CN114108187B - A kind of mixed filament superfine fiber nonwoven material and its preparation method and application - Google Patents
A kind of mixed filament superfine fiber nonwoven material and its preparation method and application Download PDFInfo
- Publication number
- CN114108187B CN114108187B CN202111507864.9A CN202111507864A CN114108187B CN 114108187 B CN114108187 B CN 114108187B CN 202111507864 A CN202111507864 A CN 202111507864A CN 114108187 B CN114108187 B CN 114108187B
- Authority
- CN
- China
- Prior art keywords
- polymer
- fiber
- filament
- fibers
- melt
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000835 fiber Substances 0.000 title claims abstract description 216
- 239000000463 material Substances 0.000 title claims abstract description 82
- 238000002360 preparation method Methods 0.000 title claims abstract description 18
- 229920000642 polymer Polymers 0.000 claims abstract description 138
- 229920001410 Microfiber Polymers 0.000 claims abstract description 38
- 238000000034 method Methods 0.000 claims abstract description 25
- 238000000605 extraction Methods 0.000 claims abstract description 16
- 239000002131 composite material Substances 0.000 claims description 66
- 239000011159 matrix material Substances 0.000 claims description 36
- 238000002844 melting Methods 0.000 claims description 26
- 230000008018 melting Effects 0.000 claims description 26
- -1 polyethylene terephthalate Polymers 0.000 claims description 26
- 239000005020 polyethylene terephthalate Substances 0.000 claims description 19
- 229920000139 polyethylene terephthalate Polymers 0.000 claims description 19
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 15
- 239000000243 solution Substances 0.000 claims description 12
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 claims description 9
- 239000004952 Polyamide Substances 0.000 claims description 9
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 claims description 9
- 229920001684 low density polyethylene Polymers 0.000 claims description 9
- 239000004702 low-density polyethylene Substances 0.000 claims description 9
- 229920002647 polyamide Polymers 0.000 claims description 9
- 239000004793 Polystyrene Substances 0.000 claims description 7
- 229920002223 polystyrene Polymers 0.000 claims description 7
- 239000002649 leather substitute Substances 0.000 claims description 6
- 238000000926 separation method Methods 0.000 claims description 6
- 229920006217 cellulose acetate butyrate Polymers 0.000 claims description 5
- 239000003658 microfiber Substances 0.000 claims description 5
- 229920002239 polyacrylonitrile Polymers 0.000 claims description 5
- 238000000746 purification Methods 0.000 claims description 5
- 239000004734 Polyphenylene sulfide Substances 0.000 claims description 4
- 238000002156 mixing Methods 0.000 claims description 4
- 229920000069 polyphenylene sulfide Polymers 0.000 claims description 4
- 238000004804 winding Methods 0.000 claims description 4
- 229920008347 Cellulose acetate propionate Polymers 0.000 claims description 3
- 239000004698 Polyethylene Substances 0.000 claims description 3
- 239000004743 Polypropylene Substances 0.000 claims description 3
- 238000013329 compounding Methods 0.000 claims description 3
- 229920001038 ethylene copolymer Polymers 0.000 claims description 3
- 229920000573 polyethylene Polymers 0.000 claims description 3
- 229920001155 polypropylene Polymers 0.000 claims description 3
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 claims description 3
- 229920002554 vinyl polymer Polymers 0.000 claims description 3
- 238000004519 manufacturing process Methods 0.000 claims 1
- 238000007493 shaping process Methods 0.000 claims 1
- 230000035699 permeability Effects 0.000 abstract description 16
- 230000000694 effects Effects 0.000 abstract description 6
- 230000005476 size effect Effects 0.000 abstract description 6
- 238000009825 accumulation Methods 0.000 abstract description 3
- 238000009987 spinning Methods 0.000 description 20
- 229920002292 Nylon 6 Polymers 0.000 description 12
- 238000001816 cooling Methods 0.000 description 12
- 238000001035 drying Methods 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 6
- 239000000203 mixture Substances 0.000 description 5
- 239000002243 precursor Substances 0.000 description 5
- 230000009286 beneficial effect Effects 0.000 description 4
- 238000007664 blowing Methods 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 4
- 238000000576 coating method Methods 0.000 description 4
- 238000007596 consolidation process Methods 0.000 description 4
- 239000004744 fabric Substances 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 239000004753 textile Substances 0.000 description 4
- 238000010521 absorption reaction Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 239000002121 nanofiber Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 238000010998 test method Methods 0.000 description 3
- 230000000007 visual effect Effects 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 230000009471 action Effects 0.000 description 2
- 238000001467 acupuncture Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000000284 extract Substances 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000010985 leather Substances 0.000 description 2
- 239000000155 melt Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000004745 nonwoven fabric Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000001523 electrospinning Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 239000002657 fibrous material Substances 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000002074 melt spinning Methods 0.000 description 1
