多个电极与患者耳朵上或周围的组织之间缺乏适当接触时发出。例如,通知可以经由在外围设备1010之一上执行的应用程序递送给患者和/或一个或多个第三方。例如,应用可以在外围设备1010上发出听觉警报、呈现视觉通知或生成触觉输出。此外,在一些实施例中,应用程序可以经由通信手段发出通知,例如向一个或多个授权用户(例如患者、护理人员和/或临床医生)发送电子邮件、文本消息或其他电子消息。
相反地,在一些实施方式中,图10A所示的配置能够通过检查由治疗设备和/或一个或多个外围设备1010(例如,患者使用的健康监测器和/或健康监测器)提供的反馈来自动调整疗法递送。在一个示例中,可经由网络1020访问的云平台可以接收反馈,检查当前度量,并将指令中继到脉冲发生器1004(例如,经由Wi-Fi网络或者间接地经由属于患者的本地便携式设备,例如与治疗设备1000通信的智能电话应用)。在进一步的示例中,脉冲发生器可从一个或多个身体健康监测器和/或健康监测器设备1010收集反馈,分析反馈,并确定是否相应地调整治疗。
转到图10B,在一些实施方式中,还可以使治疗设备1000的耳状组件1002能够与一个或多个外围设备1010进行信息的无线传输。例如,耳状组件1002可以包括短程射频发送器,用于与一个或多个外围设备1010共享传感器数据、警报、错误状况或其他信息。例如,数据可以被收集在嵌入耳状组件1002的小型非暂时性(例如,非易失性)存储区域中。
在其他实施方式中,脉冲发生器210被包括在耳组件1002中,也就是说,它们是共位的,因此不需要延长电缆来连接它们。耳状组件1002和脉冲发生器210可以经由网络1020无线连接到电子设备(例如个人计算机、平板电脑或电话)1010和/或远程服务器1010。反过来,在一些实施例中,电子设备1010也经由网络1020无线连接到远程服务器。
如图10C所示,治疗设备1000的不同通信组件可以与(多个)外围设备1010或网络1020通信。在一些实施方式中,治疗设备1000包括用于与外围设备1010有线通信的至少一个隔离端口1032。在一些示例中,隔离端口1032可以是通用串行总线(USB)连接(例如,迷你USB连接、微型USB连接、USB-C端口等)、以太网端口或串行ATA(SATA)连接器。例如,隔离端口1032可以包括在脉冲发生器1004中,用于更新在脉冲发生器1004上运行的软件版本或者用于重新编程脉冲发生器1004的治疗设置。(多个)隔离端口1032可以连接到通信端口引擎1034,用于实现外围设备1010与治疗设备1000之间经由隔离端口1032的通信。通信端口引擎1034可以将隔离端口1032耦合到一个或多个微处理器1036。例如,通信端口引擎1034可以与(多个)外围设备1010之一建立直接(例如,有线)通信链路,以将数据120从存储器1038传送到外围设备1010。
此外,在一些实施方式中,治疗设备1000中包括无线射频(RF)天线(例如,发送器或发送器/接收器)1040。RF天线1040可以直接或经由网络1020与(多个)外围设备1010进行无线通信。结合用于生成无线通信的处理电路(例如,另一个通信端口引擎1034或(多个)微处理器1036的一部分),RF天线1040可用作广播天线,向治疗设备1000的接收区域中的任何RF接收器提供信息。例如,RF天线1040可以广播传感器数据、传感器度量、警告、警报或其他操作信息,以供一个或多个外围设备1010接收。在其他实现中,结合附加的处理电路,RF天线1040可以与特定的外围设备1010建立无线通信链路。在一些实施例中,无线通信链路是用于与外围设备1010共享患者数据的安全无线通信链路(例如,符合HIPAA)。例如,无线通信链路可用于从外围设备1010接收控制设置,以控制脉冲发生器的功能。
转到图11,根据一个示例,示出了与耳状组件的柔性PCB 1160的组件通信的脉冲发生器1150的组件的示意图1100。多通道脉冲发生器电路1150具有至少一个微控制器或带有至少一个核心的微处理器1110。当存在多个微控制器或多个核心时,例如一个控制无线电1120,而其他(多个)核心专用于控制疗法。在一个实施例中,低功率可编程逻辑电路(例如,FPGA或PLD)1112也是可用的,使得微控制器1110尽可能多地进入低功率模式,同时可编程逻辑电路1112控制疗法递送。
在一些实施例中,逆变器电路1140用于生成双相/双极脉冲。在一些实施例中,每个通道使用一个逆变器电路,而在其他实施例中,针对多个通道使用单个逆变器。在一个实施例中,每个通道靶向不同的解剖区域1148。高电压顺从性(例如>50V,在其它实施例中>70V,又其它实施例中>90V)可用于确保电势上有足够的裕度来产生强度控制1142所需的电流。为了增强安全性,在一些实施例中,存在过电流检测电路1144。在一个实施例中,存在阻抗测量电路1146,使得可以随着时间跟踪阻抗,并且识别电极何时不与皮肤接触或与皮肤接触良好、或者电缆是否断开、或者电极是否已经退化或有缺陷。随着时间监测阻抗提供了额外的优点,即可以跟踪接触电极的状况;从而允许电路在接触电极接近其寿命终点或不再可用时警告用户。
在一些实施例中,诸如USB的隔离端口1118用于对电池充电,并与(多个)微控制器1110通信。通信可以是双向的,使得指令或整个新代码可以上传到(多个)微控制器1110,以及下载存储在存储器1122中的信息。在一些实施例中,存储器1122可以作为外部芯片(CHIP)添加到电路中,而在其他实施例中,存储器1122可以在(多个)微控制器1110的内部。在一些实施例中,FPGA1112也可以具有内部存储器。在一些实施例中,包括外部触发电路1124,使得刺激可以经由外部信号开始和/或停止。在一些实施例中,外部触发信号可以通过隔离端口1118传递;在其他实施例中,可以使用修改的USB配置(即,不使用标准USB引脚配置)来传递触发信号。使用修改的USB配置将强制使用定制的USB电缆,从而确保不会因使用现成的USB电缆而错误地进行外部触发。
在一些实施例中,硬件用户接口用于与电路1126交互。在一个示例中,用户接口可以包括按钮、LED、诸如蜂鸣器的触觉(例如,压电)设备和/或显示器,或者它们的任意组合。
在一些实施例中,外部主时钟1128用于驱动(多个)微控制器1110和/或FPGA1112,在其他实施例中,(多个)时钟可以是内部的或者与(多个)微控制器1110和/或FPGA1112集成或共同封装。在一些实施例中,一个或多个振荡器,在某些情况下包括可调振荡器1114,用于设置脉冲参数,例如频率和/或脉冲宽度。
在一些实施例中,耳状组件1160由薄的柔性PCB或印刷电子器件制成,使得它重量轻并且可以容易地弯曲以适应不同的解剖结构。在一些实施例中,耳状电路1160具有不止一个通道。在一个实施例中,每个通道包括峰值抑制电路1147和电极1148,以接触靶组织位置处的皮肤。在一些实施例中,耳状电路1160包括唯一芯片标识符或唯一ID芯片1149。唯一的ID芯片可用于跟踪使用情况,以及防止其他未经授权的电路连接到多通道脉冲发生器1150。至少一个耳状电路1160连接到多通道脉冲发生器1150。
转向图14A-图14C,公开了用于向患者提供疗法的方法1400。在一些示例中,疗法可包括急性或慢性疼痛、炎症和/或认知困难的治疗。在一个特定的示例中,疗法可以包括减轻戒断症状的治疗。
在一些实施方式中,方法1440包括在第一组织位置提供第一刺激1410,第一刺激1410被配置成刺激第一通路1420以调节至少一种第一内源性肽的第一释放1430。例如,第一内源性肽释放可以是内啡肽和/或脑啡肽释放。用于刺激第一组织位置的靶通路和结构(1420)的示例包括在迷走神经的耳支、枕小神经、耳大神经和弓状核处/上调节活动的那些,例如如图14B所示。例如,第一组织位置可以是由图2A-图2C的外耳装置204的一个或多个电极接触的组织位置。
在一些实施方式中,方法1440包括在第二组织位置提供第二刺激1440,第二刺激1440被配置成刺激第二通路1450以调节第二内源性肽的第二释放1460。例如,第二种内源肽释放可以是强啡肽释放。用于刺激第二组织位置的靶通路和结构的示例包括调节耳颞神经、枕小神经、耳大神经和臂旁核处/上的活动的那些,例如如图14C所示。在一些实施例中,图2B的第一电极220、图4A的第二构件408中的电极、图5B的电极503c、设置在图6的锚定结构606上的电极或图12的电极1202可用于提供第一刺激。