- 238000010309 melting process Methods 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 229920006149 polyester-amide block copolymer Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000004080 punching Methods 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 238000009966 trimming Methods 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
Images
Classifications
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H3/00—Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
- D04H3/005—Synthetic yarns or filaments
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H3/00—Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
- D04H3/08—Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
- D04H3/14—Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between thermoplastic yarns or filaments produced by welding
- D04H3/147—Composite yarns or filaments
Landscapes
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Nonwoven Fabrics (AREA)
Abstract
本发明属于超细纤维非织造材料技术领域,提供了一种混纤长丝超细纤维非织造材料的制备方法,通过控制聚合物B的粘度低于聚合物C的粘度,实现了聚合物B对聚合物C的包覆,从而得到了海岛型纤维;采用与聚合物A和聚合物C均不相同的聚合物B,使得在萃取的过程中可以溶解全部聚合物B,实现了海岛型纤维与裂离型纤维复合的同时有效减小了海岛型纤维的纤维直径,并避免了裂离纤维的紧密堆积,提升了非织造材料的尺寸效应和表面效应。实施例的结果显示,本发明提供的制备方法制备的混纤长丝超细纤维非织造材料的透气性为550mm/s,透湿性为6000g/(m2·24h),厚度为0.34mm,柔软度为5.2mm。
The invention belongs to the technical field of ultrafine fiber nonwoven materials, and provides a method for preparing a mixed fiber filament ultrafine fiber nonwoven material. By controlling the viscosity of polymer B to be lower than that of polymer C, polymer B is realized Polymer C is coated to obtain sea-island fibers; polymer B, which is different from polymer A and polymer C, can dissolve all polymer B during the extraction process, and realize sea-island fibers and The fiber diameter of the sea-island fiber is effectively reduced while the split-type fiber is combined, and the close accumulation of the split-fiber is avoided, and the size effect and surface effect of the nonwoven material are improved. The results of the examples show that the air permeability of the mixed fiber filament superfine fiber nonwoven material prepared by the preparation method provided by the invention is 550mm/s, the moisture permeability is 6000g/(m 2 ·24h), the thickness is 0.34mm, and the softness is 5.2mm.
Description
技术领域technical field
本发明涉及超细纤维非织造材料技术领域,尤其涉及一种混纤长丝超细纤维非织造材料及其制备方法和应用。The invention relates to the technical field of ultrafine fiber nonwoven materials, in particular to a mixed fiber filament ultrafine fiber nonwoven material and its preparation method and application.
背景技术Background technique
超细纤维非织造材料由于纤维直径细化带来的尺寸效应和表面效应,具有比表面积大、孔隙率高、孔道连通性好等特点,已被广泛应用于医疗卫生、过滤分离、安全防护、交通工具和土工建筑等领域,成为当前战略性新材料的重要组成部分,是全球纤维材料领域竞相发展的重点和前言。Due to the size effect and surface effect brought about by the thinning of fiber diameter, ultrafine fiber nonwoven materials have the characteristics of large specific surface area, high porosity, and good pore connectivity. They have been widely used in medical and health care, filtration and separation, safety protection, Fields such as vehicles and geotechnical construction have become an important part of the current strategic new materials, and are the focus and foreword of the global fiber material field.
目前,超细纤维非织造材料的制备方法主要有熔喷法、静电纺丝法、闪蒸法和复合纺丝法。其中,比较常用的是复合纺丝法,而复合纺丝法又包括海岛型和裂离型-(中空)桔瓣型/米字型。然而,现有技术中还未有关于将海岛型纤维与裂离型纤维复合成超细纤维非织造材料的相关报道。At present, the preparation methods of ultrafine fiber nonwoven materials mainly include melt blown method, electrospinning method, flash method and composite spinning method. Among them, the composite spinning method is more commonly used, and the composite spinning method includes the sea-island type and the split type-(hollow) orange-petal type/m-shaped type. However, in the prior art, there is no relevant report about combining island-in-the-sea fibers and splitting fibers into ultrafine fiber nonwoven materials.
现有文献(超细纤维合成革基布的制备及其性能,朵永超等,纺织学报,2020年9月)公开了利用超细纤维制备合成革基布,通过将中空桔瓣型双组份纺粘聚酯/聚酰胺6复合纤维(裂离后纤维直径:4~5μm)与静电纺聚丙烯腈纳米纤维(平均纤维直径为120nm)共混、梳理、水刺后得到微/纳米纤维复合非织造材料。该文献也是公开了将裂离型纤维与静电纺聚丙烯腈纳米纤维复合成非织造材料,而没有关于将裂离型纤维与海岛型纤维复合成超细纤维非织造材料的记载。Existing literature (preparation and performance of superfine fiber synthetic leather base cloth, Duo Yongchao et al., Textile Journal, September 2020) discloses the use of superfine fiber to prepare synthetic leather base cloth. Spun-bonded polyester/polyamide 6 composite fibers (fiber diameter after splitting: 4-5 μm) and electrospun polyacrylonitrile nanofibers (average fiber diameter: 120nm) are blended, carded, and hydroentangled to obtain micro/nanofiber composites nonwoven material. This document also discloses the combination of split-type fibers and electrospun polyacrylonitrile nanofibers into nonwoven materials, but there is no record about combining split-type fibers and sea-island fibers into ultrafine fiber nonwoven materials.
发明内容Contents of the invention
本发明的目的在于提供一种混纤长丝超细纤维非织造材料及其制备方法和应用,本发明提供的制备方法制备的混纤长丝超细纤维非织造材料由海岛型纤维和裂离型纤维复合而成,并具有透湿、柔软、透气的优点。The object of the present invention is to provide a kind of blended filament superfine fiber nonwoven material and its preparation method and application, the blended filament superfine fiber nonwoven material prepared by the preparation method provided by the present invention is made of sea-island type fiber and split type fiber Composite and has the advantages of moisture permeability, softness and breathability.