在一些实施例中,提供第一刺激(1410)和提供第二刺激(1440)涉及向第一组织位置和第二组织位置两者提供一系列同时和/或同步的刺激脉冲。可以使用相同或不同的参数施加第一刺激(1410)和第二刺激(1440)中的每一个。在一些示例中,参数可以包括脉冲频率(例如,低、中或高)和/或脉冲宽度。此外,参数可以指示用于产生双相脉冲的电极对。在第一说明性示例中,可以使用低频施加第一刺激,而使用中频施加第二刺激。相反,在第二说明性示例中,可以使用中频施加第一刺激,而使用低频施加第二刺激。取决于患者和所治疗的疾病,低频、中频和高频刺激的其他组合也是可能的。
在其他实施例中,方法1400包括基于从脉冲发生器或与脉冲发生器通信的另一计算设备接收的反馈自动调整疗法的递送(例如,调整一个或多个参数)。在一些示例中,反馈可以包括由治疗设备和/或一个或多个外围设备(例如,患者使用的身体健康监测器和/或健康监测器、临床环境中的医疗设备等)提供的传感器反馈。
图14D示出了用于提供如关于图14A所述的疗法的示例方法1402的流程图。在一些实施方式中,方法1402包括提供第一刺激1410,使得下丘脑弓状核(ARC)处的神经活动被调节(1422),使得其刺激中脑导水管周围灰质区(PAG)(1470),用于调节脑啡肽和/或内啡肽的第一释放(1480)。在一些实施方式中,方法1402包括提供第二刺激1440,使得臂旁核(PbN)(1452)处的神经活动被调节,使得其还刺激中脑导水管周围灰质区(PAG)(1470),用于调节强啡肽(1482)的第二释放。
转向图14E,示出了用于提供疗法以增加支气管顺应性的示例方法1401的流程图。例如,方法1401的疗法可以促进支气管扩张,从而降低气道阻力。此外,方法1401的疗法可以增加肺部的氧气运输可用性,增加更多氧气被吸收到血液中的可能性。在一些示例中,方法1401可应用于对抗COPD症状和/或由病毒或细菌感染产生的症状。在一些示例中,病毒感染可以包括SARS、MERS或COVID-19。例如,方法1401可以至少部分地由脉冲发生器执行,例如图2A和图2B的脉冲发生器210、图10A的脉冲发生器1004或图11的脉冲发生器1150。
在一些实施方式中,方法1401开始于在第一组织位置提供第一刺激1402,该第一刺激1402被配置成刺激自主肺通路1406以调节支气管顺应性1408。用于刺激第一组织位置的靶通路和结构的示例包括在迷走神经的耳支、枕小神经、耳大神经和/或疑核处/上调节活动的那些。例如,通路可以包括图1F所示的通路的一部分。例如,第一组织位置可以包括由耳状刺激设备的耳内组件接触的耳朵结构的表面。在一些实施例中,图2B的第一电极220、图4A的第二构件408中的电极、图5B的电极503c、设置在图6的锚定结构606上的电极或图12的电极1202可用于提供第一刺激。在另一个示例中,第一组织位置可以是由图2E的耳屏附件282接触的组织位置。在一些实施例中,第一刺激1402被提供给多个组织位置。例如,第一刺激1402可被施加到第一组织位置,包括由耳状刺激设备的耳内组件接触的耳朵结构的表面,以及耳朵的耳屏上的第二组织位置(例如,由耳屏附件282接触的)。
在一些实施方式中,根据一个示例,调节支气管顺应性1408包括调节NTS处的活动,从而影响LC、PAG和/或NRM处的活动,这又调节NA中的活动,使得气道中的平滑肌张力被修改。
在一些实施方式中,方法1401包括在第二组织位置提供第二刺激1404,该第二刺激1404被配置成刺激自主肺通路1406以调节支气管顺应性1408。用于刺激第二组织位置的靶通路和结构的示例包括调节耳颞神经、枕小神经和/或耳大神经处和/或上的活动的那些。例如,通路可以包括图1F所示的通路的一部分。第二组织位置例如可以是由图2A-图2C的耳机202的电极222、224和/或226中的一个或多个接触的组织位置。
在一些实施例中,提供第一刺激(1402)和提供第二刺激(1404)涉及向第一组织位置和第二组织位置两者提供一系列同时和/或同步的刺激脉冲。可以使用相同或不同的参数施加第一刺激(1402)和第二刺激(1404)中的每一个。在一些示例中,参数可以包括脉冲频率(例如,低、中或高)和/或脉冲宽度。此外,参数可以指示用于产生双相脉冲的电极对。在第一说明性示例中,可以使用低频施加第一刺激,而使用中频施加第二刺激。相反,在第二说明性示例中,可以使用中频施加第一刺激,而使用低频施加第二刺激。根据患者和所治疗的疾病,低频、中频和高频刺激的其他组合也是可能的。
在其他实施例中,方法1401包括基于从脉冲发生器或与脉冲发生器通信的另一计算设备接收的反馈自动调整疗法的递送(例如,调整一个或多个参数)。在一些示例中,反馈可以包括血氧浓度、呼吸速率、呼吸变化和/或潮气量。
转到图14F,示出了示例方法1490的流程图,用于提供疗法以减少一个或多个靶器官中的全身性促炎过程和/或促炎过程。例如,靶器官可以包括脾、肺、肠和心脏。在一些示例中,方法1490可应用于对抗由COPD产生的和/或由病毒或细菌感染产生的症状。在一些示例中,病毒感染可以包括SARS、MERS或COVID-19。例如,方法1490可以至少部分地由脉冲发生器执行,例如图2A和图2B的脉冲发生器210、图10A的脉冲发生器1004或图11的脉冲发生器1150。
在一些实施方式中,方法1490开始于在第一组织位置提供第一刺激1492,该第一刺激1492被配置成刺激抗炎通路1496,以减少一个或多个靶器官中的全身性促炎过程和/或促炎过程1498。例如,通路可以包括图1G所示的通路的一部分。例如,第一组织位置可以包括由耳状刺激设备的耳内组件接触的耳朵结构的表面。在一些实施例中,图2B的第一电极220、图4A的第二构件408中的电极、图5B的电极503c、设置在图6的锚定结构606上的电极或图12的电极1202可用于提供第一刺激。在另一个示例中,第一组织位置可以是由图2E的耳屏附件282接触的组织位置。在一些实施例中,第一刺激1402被提供给多个组织位置。例如,第一刺激1402可被施加到第一组织位置,包括由耳状刺激设备的耳内组件接触的耳朵结构的表面,以及耳朵的耳屏上的第二组织位置(例如,由耳屏附件282接触的)。
在一些实施方式中,减少一个或多个靶器官中的全身性促炎过程和/或促炎过程1498涉及调节图1G的抗炎通路的至少一部分,使得NTS处的活动被调节,影响通过腹腔神经节和副交感神经节的传出通路的活动,这又调节脾、肺、肠和/或心脏中的活动,从而引发抗炎反应。
在一些实施方式中,方法1490包括在第二组织位置提供第二刺激1494,该第二刺激1494被配置成刺激抗炎通路1496,以减少一个或多个靶器官中的全身性促炎过程和/或促炎过程1498。用于刺激第二组织位置的靶通路和结构的示例包括调节耳颞神经、枕小神经和/或耳大神经处和/或上的活动的那些。例如,通路可以包括图1G所示的通路的一部分。第二组织位置例如可以是由图2A-图2C的耳机202的电极222、224和/或226中的一个或多个接触的组织位置。
在一些实施例中,提供第一刺激(1492)和提供第二刺激(1494)涉及向第一组织位置和第二组织位置两者提供一系列同时和/或同步的刺激脉冲。可以使用相同或不同的参数施加第一刺激(1492)和第二刺激(1494)中的每一个。在一些示例中,参数可以包括脉冲频率(例如,低、中或高)或脉冲宽度。此外,参数可以指示用于产生双相脉冲的电极对。在第一说明性示例中,可以使用低频施加第一刺激,而使用中频施加第二刺激。相反,在第二说明性示例中,可以使用中频施加第一刺激,而使用低频施加第二刺激。根据患者和所治疗的疾病,低频、中频和高频刺激的其他组合也是可能的。
在其他实施例中,方法1490包括基于从脉冲发生器或与脉冲发生器通信的另一计算设备接收的反馈自动调整疗法的递送((例如,调整一个或多个参数)。在一些示例中,反馈可以包括血氧浓度、呼吸速率、呼吸变化和/或潮气量。
在进一步的实施例中,方法1401和1490的组合可用于增加支气管顺应性1408,同时还减少一个或多个靶器官中的全身性促炎过程和/或促炎过程1498。例如,方法1401的第一刺激1402可以与方法1490的第二刺激1492同步或同时递送,反之亦然。在另一个示例中,可以针对第一时间段递送包括第一刺激1402和第二刺激1404的方法1401的疗法,可以针对第二时间段递送包括第一刺激1492和第二刺激1494的方法1490的疗法。组合的方法可以重复第一时间段和第二时间段的多个周期。基于反馈,可以调整第一时间段和第二时间段中的一者或者两者的长度,从而以有效的方式增加支气管顺应性1408并减少一个或多个靶器官中的全身性促炎过程和/或促炎过程1498。
在一个方面,刺激使用双极刺激以局部方式靶向特定的神经靶。在一个方面,该系统可以根据个人用户的需要被编程用于最佳疗法,包括定制的刺激频率、定制的脉冲宽度、定制的神经刺激强度(振幅)、独立控制的刺激通道。在一些实施方式中,治疗被配置成减轻包括急性和/或慢性疼痛的戒断症状。在一个方面,疼痛控制归因于阿片相关系统中内啡肽、脑啡肽和/或强啡肽输出的调节。在一个示例中,可以在手术期间和/或手术后提供治疗,以减少对包括阿片在内的止痛药的依赖性,直至完全不需要药物。
转到图12,根据一个示例,示出了用于提供疗法的耳状组件1200和等效电路1210a-b的电极配置。根据一个示例,耳状组件1200被示为具有电极1202(220)、1204(222)、1206(224)和1208(226),电极1202(220)、1204(222)、1206(224)和1208(226)被配置成形成对应的电路1210a-b。在一个示例中,等效电路1210a由电极1202和电极1206形成,电极1202和电极1206被配置成刺激组织部分1220。在该示例中,组织部分1220被配置成靶向被迷走神经的耳支的分支削弱(enervate)的耳甲艇状区域和被耳大神经的分支和枕小神经的分支削弱的耳朵后部的区域。在一个示例中,等效电路1210b由电极1204和电极1208形成,电极1204和电极1208被配置成刺激组织部分1222。在该示例中,组织部分1222被配置成靶向被耳颞神经削弱的耳喙部区域(the region rostral to the ear)以及被耳大神经的分支和枕小神经的分支削弱的耳朵后部的区域。
在一个示例中,组织部分1220可以是以大约5Hz刺激的外耳。在一个示例中,组织部分1220可以是以大约100Hz刺激的三叉神经。
在一个示例中,等效电路1210a由第一通道激励,等效电路1210b由第二通道激励。
图13是时序图1300的图,示出了根据一个示例使用主时钟1302触发多个通道1304、1306。在示例性实施例中,时钟1302以预定的时钟频率触发脉冲1304。在一个示例中,第一通道1304可以被配置成触发等效电路1210a的刺激1310a-b,并且第二通道1306可以被配置成触发等效电路1210b的刺激1312a-b。在一个示例中,触发可以颠倒,其中等效电路1210b在等效电路1210a之前被触发。
在一个示例中,刺激1310a被配置成由主时钟的每个脉冲触发;即1比1的比例。在一个示例中,刺激1310b被配置成在刺激1310a中的脉冲结束之后的特定时间间隔之后被触发。在一个示例中,刺激1312b被配置成每两个主时钟脉冲触发一次;即与主时钟的比率为2比1。然而,刺激1312b的触发发生在主时钟脉冲1314之后的特定时间延迟之后。在一个示例中,刺激1312a被配置成在刺激1312b中的脉冲结束之后的特定时间间隔之后被触发。在一个示例中,刺激1310a被刺激1312a偏移同步延迟1314。在一个示例中,同步延迟1314优选为2ms,并且可以小到零(使得两个通道根据每个通道的主时钟比率同时触发),并且可以大到主时钟周期减去刺激1312b和1312a的组合持续时间加上它们之间的时间间隔。在一些实施例中,该延迟可以达到10ms。
在一些实施方式中,使用主时钟计数器和每个通道的寄存器来同步等效电路。通过将每个寄存器设置为触发相应通道的多个主时钟脉冲,每个通道被配置成当通道寄存器值等于主时钟脉冲时被触发。随后,每个通道的计数器在该通道被触发后复位。在一个示例中,使用6比特计数器和6比特寄存器,触发频率可以与主时钟频率一样高(1:1)并且与时钟频率的1/64一样低(64:1)。
刺激递送可以基于由治疗设备提供的疗法而变化。例如,可以为一个或多个(如果不是全部的话)递送刺激的电极调整频率和/或脉冲宽度参数。在一些实施例中,在疗法期间调节频率和/或脉冲宽度参数,例如响应于从监测患者接收的反馈(例如,使用一个或多个传感器或其他设备)。在一些示例中,刺激频率可以包括在大约1至30Hz范围内的第一频率或低频,在大约30至70Hz范围内的第二频率或中频,和/或在大约70至150Hz范围内的第三频率或高频。在一些实施例中,刺激脉冲以模式递送。模式中的单个脉冲可以在频率和/或脉冲宽度上变化。模式可以在刺激周期中重复。
在一个实施例中,刺激模式使得刺激频率在所有电极中不相同。在一个实施例中,刺激频率在2Hz到100Hz之间变化,使得不同的内源性产生的阿片受体激动剂被释放(例如,μ、δ、κ、伤害感受阿片受体激动剂)。在又一个实施例中,脉冲宽度可以在20和1000微秒之间调整,以进一步允许疗法定制。
在一些实施例中,在不同的电极处使用不同的刺激频率。在图示中,可以在耳甲艇电极(例如,204)、耳颞电极(例如,222)和/或大耳神经和小枕神经电极(例如,224,226)处使用高、中、低频率的不同组合。例如,可以在诸如耳甲艇电极204的耳内电极处使用1至30Hz之间的第一频率或低频,或者具体是1至5Hz、5至10Hz、10至15Hz、15至20Hz、20至25Hz、25至30Hz中的一个或多个,而在耳颞电极处使用70至150Hz之间的第二频率或高频,或者具体是70至75Hz、75至80赫兹、80至85赫兹、85至90赫兹、90至95赫兹、95至100赫兹、100至105赫兹、105至110赫兹、110至115赫兹、115至120赫兹、120至125赫兹、125至130赫兹、130至135赫兹、135至140赫兹、140至145赫兹、145至150赫兹中的一个或多个。在另一个示例中,在一个或多个电极处可以使用30至70Hz之间的第三频率或中频,或者具体是30至35Hz、35至40Hz、40至45Hz、45至50Hz、50至55Hz或55至60Hz或60至65Hz或65至70Hz中的一个或多个。在又一示例中,可以在诸如耳甲艇电极204的耳内电极处使用一个或多个低频或中频,而在诸如耳颞电极222的接触耳朵周围组织的电极处使用一个或多个高频。在其他示例中,可以在诸如耳甲艇电极204的耳内电极处使用高频,而在诸如耳颞电极222的接触耳朵周围组织的电极处使用低频。
在每个电极处可以使用不同的脉冲宽度组合。在一些示例中,脉冲宽度可以在以下一个或多个的范围内:第一或短脉冲宽度在大约10至50微秒的范围内,或更具体地在10至20微秒、20至30微秒、30至40微秒、40至50微秒之间;第二或低中脉冲宽度在约50至250微秒范围内,或更具体地在50至70微秒、70至90微秒、90至110微秒、110至130微秒、130至150微秒、150至170微秒、170至190微秒、190至210微秒、210至230微秒或230至250微秒之间;第三或高中脉冲宽度在大约250至550微秒的范围内,或更具体地在250至270微秒、270至290微秒、290至310微秒、310至330微秒、330至350微秒、350至370微秒、370至390微秒、390至410微秒、410至430微秒、430至450微秒、450至470微秒、450至470微秒、470至490微秒、490至510微秒、510至530微秒或530至550微秒;和/或第四或长脉冲宽度在大约550至1000微秒范围内的,或更具体地在550至600微秒、600至650微秒、650至700微秒、700至750微秒、750至800微秒、800至850微秒、850至900微秒、900至950微秒或950至1000微秒之间。不同的实施例可以在一个或多个电极(例如,电极204、222、224、226、230、282)处使用不同范围的脉冲宽度。