为了实现上述发明目的,本发明提供了以下技术方案:In order to realize the above-mentioned purpose of the invention, the present invention provides the following technical solutions:
本发明提供了一种混纤长丝超细纤维非织造材料的制备方法,包括以下步骤:The invention provides a kind of preparation method of mixed filament superfine fiber nonwoven material, comprises the following steps:
(1)将聚合物A熔融,得到第一熔体;(1) Polymer A is melted to obtain the first melt;
(2)将聚合物B和聚合物C混合后熔融,得到第二熔体;所述聚合物B与聚合物A和聚合物C均不相同;所述聚合物B的粘度低于聚合物C的粘度;(2) Polymer B and polymer C are mixed and melted to obtain a second melt; the polymer B is different from polymer A and polymer C; the viscosity of the polymer B is lower than that of polymer C viscosity;
(3)将所述步骤(1)得到的第一熔体和所述步骤(2)得到的第二熔体分别通过喷丝板后复合成基质原纤型复合长丝,再进行成网,得到基质原纤型复合长丝纤维网;(3) the first melt obtained in the step (1) and the second melt obtained in the step (2) are respectively passed through the spinneret and composited into matrix fibril type composite filaments, and then formed into a web, Obtain matrix fibril type composite filament fiber network;
(4)将所述步骤(3)得到的基质原纤型复合长丝纤维网依次进行开纤和固结,得到裂离型复合纤维非织造材料;(4) The matrix fibril-type composite filament fiber web obtained in the step (3) is sequentially opened and consolidated to obtain a split-off composite fiber nonwoven material;
(5)将所述步骤(4)得到的裂离型复合纤维非织造材料依次进行萃取、定型和卷绕,得到混纤长丝超细纤维非织造材料。(5) The split-type composite fiber nonwoven material obtained in the step (4) is sequentially extracted, shaped and wound to obtain a mixed fiber filament ultrafine fiber nonwoven material.
优选地,所述步骤(1)中的聚合物A包括聚对苯二甲酸乙二醇酯、聚酰胺、聚丙烯、聚丙烯氰、聚苯乙烯或其衍生物。Preferably, the polymer A in the step (1) includes polyethylene terephthalate, polyamide, polypropylene, polyacrylonitrile, polystyrene or derivatives thereof.
优选地,所述步骤(2)中的聚合物B包括低密度聚乙烯、乙酸丁酸纤维素或乙酸丙酸纤维素。Preferably, the polymer B in the step (2) includes low-density polyethylene, cellulose acetate butyrate or cellulose acetate propionate.
优选地,所述步骤(2)中的聚合物C包括聚对苯二甲酸乙二醇酯、聚酰胺、聚乙烯、聚苯乙烯、聚苯硫醚、乙烯醇-乙烯共聚物或其衍生物。Preferably, the polymer C in the step (2) includes polyethylene terephthalate, polyamide, polyethylene, polystyrene, polyphenylene sulfide, vinyl alcohol-ethylene copolymer or derivatives thereof .
优选地,所述步骤(2)中聚合物B和聚合物C的质量比为(2~8):(2~8);所述步骤(3)中第一熔体与第二熔体的质量比为(2~5):(5~8)。Preferably, the mass ratio of polymer B and polymer C in the step (2) is (2-8): (2-8); the first melt and the second melt in the step (3) The mass ratio is (2-5): (5-8).
优选地,所述步骤(3)中的基质原纤型复合长丝包括交替排列的裂离型纤维和海岛型纤维;所述裂离型纤维的瓣数为8~128个;所述海岛型纤维中的岛为不定岛。Preferably, the matrix fibril-type composite filaments in the step (3) include alternately arranged split-type fibers and sea-island fibers; the number of petals of the split-type fibers is 8 to 128; the sea-island type The islands in the fibers are indeterminate islands.
优选地,所述步骤(4)中的裂离型复合纤维非织造材料包括桔瓣型纤维M1和桔瓣型纤维M2;所述桔瓣型纤维M1的成分为聚合物A,桔瓣型纤维M1的直径为3000~10000nm;所述桔瓣型纤维M2的成分为聚合物B和聚合物C,桔瓣型纤维M2的直径为3000~5000nm。Preferably, the detachable composite fiber nonwoven material in the step (4) comprises segmental segmented fiber M1 and segmental segmental fiber M2; the segmental segmental fiber M1 is composed of polymer A, segmental segmental fiber The diameter of M1 is 3000-10000nm; the composition of the segmented-segmented fiber M2 is polymer B and polymer C, and the diameter of the segmented-segmented fiber M2 is 3000-5000nm.
优选地,所述步骤(5)中的萃取所用萃取剂包括NaOH溶液、甲苯或苯。Preferably, the extractant used in the extraction in the step (5) includes NaOH solution, toluene or benzene.
本发明提供了上述技术方案所述制备方法制备得到的混纤长丝超细纤维非织造材料,所述混纤长丝超细纤维非织造材料包括两种或两种以上不同直径的超细纤维,所述不同直径的超细纤维的直径差为1000~9900nm。The present invention provides a mixed fiber filament ultrafine fiber nonwoven material prepared by the preparation method described in the above technical solution, and the mixed fiber filament ultrafine fiber nonwoven material includes two or more ultrafine fibers with different diameters, so The diameter difference of the superfine fibers with different diameters is 1000-9900nm.
本发明还提供了上述技术方案所述混纤长丝超细纤维非织造材料在合成革、分离净化、生物医用、传感或能源中的应用。The present invention also provides the application of the blended filament ultrafine fiber nonwoven material described in the above technical solution in synthetic leather, separation and purification, biomedicine, sensing or energy.
本发明提供了一种混纤长丝超细纤维非织造材料的制备方法,包括以下步骤:将聚合物A熔融,得到第一熔体;将聚合物B和聚合物C混合后熔融,得到第二熔体;所述聚合物B与聚合物A和聚合物C均不相同;所述聚合物B的粘度低于聚合物C的粘度;将第一熔体和第二熔体分别通过喷丝板后复合成基质原纤型复合长丝,再进行成网,得到基质原纤型复合长丝纤维网;基质原纤型复合长丝纤维网依次进行开纤和固结,得到裂离型复合纤维非织造材料;将裂离型复合纤维非织造材料依次进行萃取、定型和卷绕,得到混纤长丝超细纤维非织造材料。本发明采用三种聚合物为原料,通过喷丝、成网、开纤、固结和萃取,得到了由海岛型纤维和裂离型纤维复合而成的非织造材料,并包括两种或两种以上不同直径的超细纤维,其中直径大的超细纤维承担主要的力学性能,直径小的超细纤维赋予混纤长丝超细纤维非织造材料柔软、吸水、透湿、视觉效果等特色。本发明通过控制聚合物B的粘度低于聚合物C的粘度,实现了聚合物B对聚合物C的包覆,从而得到了海岛型纤维;采用与聚合物A和聚合物C均不相同的聚合物B,使得在萃取的过程中可以溶解全部聚合物B,实现了海岛型纤维与裂离型纤维复合的同时有效减小了海岛型纤维的纤维直径,并避免了裂离纤维的紧密堆积,提升了非织造材料的尺寸效应和表面效应。实施例的结果显示,本发明提供的制备方法制备的混纤长丝超细纤维非织造材料的透气性为550mm/s,透湿性为6000g/(m2·24h),厚度为0.34mm,柔软度为5.2mm。The invention provides a method for preparing a mixed filament superfine fiber nonwoven material, comprising the following steps: melting polymer A to obtain a first melt; mixing polymer B and polymer C and melting to obtain a second melt Melt; the polymer B is different from polymer A and polymer C; the viscosity of the polymer B is lower than that of polymer C; the first melt and the second melt are passed through the spinneret respectively Afterwards, it is compounded into matrix fibril type composite filaments, and then formed into a web to obtain matrix fibril type composite filament fiber webs; the matrix fibril type composite filament fiber webs are sequentially opened and consolidated to obtain split-off composite fibers Non-woven material: the split-type composite fiber non-woven material is extracted, shaped and wound in sequence to obtain a mixed fiber filament ultra-fine fiber non-woven material. The present invention uses three kinds of polymers as raw materials, and obtains a non-woven material composed of sea-island fibers and split fibers through spinning, web forming, fiber opening, consolidation and extraction, and includes two or two More than one kind of ultrafine fibers with different diameters, among which the ultrafine fibers with large diameters bear the main mechanical properties, and the ultrafine fibers with small diameters endow the mixed filament ultrafine fiber nonwoven materials with softness, water absorption, moisture permeability, visual effects and other characteristics. In the present invention, by controlling the viscosity of polymer B to be lower than that of polymer C, the coating of polymer B to polymer C is realized, thereby obtaining sea-island fibers; Polymer B, so that all polymer B can be dissolved during the extraction process, which realizes the composite of sea-island fibers and split fibers, effectively reduces the fiber diameter of sea-island fibers, and avoids the close accumulation of split fibers , which improves the size effect and surface effect of nonwoven materials. The results of the examples show that the air permeability of the mixed fiber filament superfine fiber nonwoven material prepared by the preparation method provided by the invention is 550mm/s, the moisture permeability is 6000g/(m 2 ·24h), the thickness is 0.34mm, and the softness is 5.2mm.
附图说明Description of drawings
图1为本发明工艺路线采用的装置示意图;Fig. 1 is the device schematic diagram that process route of the present invention adopts;
其中1、1-1-料斗;2、2-2-螺杆挤出机;3、3-2-计量泵;4-纺丝组件;5-侧吹冷却风;6-牵伸器;7-成网帘;8-负压抽吸;9-长丝纤维网;10-开纤装置;11-导辊;12-减量槽;13-干燥箱;14-卷绕装置;1, 1-1-hopper; 2, 2-2-screw extruder; 3, 3-2-metering pump; 4-spinning assembly; 5-side cooling air; 6-drawer; 7- Web curtain; 8-negative pressure suction; 9-filament fiber web; 10-fiber opening device; 11-guide roller; 12-reduction tank; 13-drying box; 14-winding device;
图2为本发明工艺路线采用的装置中纺丝组件的结构示意图;Fig. 2 is the schematic structural view of spinning assembly in the device that process route of the present invention adopts;
其中41-进料板、41a、41b-入料孔;42-导流板;421a、421b-流道;422-导流沟;423-导流孔;43-喷丝板;431-喷丝板导入孔;432-喷丝板缩小孔;433-喷丝孔;Wherein 41-feeding plate, 41a, 41b-feeding hole; 42-deflector; 421a, 421b-runner; 422-guiding ditch; 423-guiding hole; 43-spinneret; 431-spinning Plate introduction hole; 432-spinneret narrowing hole; 433-spinning hole;
图3为本发明实施例1制备的基质原纤型复合长丝纤维的断面图;Fig. 3 is the sectional view of the matrix fibril type composite filament fiber prepared in Example 1 of the present invention;
图4为本发明实施例2制备的混纤长丝超细纤维非织造材料的断面的SEM图。Fig. 4 is the SEM image of the section of the mixed filament ultrafine fiber nonwoven material prepared in Example 2 of the present invention.