在又一个实施例中,可以在一个或多个电极(例如,204、222、224、226、230、282)处使用可变频率(即,刺激非恒定频率)。可变频率可以是扫描,和/或围绕中心频率(例如,5Hz+/-1.5Hz,或100Hz+/-10Hz)的随机/伪随机频率可变性。
在一个实施例中,耳状组件(例如,201、600)由单个柔性板和/或包含电子组件的印刷电子器件制成,以唯一地识别它,并且此外抵消由连接电缆产生的任何电感。该柔性电子电路被包覆模制到皮肤502上,允许在皮肤上有开口,以允许与皮肤接触电极503的后(back)部直接接触。该耳状组件201、600重量轻且非常柔韧,允许其容易地符合由使用者的解剖结构变化所呈现的不同形状。在一个实施例中,模制的耳状组件不是均质的,在不同的位置处改变密度和弹性/柔性,使得例如围绕耳朵的部分比耳朵上的部分更柔性。
在其他实施例中,柔性电子电路600覆盖有柔性材料,例如闭孔泡沫。
在一个实施例中,皮肤接触电极可以由例如3层制成,第一层是医用级双面导电胶带,第二层是用于机械鲁棒性和均匀电场分布的导电柔性金属和/或织物网,第三层是自粘性水凝胶。双层版本也是可能的,其中通过第一层实现机械鲁棒性和均匀的电场分两者,使得不需要三层电极中描述的第二层。
在另一个实施例中,PCB电极503被制成使得它们覆盖与皮肤接触水凝胶电极相似的表面积;使得在水凝胶上实现均匀的电场分布,而不需要任何额外的导电层。
在一个方面,该系统可以记录总的疗法递送,因此护理人员/临床医生可以测量依从性。在一个实施例中,如果设备已经停止递送疗法,管理软件通知穿戴者、护理者、临床医生。在一个示例中,管理软件可以被配置成报告与使用、事件、日志、错误和设备健康状态相关的数据。在一个方面,该系统可以提供使用报告。在一个方面,该系统可以具有唯一可识别的耳状组件201,其可以用于识别用户和报告的数据。在一个示例中,设备健康状态可以报告电极、导电水凝胶和/或止痛剂的状况。
在示例性实施例中,系统利用反馈来监测和/或修改疗法。反馈可以从一个或多个传感器获得,该传感器能够监测由疗法治疗的一个或多个症状。例如,在一种或多种症状减少或消除时,可以类似地减少或停止疗法输出。相反,在一种或多种症状增加或添加时,可以类似地激活或调整(增加、扩展等)治疗输出。在一些示例中,传感器可以监测一个或多个皮肤电活动(例如,出汗)、运动活动(例如,震颤、生理运动)、葡萄糖水平、神经活动(例如,经由EEG)、和/或心肺活动(例如,EKG、心率、血压(收缩压、舒张压和平均值))。诸如MRI和fMRI的成像技术可用于在临床环境中为给定用户调整疗法。在其他实施例中,使用例如普通蜂窝电话和/或智能眼镜对瞳孔变化(例如,瞳孔扩张)进行成像可以用于提供反馈以进行疗法调整。在一些实施方式中,一个或多个传感器被集成到耳机和/或外耳装置中。在一些实施方式中,一个或多个传感器被集成到脉冲发生器中。例如,可以通过提示穿戴者触摸系统上的一个或多个电极(例如,构建在脉冲发生器的表面中的电极)或者以其他方式与脉冲发生器交互(例如,握住脉冲发生器远离身体,以使用脉冲发生器中的运动检测器来监测震颤)来实现周期性监测。在进一步的实施方式中,一个或多个传感器输出可以从外部设备获得,例如身体健康计算机、智能手表或可穿戴健康监测器。
所使用的监测可以部分基于治疗环境。例如,在医院环境中更容易进行EEG监测,而心率监测可以通过内置于耳机中的诸如脉搏计之类的传感器或者内置于诸如身体健康监测设备或智能手表之类的低预算健康监测设备中的另一个传感器来实现。
在说明性的示例中,与皮肤电活动相关的反馈可以用于监测和检测症状和/或疗法结果的速度或时序。在一个示例中,皮肤电活动可以由耳状组件201上的电极来感测。在另一个示例中,皮肤电活动可以由身体的另一部分上的电极检测,并传送到系统。
在一些实施方式中,该系统还可以包括一个或多个运动检测器,例如加速度计或陀螺仪,其可以用于收集信息以调节疗法。在一个示例中,一个或多个运动检测器被配置成检测震颤和/或生理运动。在一个方面,震颤和/或生理运动可以指示潜在病症和对潜在病症的治疗中的至少一种。在一个示例中,震颤和/或生理运动可以指示与药物戒断相关的症状。在一个方面,来自葡萄糖监测的反馈可用于调节疗法。
在其他实施方式中,EKG可用于评估心率和心率变异性,以确定一般自主神经系统的活动和/或自主神经系统的交感神经和副交感神经分支的相对活动,并调节治疗。自主神经活动可以指示与药物戒断相关的症状。在一个方面,治疗设备可用于提供治疗心脏疾病如心房纤维性颤动和心力衰竭的疗法。在一个示例中,可以提供用于调节自主神经系统的疗法。在一些实施方式中,治疗设备可用于提供治疗,以平衡自主神经系统、副交感神经系统和交感神经系统的任何组合之间的比率。
在一个方面,系统可以监测允许闭环神经刺激的阻抗测量。在一个示例中,如果疗法没有被充分递送并且如果治疗设备被移除,则监测反馈可以用于警告患者/护理者。
转到图15,示出了根据一个示例使用所提出的系统收集的数据的图表1500。从正在用所提出的疗法进行治疗的两个受试者1502a、1502b收集随时间变化的临床阿片戒断评分(COWS)。疗法包括在耳甲艇电极204和电极224之间使用低频(5Hz),在耳颞电极222和电极226之间使用高频(100Hz)。如图所示,COWS分数随着时间显著下降1504,特别是在最初的30-60分钟内。
已经对表示根据本公开的实现的方法和系统的图示做出了参考。其方面可以通过计算机程序指令来实现。这些计算机程序指令可以被提供给通用计算机、专用计算机或其他可编程数据处理设备的处理器,以产生机器,使得经由计算机或其他可编程数据处理设备的处理器执行的指令创建用于实现图示中指定的功能/操作的部件。
可以利用一个或多个处理器来实现本文描述的各种功能和/或算法。此外,本文描述的任何功能和/或算法可以在一个或多个虚拟处理器上执行,例如在一个或多个物理计算系统上,诸如计算机群或云驱动器。
本公开的各方面可以由硬件逻辑来实现(其中硬件逻辑自然也包括任何必要的信号布线、存储器元件等),除了初始系统配置和任何后续系统重新配置之外,这种硬件逻辑能够在没有活动软件参与的情况下操作。硬件逻辑可以在可重新编程的计算芯片上合成,计算芯片例如是现场可编程门阵列(FPGA)、可编程逻辑器件(PLD)或其他可重新配置的逻辑器件。此外,硬件逻辑可以被硬编码到定制的微芯片上,例如专用集成电路(ASIC)。在其他实施例中,作为指令存储到诸如存储器设备、片上集成存储器单元或其他非暂时性计算机可读存储器的非暂时性计算机可读介质的软件可以用于执行本文描述的功能的至少一部分。
本文公开的实施例的各个方面在一个或多个计算设备上执行,例如膝上型计算机、平板计算机、移动电话或其他手持计算设备,或者一个或多个服务器。这种计算设备包括包含在一个或多个处理器或逻辑芯片中体现的处理电路,例如中央处理单元(CPU)、图形处理单元(GPU)、现场可编程门阵列(FPGA)、专用集成电路(ASIC)或可编程逻辑器件(PLD)。此外,处理电路可以被实现为协同工作(例如,并行)的多个处理器,以执行上述发明过程的指令。
用于执行本文导出的各种方法和算法的过程数据和指令可以存储在非暂时性(即,非易失性)计算机可读介质或存储器中。所要求的进步不受存储本发明过程的指令的计算机可读介质的形式的限制。例如,指令可以存储在CD、DVD、闪存、RAM、ROM、PROM、EPROM、EEPROM、硬盘或计算设备与之通信的任何其他信息处理设备中,例如服务器或计算机。处理电路和存储的指令可以使图2A-图2C的脉冲发生器210、图10A-图10C的脉冲发生器1004或图11的脉冲发生器1150执行上述各种方法和算法。此外,处理电路和存储的指令可以使图10A-图10C的(多个)外围设备1010能够执行上述各种方法和算法。
这些计算机程序指令可以指导计算设备或其他可编程数据处理装置以特定方式运行,使得存储在计算机可读介质中的指令产生包括指令部件的制造品,该指令部件实现所示出的处理流程中指定的功能/操作。
本描述的实施例依赖于网络通信。可以理解,该网络可以是公共网络,例如因特网,或者是专用网络,例如局域网(LAN)或广域网(WAN)网络,或者是它们的任意组合,并且还可以包括PSTN或ISDN子网。网络也可以是有线的,例如以太网,和/或可以是无线的,例如包括EDGE、3G、4G和5G无线蜂窝系统的蜂窝网络。无线网络还可以包括Wi-Fi、蓝牙、Zigbee或另一种无线通信形式。该网络例如可以是关于图10A-图10C描述的网络1020。