具体实施方式Detailed ways
本发明提供了一种混纤长丝超细纤维非织造材料的制备方法,包括以下步骤:The invention provides a kind of preparation method of mixed filament superfine fiber nonwoven material, comprises the following steps:
(1)将聚合物A熔融,得到第一熔体;(1) Polymer A is melted to obtain the first melt;
(2)将聚合物B和聚合物C混合后熔融,得到第二熔体;所述聚合物B与聚合物A和聚合物C均不相同;所述聚合物B的粘度低于聚合物C的粘度;(2) Polymer B and polymer C are mixed and melted to obtain a second melt; the polymer B is different from polymer A and polymer C; the viscosity of the polymer B is lower than that of polymer C viscosity;
(3)将所述步骤(1)得到的第一熔体和所述步骤(2)得到的第二熔体分别通过喷丝板后复合成基质原纤型复合长丝,再进行成网,得到基质原纤型复合长丝纤维网;(3) the first melt obtained in the step (1) and the second melt obtained in the step (2) are respectively passed through the spinneret and composited into matrix fibril type composite filaments, and then formed into a web, Obtain matrix fibril type composite filament fiber network;
(4)将所述步骤(3)得到的基质原纤型复合长丝纤维网依次进行开纤和固结,得到裂离型复合纤维非织造材料;(4) The matrix fibril-type composite filament fiber web obtained in the step (3) is sequentially opened and consolidated to obtain a split-off composite fiber nonwoven material;
(5)将所述步骤(4)得到的裂离型复合纤维非织造材料依次进行萃取、定型和卷绕,得到混纤长丝超细纤维非织造材料。(5) The split-type composite fiber nonwoven material obtained in the step (4) is sequentially extracted, shaped and wound to obtain a mixed fiber filament ultrafine fiber nonwoven material.
本发明将聚合物A熔融,得到第一熔体。本发明通过熔融将聚合物A制成熔体,便于纺丝。In the present invention, polymer A is melted to obtain a first melt. In the present invention, the polymer A is made into a melt by melting, which is convenient for spinning.
在本发明中,所述聚合物A优选包括聚对苯二甲酸乙二醇酯、聚酰胺、聚丙烯、聚丙烯氰、聚苯乙烯或其衍生物,更优选为聚对苯二甲酸乙二醇酯、聚酰胺或聚丙烯氰。本发明优选采用上述物质作为聚合物A,有利于得到具有良好力学性能的混纤长丝超细纤维非织造材料。In the present invention, the polymer A preferably includes polyethylene terephthalate, polyamide, polypropylene, polyacrylonitrile, polystyrene or derivatives thereof, more preferably polyethylene terephthalate Alcohol esters, polyamides or acrylonitrile. In the present invention, the above-mentioned substances are preferably used as the polymer A, which is beneficial to obtain a mixed-fiber filament ultrafine fiber nonwoven material with good mechanical properties.
本发明对所述聚合物A的熔融的操作没有特殊的限定,采用本领域技术人员熟知的熔融聚合物的方法即可。在本发明中,所述熔融所用设备优选为单螺杆挤压机;所述熔融的方式优选为分段熔融。在本发明中,所述熔融的温度根据聚合物A的种类进行控制。In the present invention, there is no special limitation on the melting operation of the polymer A, and the method of melting the polymer well known to those skilled in the art can be used. In the present invention, the equipment used for the melting is preferably a single-screw extruder; the melting method is preferably segmental melting. In the present invention, the melting temperature is controlled according to the type of polymer A.
本发明将聚合物B和聚合物C混合后熔融,得到第二熔体。本发明通过将聚合物B和聚合物C混合后进行熔融,实现了聚合物B对聚合物C的包覆,从而得到海岛型纤维。In the present invention, polymer B and polymer C are mixed and then melted to obtain a second melt. In the present invention, the polymer B and the polymer C are mixed and then melted to realize the coating of the polymer B on the polymer C, thereby obtaining the sea-island fiber.
在本发明中,所述聚合物B与聚合物A和聚合物C均不相同。本发明通过采用与聚合物A和聚合物C均不相同的聚合物B,使得在萃取的过程中可以溶解全部聚合物B,实现了海岛型纤维与裂离型纤维复合的同时有效减小了海岛型纤维的纤维直径,提升了非织造材料的尺寸效应和表面效应。In the present invention, the polymer B is different from both the polymer A and the polymer C. In the present invention, by using polymer B different from polymer A and polymer C, all polymer B can be dissolved in the extraction process, and the combination of sea-island fibers and split fibers is effectively reduced. The fiber diameter of island-in-the-sea fibers improves the size effect and surface effect of nonwoven materials.
在本发明中,所述聚合物B的粘度低于聚合物C的粘度。本发明通过控制聚合物B的粘度低于聚合物C的粘度,实现了聚合物B对聚合物C的包覆,从而得到了海岛型纤维。在本发明中,所述聚合物B与聚合物C的粘度差优选为1.5~2.5Pa·s。In the present invention, the viscosity of polymer B is lower than that of polymer C. In the present invention, by controlling the viscosity of the polymer B to be lower than that of the polymer C, the coating of the polymer B on the polymer C is realized, thereby obtaining sea-island fibers. In the present invention, the viscosity difference between the polymer B and the polymer C is preferably 1.5-2.5 Pa·s.
在本发明中,所述聚合物B的熔点优选与聚合物C的熔点相近。本发明优选采用熔点相近的聚合物B和聚合物C制备海岛型纤维,有利于简化熔融过程。In the present invention, the melting point of the polymer B is preferably close to that of the polymer C. In the present invention, the island-in-sea fibers are preferably prepared by using polymer B and polymer C with similar melting points, which is beneficial to simplify the melting process.
在本发明中,所述聚合物A和聚合物B的表观粘度比优选为0.8~1.2,更优选为0.8~1.0。在本发明中,所述聚合物A和聚合物B的表观粘度影响纺丝过程,两种聚合物在熔融纺丝时的粘度应该相近,有利于二者同时到达喷丝板的喷丝口时,两种聚合物复合时形成平坦的界面,这样更有利于纤维的裂离。In the present invention, the apparent viscosity ratio of the polymer A and the polymer B is preferably 0.8-1.2, more preferably 0.8-1.0. In the present invention, the apparent viscosity of the polymer A and the polymer B affects the spinning process, and the viscosity of the two polymers during melt spinning should be similar, which is conducive to both reaching the spinneret of the spinneret at the same time When the two polymers are combined, a flat interface is formed, which is more conducive to the splitting of fibers.
在本发明中,所述聚合物B优选包括低密度聚乙烯、乙酸丁酸纤维素或乙酸丙酸纤维素,更优选为低密度聚乙烯或乙酸丁酸纤维素。本发明优选采用上述物质作为聚合物B,有利于实现聚合物B在萃取过程中的快速溶解,从而减小海岛型纤维的纤维直径,提升非织造材料的尺寸效应和表面效应。In the present invention, the polymer B preferably includes low density polyethylene, cellulose acetate butyrate or cellulose acetate propionate, more preferably low density polyethylene or cellulose acetate butyrate. In the present invention, the above-mentioned substances are preferably used as the polymer B, which is beneficial to realize the rapid dissolution of the polymer B during the extraction process, thereby reducing the fiber diameter of the island-in-the-sea fibers and improving the size effect and surface effect of the nonwoven material.
在本发明中,所述聚合物C优选包括聚对苯二甲酸乙二醇酯、聚酰胺、聚乙烯、聚苯乙烯、聚苯硫醚、乙烯醇-乙烯共聚物或其衍生物,更优选为聚酰胺、聚苯乙烯或聚苯硫醚。在本发明的具体实施方式中,所述聚酰胺优选为聚酰胺6。本发明优选采用上述物质作为聚合物C,有利于得到柔软、吸水、透湿的混纤长丝超细纤维非织造材料。In the present invention, the polymer C preferably includes polyethylene terephthalate, polyamide, polyethylene, polystyrene, polyphenylene sulfide, vinyl alcohol-ethylene copolymer or derivatives thereof, more preferably It is polyamide, polystyrene or polyphenylene sulfide. In a particular embodiment of the invention, the polyamide is preferably polyamide 6. The present invention preferably adopts the above-mentioned substance as the polymer C, which is beneficial to obtain a soft, water-absorbing, and moisture-permeable blended filament ultrafine fiber nonwoven material.
在本发明中,所述聚合物B和聚合物C的质量比优选为(2~8):(2~8),更优选为(3~4):(6~7)。In the present invention, the mass ratio of the polymer B to the polymer C is preferably (2-8):(2-8), more preferably (3-4):(6-7).
本发明对所述聚合物B和聚合物C混合后的熔融的操作没有特殊的限定,采用本领域技术人员熟知的熔融聚合物的方法即可。在本发明中,所述熔融所用设备优选为双螺杆挤压机;所述熔融的方式优选为分段熔融。在本发明中,所述熔融的温度根据聚合物B和聚合物C的种类进行控制。In the present invention, there is no special limitation on the melting operation after mixing the polymers B and C, and the method of melting polymers well known to those skilled in the art can be used. In the present invention, the equipment used for the melting is preferably a twin-screw extruder; the melting method is preferably segmental melting. In the present invention, the melting temperature is controlled according to the types of polymer B and polymer C.
得到第一熔体和第二熔体后,本发明将所述第一熔体和第二熔体分别通过喷丝板后复合成基质原纤型复合长丝,再进行成网,得到基质原纤型复合长丝纤维网。After the first melt and the second melt are obtained, the present invention passes the first melt and the second melt respectively through the spinneret and composites them into matrix fibril type composite filaments, and then forms a network to obtain the matrix original Fiber-type composite filament fiber web.