在一些实施例中,诸如图10A-图10C的(多个)外围设备1010之类的计算设备还包括用于与诸如内置显示器或LCD监测器之类的显示器接口的显示控制器。计算设备的通用I/O接口可以与键盘、手操纵的移动跟踪I/O设备(例如,鼠标、虚拟现实手套、轨迹球、操纵杆等)接口,和/或与在显示器上或与显示器分离的触摸屏面板或触摸板接口。
在一些实施例中,在计算设备中还提供了声音控制器,诸如图10A-图10C的(多个)外围设备1010,以与扬声器/麦克风接口,从而提供音频输入和输出。
此外,本公开不限于本文描述的特定电路元件,本公开也不限于这些元件的特定尺寸和分类。例如,本领域技术人员将会理解,本文描述的电路可以基于电池尺寸和化学性质的变化或者基于要供电的预期备用负载的要求而进行调整。
本文描述的某些功能和特征也可以由系统的各种分布式组件来执行。例如,一个或多个处理器可以执行这些系统功能,其中这些处理器分布在诸如图10A-图10C的网络1020的网络中通信的多个组件上。除了各种人机接口和通信设备(例如,显示监测器、智能电话、平板电脑、个人数字助理(PDA))之外,分布式组件可以包括一个或多个可以共享处理的客户端和服务器机器。网络可以是诸如LAN或WAN的专用网络,或者可以是诸如因特网的公共网络。对系统的输入可以经由直接的用户输入接收,并且可以实时地或者作为批处理远程接收。
尽管针对上下文提供,但是在其他实现中,本文描述的方法和逻辑流程可以在与所描述的模块或硬件不同的模块或硬件上执行。因此,其他实现也在要求保护的范围内。
在一些实施方式中,诸如Google Cloud PlatformTM之类的云计算环境可以用于执行上面详述的方法或算法的至少一部分。与本文描述的方法相关联的过程可以在数据中心的计算处理器上执行。例如,数据中心还可以包括应用处理器,该应用处理器可以用作与本文描述的系统的接口,以接收数据并输出对应的信息。云计算环境还可以包括一个或多个数据库或其他数据存储,例如云存储和查询数据库。在一些实施方式中,云存储数据库,例如谷歌云存储,可以存储由本文描述的系统提供的已处理和未处理的数据。
本文描述的系统可以通过安全网关与云计算环境通信。在一些实施方式中,安全网关包括数据库查询接口,例如Google BigQuery平台。
虽然已经描述了某些实施例,但是这些实施例仅通过示例的方式呈现,并且不旨在限制本公开的范围。实际上,本文描述的新颖方法、装置和系统可以以各种其他形式来体现;此外,在不脱离本公开的精神的情况下,可以对本文描述的方法、装置和系统的形式进行各种省略、替换和改变。所附权利要求及其等同物旨在覆盖落入本公开的范围和精神内的这些形式或修改。
Claims (44)
1.一种使用对患者的耳朵的区域中的神经结构的经皮刺激来减少肺部炎症和/或增加支气管顺应性的系统,所述系统包括:
耳状刺激设备,包括
包括第一电极的耳内组件,其中
所述耳内组件的形状用于保持在所述耳朵的一个或多个结构中,所述耳朵的一个或多个结构包括所述耳朵的空腔,并且
所述第一电极设置在所述耳内组件的表面上,用于与迷走神经相关神经结构附近的组织非穿刺接触,
包括第二电极的耳机组件,其中
所述耳机组件的形状用于放置在所述患者的耳廓周围,
所述耳机组件与所述耳内组件电通信,并且
所述第二电极设置在所述耳机组件的表面上,用于与与耳颞神经相关的神经结构附近的组织非穿刺接触;以及
经由连接器与所述耳机组件电通信的脉冲发生器,其中所述脉冲发生器被配置成控制经由所述耳状刺激设备的经皮刺激疗法的递送,以减少肺部炎症和/或增加支气管顺应性,所述疗法包括
向所述耳机组件的所述第二电极递送第一刺激脉冲系列,用于刺激耳颞神经、枕小神经和耳大神经中的至少一个,以及
向所述耳内组件的所述第一电极递送第二刺激脉冲系列,用于刺激迷走神经相关的神经结构。
2.根据权利要求1所述的系统,其中:
所述第一刺激脉冲系列以高频递送;以及
所述第二刺激脉冲系列以低频递送。
3.根据权利要求1所述的系统,其中:
所述第一刺激脉冲系列以低到中频递送;以及
所述第二刺激脉冲系列以低到中频递送。
4.根据权利要求1所述的系统,其中:
所述第一刺激脉冲系列以低到中频递送;以及
所述第二刺激脉冲系列以中到高频递送。
5.根据权利要求1所述的系统,其中:
所述第一刺激脉冲系列以中到高频递送;以及
所述第二刺激脉冲系列以低到中频递送。
6.根据权利要求1所述的系统,其中:
所述第一刺激脉冲系列以中到高频递送;以及
所述第二刺激脉冲系列以中到高频递送。
7.根据权利要求1所述的系统,其中,所述脉冲发生器被配置成响应于i)反馈和/或ii)一个或多个控制信号来自动调整所述经皮刺激疗法的递送,其中
所述一个或多个控制信号由a)与所述脉冲发生器通信的单独的计算设备提供,或者b)经由所述脉冲发生器的用户界面提供。
8.根据权利要求7所述的系统,其中,根据所述反馈来调整所述经皮刺激疗法的递送,其中:
所述反馈由所述脉冲发生器或所述单独的计算设备接收;以及
所述反馈的形式是监测EKG、EEG或血压中的至少一种,以检测与支气管炎症相关的一种或多种症状的变化。
9.根据权利要求1所述的系统,其中,所述肺部炎症由病毒感染或细菌感染引起。
10.根据权利要求9所述的系统,其中,所述病毒感染是COVID-19。
11.根据权利要求9所述的系统,其中,所述病毒感染是严重急性呼吸综合征(SARS)。
12.根据权利要求9所述的系统,其中,所述病毒感染是中东呼吸综合征冠状病毒(MERS)。
13.根据权利要求1所述的系统,其中,所述肺部炎症是慢性阻塞性肺病(COPD)。
14.根据权利要求1所述的系统,其中,所述耳内组件摩擦地保持在所述耳朵的所述一个或多个结构中。
15.根据权利要求1所述的系统,其中,所述耳机组件粘附地保持在所述耳廓周围。
16.一种使用对患者的耳朵的区域中的神经结构的经皮刺激来减少肺部炎症和/或增加支气管顺应性的系统,所述系统包括:
耳状刺激设备,包括
包括第一电极的耳内组件,其中
所述第一电极设置在所述耳内组件的表面上,用于与所述耳朵的外耳、空腔或耳屏区域中的至少一个中的第一一个或多个神经结构集合附近的组织非穿刺接触,并且
包括第二电极的耳机组件,其中
所述耳机组件的形状用于放置在所述患者的耳廓周围,
所述耳机组件与所述耳内组件电通信,并且
所述第二电极设置在所述耳机组件的表面上,用于与接近第二一个或多个神经结构集合的组织非穿刺接触;以及
经由连接器与所述耳机组件电通信的脉冲发生器,其中所述脉冲发生器被配置成控制经由所述耳状刺激设备的经皮刺激疗法的递送,以减少肺部炎症和/或增加支气管顺应性,所述疗法包括
向所述耳内组件的所述第一电极递送第一刺激脉冲系列,用于刺激所述第一一个或多个神经结构集合,以及
向所述耳机组件的所述第二电极递送第二刺激脉冲系列,用于刺激所述第二一个或多个神经结构集合。
17.根据权利要求16所述的系统,其中,所述第一刺激脉冲系列或第二刺激脉冲系列中的一个被配置成减少肺部炎症,并且所述第一刺激脉冲系列或第二刺激脉冲系列中的另一个被配置成增加支气管顺应性。
18.根据权利要求16所述的系统,其中:
所述第一一个或多个神经结构集合包括迷走神经的至少一个分支;以及
所述第二一个或多个神经结构集合包括耳颞神经、枕小神经和耳大神经之一的至少一个分支。
19.根据权利要求16所述的系统,其中,所述脉冲发生器被配置成使所述第一刺激脉冲系列的递送与所述第二刺激脉冲系列的递送同步。
20.根据权利要求16所述的系统,其中,减少肺部炎症包括减少肺中的促炎过程。
21.一种用于提供经皮刺激以诱导肽的内源性释放的可穿戴治疗系统,所述治疗系统包括:
用于放置在患者的耳朵的耳道外部的外耳装置,包括第一电极,所述第一电极被配置成与所述患者的耳朵的迷走神经相关神经结构接触,其中
所述外耳装置被配置成至少部分地通过与所述耳朵的外耳的摩擦接合而被保持;
第一连接器;
用于放置在所述患者的耳朵周围的耳机,所述耳机由所述第一连接器连接到所述外耳装置,所述耳机包括
绝缘电子层,包括
第二电极,被配置成与与耳颞神经相关的神经结构接触,以及