本发明将所述第一熔体和第二熔体分别通过喷丝板,得到基质原纤型复合长丝前体。本发明将第一熔体和第二熔体分别通过喷丝板后,得到了交替排列的裂离型纤维和海岛型纤维。在本发明中,所述喷丝板的孔型优选为8~128瓣中空桔瓣型,更优选为8瓣或16瓣中空桔瓣型;所述16瓣中空桔瓣型优选为8+8型;所述喷丝板的孔数优选为2000~2500孔/米。In the present invention, the first melt and the second melt are respectively passed through a spinneret to obtain matrix fibril-type composite filament precursors. In the present invention, after the first melt and the second melt pass through the spinneret respectively, alternately arranged split-type fibers and sea-island fibers are obtained. In the present invention, the hole pattern of the spinneret is preferably 8 to 128 hollow orange segments, more preferably 8 or 16 hollow orange segments; the 16 hollow segmented orange segments are preferably 8+8 type; the number of holes in the spinneret is preferably 2000-2500 holes/m.
在本发明中,所述第一熔体与第二熔体的质量比优选为(2~5):(5~8),更优选为(3~5):(5~6)。In the present invention, the mass ratio of the first melt to the second melt is preferably (2-5):(5-8), more preferably (3-5):(5-6).
得到基质原纤型复合长丝前体后,本发明将所述基质原纤型复合长丝前体进行复合。在本发明中,所述基质原纤型复合长丝前体优选依次通过喷丝板缩小孔和喷丝孔,实现复合。After the matrix fibril type composite filament precursor is obtained, the present invention composites the matrix fibril type composite filament precursor. In the present invention, the matrix fibril-type composite filament precursor is preferably sequentially passed through the spinneret narrowing hole and the spinneret hole to realize the composite.
复合完成后,本发明优选将所述复合后的产物进行牵伸,得到基质原纤型复合长丝。在本发明中,所述牵伸所用设备优选为管式牵伸器;所述牵伸的速度优选为5000~6000m/s;所述牵伸的压力优选为4.2~4.5bar。在本发明中,所述牵伸优选在冷却风的作用下进行;所述冷却风的吹出方式优选为侧吹;所述冷却风的压力优选为550~600Pa;所述冷却风的温度优选为15~18℃;所述冷却风的湿度优选为70~75%;吹出所述冷却风的设备优选为空调。After the compounding is completed, the present invention preferably draws the compounded product to obtain matrix fibril-type composite filaments. In the present invention, the device used for the drafting is preferably a tubular drafter; the speed of the drafting is preferably 5000-6000 m/s; the pressure of the drafting is preferably 4.2-4.5 bar. In the present invention, the drawing is preferably carried out under the action of cooling wind; the blowing mode of the cooling wind is preferably side blowing; the pressure of the cooling wind is preferably 550-600Pa; the temperature of the cooling wind is preferably 15-18°C; the humidity of the cooling air is preferably 70-75%; the equipment blowing out the cooling air is preferably an air conditioner.
在本发明中,所述基质原纤型复合长丝优选包括交替排列的裂离型纤维和海岛型纤维。在本发明中,所述裂离型纤维的成分优选为聚合物A;所述裂离型纤维的瓣数优选为8~128个,更优选为8~16个,最优选为16个。在本发明中,所述裂离型纤维的结构优选为中空结构。在本发明中,所述裂离型纤维的瓣数优选通过喷丝板控制。In the present invention, the matrix fibril-type composite filament preferably includes split-type fibers and sea-island fibers arranged alternately. In the present invention, the component of the split-type fiber is preferably polymer A; the number of petals of the split-type fiber is preferably 8-128, more preferably 8-16, and most preferably 16. In the present invention, the structure of the split-type fiber is preferably a hollow structure. In the present invention, the number of petals of the split-type fibers is preferably controlled by a spinneret.
在本发明中,所述海岛型纤维的成分优选为聚合物B和聚合物C;所述海岛型纤维中的岛优选为不定岛。本发明优选采用不定岛海岛纺丝法来制备海岛型纤维,相对于传统的定岛海岛纺丝法,具有纺丝速度低、牵伸倍率小,适用于大部分热塑性高分子聚合物的优点。In the present invention, the components of the sea-island fibers are preferably polymer B and polymer C; the islands in the sea-island fibers are preferably indefinite islands. The present invention preferably adopts an island-in-the-sea spinning method to prepare island-in-the-sea fibers. Compared with the traditional island-in-the-sea spinning method, it has the advantages of low spinning speed and small draft ratio, and is suitable for most thermoplastic polymers.
得到基质原纤型复合长丝后,本发明将所述基质原纤型复合长丝进行成网,得到基质原纤型复合长丝纤维网。After the matrix fibril type composite filaments are obtained, the present invention forms the matrix fibril type composite filaments into a web to obtain a matrix fibril type composite filament fiber web.
本发明对所述成网的操作没有特殊的限定,采用本领域技术人员熟知的成网的方法即可。本发明优选通过成网帘实现成网。在本发明的具体实施方式中,所述基质原纤型复合长丝纤维网的克重优选为100g/m2。In the present invention, there is no special limitation on the operation of forming a network, and the method of forming a network well known to those skilled in the art can be used. The present invention preferably realizes the web formation by means of a web forming curtain. In a specific embodiment of the present invention, the grammage of the matrix fibril-type composite filament fiber web is preferably 100 g/m 2 .