至少另一个电极,被配置成与与耳大神经和/或耳大神经的分支和/或枕小神经和/或枕小神经的分支中的至少一个相关的神经结构接触;
第二连接器;以及
被配置成由所述第二连接器连接到所述耳机的脉冲发生器,所述脉冲发生器包括电路,所述电路经由所述第一连接器与所述外耳装置的所述第一电极电通信,并且经由所述第二连接器与所述耳机的所述第二电极和所述至少另一个电极电通信,其中
所述电路被配置成提供疗法,所述疗法通过经由所述第一电极、所述第二电极和所述至少另一个电极对所述患者的耳朵和/或耳朵周围的电刺激脉冲来诱导肽的内源性释放;
其中所述外耳装置和所述耳机被设计用于牢固地放置所述第一电极、所述第二电极和所述至少另一个电极,而不穿刺所述耳朵上和所述耳朵周围的皮肤真皮层。
22.根据权利要求21所述的治疗系统,还包括外围设备,所述外围设备被配置成与所述脉冲发生器通信,并且被配置成修改由所述脉冲发生器向所述第一电极、所述第二电极和所述至少另一个电极中的至少一个电极提供的疗法的刺激参数。
23.根据权利要求21所述的治疗系统,其中,所述脉冲发生器包括用于控制所述疗法的递送的低功率现场可编程门阵列。
24.根据权利要求22所述的治疗系统,其中,所述刺激参数被配置成使得所述电路同步递送至所述外耳装置的所述第一电极和所述耳机的所述第二电极的电刺激脉冲中的至少一部分,以平衡a)自主神经系统和副交感神经系统,b)自主神经系统和交感神经系统,或c)副交感神经系统和交感神经系统中的至少一个之间的活动比率。
25.根据权利要求21所述的治疗系统,其中,所述第二电极和所述至少另一个电极中的至少一个由两个或更多个电极分组构成。
26.根据权利要求21所述的治疗系统,还包括多路复用器,所述多路复用器与所述第二电极和/或所述至少另一个电极中的两个或更多个电极通信,并且被配置成将所述电刺激脉冲导向所述两个或更多个电极中的至少一个。
27.根据权利要求21所述的治疗系统,其中,粘合剂包括在所述第二电极和所述至少另一个电极的每个电极上的导电粘合剂涂层。
28.根据权利要求21所述的治疗系统,还包括设置在所述第二电极与所述至少另一个电极的给定电极之间的至少一个致动器。
29.根据权利要求21所述的治疗系统,其中,所述外耳装置包括:
第一构件,被配置成安装在所述耳朵的第一自然突起和凹口内,以帮助将所述外耳装置保持在所述耳朵的外耳中;以及
第二构件,被配置成安装在所述耳朵的第二自然突起和凹口内,以帮助将所述外耳装置保持在所述耳朵的外耳中。
30.根据权利要求21所述的治疗系统,其中,所述外耳装置包括弹簧,所述弹簧被配置成对所述外耳装置的结构施加应力,以便于所述第一电极的放置。
31.根据权利要求21所述的治疗系统,其中,所述外耳装置的结构被配置成受到机械应力,以便于所述第一电极抵靠皮肤的牢固放置。
32.根据权利要求21所述的治疗系统,其中,所述电刺激脉冲被配置成提供肽的内源性释放以治疗药物使用障碍和/或疼痛。
33.根据权利要求21所述的治疗系统,其中,所述电刺激脉冲被配置成提供用于治疗新生儿戒断综合征的疗法。
34.根据权利要求21所述的治疗系统,其中,所述电刺激脉冲被配置成诱导神经元可塑性,用于引发认知改善、中风恢复、PTSD、恐惧症、ADHD、ADD、包括治疗阿尔茨海默氏病的痴呆中的至少一者。
35.根据权利要求21所述的治疗系统,其中,所述电刺激脉冲被配置成用于恢复自主平衡,以支持对心力衰竭、心房颤动、焦虑、压力、胃能动力、抑郁、丛集性头痛和偏头痛中的至少一种的治疗。
36.根据权利要求21所述的治疗系统,其中,所述电刺激脉冲被配置成提供用于治疗炎症的疗法。
37.根据权利要求21所述的治疗系统,其中,所述疗法诱导内啡肽的内源性释放。
38.根据权利要求21所述的治疗系统,其中,所述电刺激脉冲被配置成提供用于治疗慢性疼痛的疗法。
39.根据权利要求21所述的治疗系统,其中,所述耳机还包括粘合剂,所述粘合剂被配置成将所述第二电极和所述至少另一个电极固定到所述患者的耳朵周围的皮肤的一部分。
40.一种用于提供经皮刺激以诱导肽的内源性释放的可穿戴治疗设备,所述治疗设备包括:
用于放置在患者的耳朵的耳道外部的外耳装置,包括第一电极,所述第一电极被配置成与所述患者的耳朵的迷走神经相关神经结构接触,其中
所述外耳装置被配置成至少部分地通过与所述耳朵的外耳的摩擦接合而被保持;
第一连接器;以及
用于放置在所述患者的耳朵周围的耳机,所述耳机由所述第一连接器连接到所述外耳装置,所述耳机包括
绝缘电子层,包括
第二电极,被配置成与与耳颞神经相关的神经结构接触,以及
至少另一个电极,被配置成与与耳大神经和/或耳大神经的分支和/或枕小神经和/或枕小神经的分支中的至少一个相关的神经结构接触,以及
粘合剂,被配置成将所述第二电极和所述至少另一个电极固定到所述患者的耳朵周围的皮肤的一部分;以及
第二连接器;
其中所述可穿戴治疗设备被配置成连接到脉冲发生器,所述脉冲发生器包括电路,所述电路被配置成经由所述第一连接器与所述外耳装置的所述第一电极电通信,并且经由所述第二连接器与所述耳机的所述第二电极和所述至少另一个电极电通信,用于提供经皮刺激以诱导肽的内源性释放;
其中所述可穿戴治疗设备被设计用于牢固地放置所述第一电极、所述第二电极和所述至少另一个电极,而不穿刺所述耳朵上和所述耳朵周围的皮肤的真皮层。
41.一种诱导肽的内源性释放的方法,所述方法包括:
将治疗设备粘附到患者皮肤的外部,所述治疗设备包括
包括第一电极的外耳装置,所述第一电极被配置成与迷走神经相关的神经结构接触,
由第一连接器连接到所述外耳装置的耳机,所述耳机包括
绝缘电子层,包括
第二电极,被配置成与与耳颞神经相关的神经结构接触,以及
至少另一个电极,被配置成与与耳大神经和/或其分支和/或枕小神经和/或其分支中的至少一个相关的神经结构接触或接近;
将所述治疗设备连接到脉冲发生器,所述脉冲发生器包括电路,所述电路被配置成与所述外耳装置的所述第一电极以及所述耳机的所述第二电极和所述至少另一个电极通信;
在第一组织位置处向所述第一电极提供第一刺激,所述第一刺激被配置成刺激第一通路以调节第一内源性肽的第一释放;以及
在第二组织位置处提供第二刺激,所述第二刺激被配置成刺激第二通路以调节第二内源性肽的第二释放。
42.根据权利要求41所述的方法,其中,所述第一刺激是高频刺激,所述第二刺激是低频刺激。
43.根据权利要求41所述的方法,其中,所述第一刺激被配置成刺激强啡肽通路,所述强啡肽通路包括耳颞神经、枕小神经和耳大神经中的至少一个。
44.根据权利要求41所述的方法,其中,所述第二刺激被配置成刺激内啡肽通路和脑啡肽通路中的至少一个,所述内啡肽通路和所述脑啡肽通路包括迷走神经的耳状支、枕小神经、耳大神经和弓状核中的至少一个。
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/510,930 | 2019-07-14 | ||
US16/510,930 US10695568B1 (en) | 2018-12-10 | 2019-07-14 | Device and method for the treatment of substance use disorders |
US16/846,220 | 2020-04-10 | ||
US16/846,220 US10967182B2 (en) | 2018-12-10 | 2020-04-10 | Devices and methods for reducing inflammation using electrical stimulation |
PCT/US2020/039424 WO2021011165A1 (en) | 2019-07-14 | 2020-06-24 | Systems and methods for delivering therapy using an auricular stimulation device |
Publications (1)
Publication Number | Publication Date |
---|---|
CN114423490A true CN114423490A (zh) | 2022-04-29 |
Family
ID=74210979