得到基质原纤型复合长丝纤维网后,本发明将所述基质原纤型复合长丝纤维网依次进行开纤和固结,得到裂离型复合纤维非织造材料。本发明通过开纤使基质原纤型复合长丝裂离成两种不同直径的纤维,同时达到固结纤维网的目的。After the matrix fibril type composite filament fiber web is obtained, the present invention sequentially performs fiber opening and consolidation on the matrix fibril type composite filament fiber web to obtain a split-off type composite fiber nonwoven material. The invention splits the matrix fibril type composite filament into two kinds of fibers with different diameters through fiber opening, and at the same time achieves the purpose of consolidating the fiber net.
本发明对所述开纤的操作没有特殊的限定,采用本领域技术人员熟知的开纤的技术方案即可。在本发明中,所述开纤优选为针刺开纤和水刺开纤。In the present invention, there is no special limitation on the fiber-opening operation, and the technical solution of fiber-opening well-known to those skilled in the art can be adopted. In the present invention, the fiber opening is preferably needle punching and hydroentanglement.
在本发明中,所述针刺的压力优选为5MPa。在本发明中,所述水刺优选采用四区分区控制水刺压力,各区的压力分别为:1区10MPa、2区15MPa、3区15MPa、4区10MPa。In the present invention, the acupuncture pressure is preferably 5 MPa. In the present invention, the spunlace preferably uses four zones to control the spunlace pressure, and the pressures of each zone are: 10 MPa in zone 1, 15 MPa in zone 2, 15 MPa in
在本发明中,所述裂离型复合纤维非织造材料优选包括桔瓣型纤维M1和桔瓣型纤维M2。在本发明中,所述桔瓣型纤维M1的成分优选为聚合物A;所述桔瓣型纤维M1的直径优选为3000~10000nm,更优选为3000~5000nm。在本发明中,所述桔瓣型纤维M2的成分优选为聚合物B和聚合物C;所述桔瓣型纤维M2的直径优选为3000~5000nm,更优选为3000~4000nm。In the present invention, the split-type composite fiber nonwoven material preferably includes segmental segment fibers M1 and segments segmental fibers M2. In the present invention, the component of the segmented segmented fiber M1 is preferably polymer A; the segmental segmented fiber M1 preferably has a diameter of 3000-10000 nm, more preferably 3000-5000 nm. In the present invention, the composition of the segmented segmented fiber M2 is preferably polymer B and polymer C; the segmental segmented fiber M2 preferably has a diameter of 3000-5000 nm, more preferably 3000-4000 nm.
得到裂离型复合纤维非织造材料后,本发明将所述裂离型复合纤维非织造材料依次进行萃取、定型和卷绕,得到混纤长丝超细纤维非织造材料。After the split-type composite fiber non-woven material is obtained, the invention sequentially extracts, shapes and winds the split-type composite fiber non-woven material to obtain the mixed-fiber filament superfine fiber non-woven material.
在本发明中,所述萃取所用萃取剂优选包括NaOH溶液、甲苯或苯,更优选为NaOH溶液。In the present invention, the extractant used in the extraction preferably includes NaOH solution, toluene or benzene, more preferably NaOH solution.
本发明通过萃取溶解全部聚合物B。在本发明中,所述萃取的时间优选为10~30min,更优选为20~30min。The present invention dissolves all polymer B by extraction. In the present invention, the extraction time is preferably 10-30 min, more preferably 20-30 min.
在本发明中,当所述聚合物B被全部溶解时,所得混纤长丝超细纤维非织造材料中优选包括桔瓣型纤维和圆型纤维;所述圆型纤维分布在桔瓣型纤维的表面及其集合体的内部,形成毛绒和离型结构。在本发明中,所述桔瓣型纤维的成分优选为聚合物A;所述桔瓣型纤维的直径优选为3000~10000nm,更优选为3000~5000nm。在本发明中,所述圆型纤维的成分优选为聚合物C;所述圆型纤维的直径优选为100~2000nm,更优选为100~1500nm。In the present invention, when the polymer B is completely dissolved, the obtained mixed fiber filament ultrafine fiber nonwoven material preferably includes segmental-shaped fibers and round fibers; The surface and the interior of its aggregates form a plush and release structure. In the present invention, the component of the segmented pie fiber is preferably polymer A; the diameter of the segmented segmented fiber is preferably 3000-10000 nm, more preferably 3000-5000 nm. In the present invention, the component of the round fiber is preferably polymer C; the diameter of the round fiber is preferably 100-2000 nm, more preferably 100-1500 nm.
在本发明中,所述定型的温度优选为100~150℃;所述定型的时间优选为30~50min。In the present invention, the setting temperature is preferably 100-150° C.; the setting time is preferably 30-50 minutes.
本发明提供的混纤长丝超细纤维非织造材料的制备方法所用装置的结构图如图1所示,聚合物A从料斗喂入,经过螺杆挤出机形成第一熔体,聚合物B和聚合物C从另一料斗喂入,经过螺杆挤出机形成第二熔体;第一熔体和第二熔体分别通过计量泵进入到纺丝组件中实现复合,再经过牵伸器实现牵伸,然后在成网帘上形成长