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202080064294.8A Pending CN114423490A (zh) | 2019-07-14 | 2020-06-24 | 使用耳状刺激设备递送疗法的系统和方法 |
Country Status (4)
Country | Link |
---|---|
EP (2) | EP4299107A3 (zh) |
CN (1) | CN114423490A (zh) |
AU (2) | AU2020313858B2 (zh) |
WO (1) | WO2021011165A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117771545A (zh) * | 2024-02-26 | 2024-03-29 | 苏州新云医疗设备有限公司 | 植入式电刺激器及电刺激系统 |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11623088B2 (en) | 2018-12-10 | 2023-04-11 | Spark Biomedical, Inc. | Devices and methods for the treatment of substance use disorders |
US11351370B2 (en) | 2018-12-10 | 2022-06-07 | Spark Biomedical, Inc. | Devices and methods for treating cognitive dysfunction and depression using electrical stimulation |
US20220370786A1 (en) * | 2019-09-20 | 2022-11-24 | Neurotone Australia Pty Ltd | Medical treatment device and method of operation thereof |
EP4197586A1 (de) * | 2021-12-20 | 2023-06-21 | Hahn-Schickard-Gesellschaft für angewandte Forschung e.V. | Personalisiertes elektroden-interface zur aurikulären stimulation |
EP4252829A1 (de) * | 2022-03-29 | 2023-10-04 | Aurimod GmbH | Vorrichtung zur aurikulären punktualstimulation |
US12017068B2 (en) | 2022-05-27 | 2024-06-25 | Spark Biomedical, Inc. | Devices and methods for treating motion sickness using electrical stimulation |
US12029893B1 (en) | 2023-06-14 | 2024-07-09 | Spark Biomedical, Inc. | Wearable auricular neurostimulator and methods of use |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103561815A (zh) * | 2010-08-19 | 2014-02-05 | 电核有限责任公司 | 支气管收缩的无创处置 |
US20140126752A1 (en) * | 2011-04-30 | 2014-05-08 | Cerbomed Gmbh | Device for the combined application of a transcutaneous electrical stimulus and emission of an acoustic signal |
CN103920235A (zh) * | 2014-04-25 | 2014-07-16 | 上海银狐医疗科技有限公司 | 一种头戴式刺激电极 |
US20170113057A1 (en) * | 2015-03-27 | 2017-04-27 | Elwha Llc | Multi-factor control of ear stimulation |
CN107427663A (zh) * | 2015-01-04 | 2017-12-01 | 赛威医疗公司 | 用于外耳的经皮刺激的方法和装置 |
WO2018106839A2 (en) * | 2016-12-06 | 2018-06-14 | Nocira, Llc | Systems and methods for treating neurological disorders |
WO2019005774A1 (en) * | 2017-06-26 | 2019-01-03 | Vorso Corp. | DEVICE FOR STIMULATING PERIPHERAL NERVE TO MODIFY PARASYMPATHIC AND SYMPATHETIC ACTIVITY TO OBTAIN THERAPEUTIC EFFECTS |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100553516B1 (ko) * | 2002-06-24 | 2006-02-20 | 정종필 | 알파파유도 전기자극기 |
US9126050B2 (en) * | 2009-03-20 | 2015-09-08 | ElectroCore, LLC | Non-invasive vagus nerve stimulation devices and methods to treat or avert atrial fibrillation |
JP6559395B2 (ja) * | 2010-12-14 | 2019-08-14 | ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア | 医学的障害の治療のための、頭蓋外に埋め込み可能なシステム |
US9415220B1 (en) * | 2012-07-31 | 2016-08-16 | Synchromax, Inc. | Auricular stimulation for inflammatory parasympathetic diseases |
WO2015109018A1 (en) * | 2014-01-17 | 2015-07-23 | Cardiac Pacemakers, Inc. | Systems and methods for delivering pulmonary therapy |
EP3145585B1 (en) * | 2014-05-20 | 2021-11-03 | electroCore, Inc. | Non-invasive nerve stimulation via mobile devices |
US10130809B2 (en) * | 2014-06-13 | 2018-11-20 | Nervana, LLC | Transcutaneous electrostimulator and methods for electric stimulation |
US10695568B1 (en) * | 2018-12-10 | 2020-06-30 | Spark Biomedical, Inc. | Device and method for the treatment of substance use disorders |
-
2020
- 2020-06-24 AU AU2020313858A patent/AU2020313858B2/en active Active
- 2020-06-24 CN CN202080064294.8A patent/CN114423490A/zh active Pending
- 2020-06-24 WO PCT/US2020/039424 patent/WO2021011165A1/en unknown
- 2020-06-24 EP EP23204700.1A patent/EP4299107A3/en active Pending
- 2020-06-24 EP EP20840682.7A patent/EP3996807B1/en active Active
-
2022
- 2022-11-24 AU AU2022275457A patent/AU2022275457A1/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103561815A (zh) * | 2010-08-19 | 2014-02-05 | 电核有限责任公司 | 支气管收缩的无创处置 |
US20140126752A1 (en) * | 2011-04-30 | 2014-05-08 | Cerbomed Gmbh | Device for the combined application of a transcutaneous electrical stimulus and emission of an acoustic signal |
CN103920235A (zh) * | 2014-04-25 | 2014-07-16 | 上海银狐医疗科技有限公司 | 一种头戴式刺激电极 |
CN107427663A (zh) * | 2015-01-04 | 2017-12-01 | 赛威医疗公司 | 用于外耳的经皮刺激的方法和装置 |
US20170113057A1 (en) * | 2015-03-27 | 2017-04-27 | Elwha Llc | Multi-factor control of ear stimulation |
WO2018106839A2 (en) * | 2016-12-06 | 2018-06-14 | Nocira, Llc | Systems and methods for treating neurological disorders |
WO2019005774A1 (en) * | 2017-06-26 | 2019-01-03 | Vorso Corp. | DEVICE FOR STIMULATING PERIPHERAL NERVE TO MODIFY PARASYMPATHIC AND SYMPATHETIC ACTIVITY TO OBTAIN THERAPEUTIC EFFECTS |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117771545A (zh) * | 2024-02-26 | 2024-03-29 | 苏州新云医疗设备有限公司 | 植入式电刺激器及电刺激系统 |
Also Published As
Publication number | Publication date |
---|---|
EP3996807A1 (en) | 2022-05-18 |
EP3996807B1 (en) | 2023-11-01 |
EP4299107A2 (en) | 2024-01-03 |
EP4299107A3 (en) | 2024-03-13 |
EP3996807A4 (en) | 2022-09-07 |
WO2021011165A1 (en) | 2021-01-21 |
EP3996807C0 (en) | 2023-11-01 |
AU2022275457A1 (en) | 2023-01-05 |
AU2020313858B2 (en) | 2022-08-25 |
AU2020313858A1 (en) | 2022-03-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10695568B1 (en) | Device and method for the treatment of substance use disorders | |
US10967182B2 (en) | Devices and methods for reducing inflammation using electrical stimulation | |
AU2020313858B2 (en) | Systems and methods for delivering therapy using an auricular stimulation device | |
JP7470160B2 (ja) | 末梢神経刺激による心機能不全の治療のためのシステムおよび方法 | |
AU2019250222B2 (en) | Devices and methods for controlling tremor | |
US20200345970A1 (en) | Multimodal, modular, magnetically coupled transcutaneous auricular stimulation system including apparatus and methods for the optimization of stimulation and therapeutic interventions | |
US11351370B2 (en) | Devices and methods for treating cognitive dysfunction and depression using electrical stimulation | |
US20190001129A1 (en) | Multi-modal stimulation for treating tremor | |
US20220233860A1 (en) | Wearable peripheral nerve stimulation for the treatment of diseases utilizing rhythmic biological processes | |
WO2020006048A1 (en) | Multi-modal stimulation for treating tremor | |
US11623088B2 (en) | Devices and methods for the treatment of substance use disorders | |
US20240050733A1 (en) | Systems and methods for enhancing neurostructural development | |
US20230149703A1 (en) | Devices and methods for treating stress and improving alertness using electrical stimulation | |
US20240335654A1 (en) | Wearable neurostimulation system | |
US20240181243A1 (en) | Controlling or reducing stress using auricular neurostimulation | |
US12017068B2 (en) | Devices and methods for treating motion sickness using electrical stimulation | |
WO2023224636A1 (en) | Devices for treating stress and improving alertness using electrical stimulation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |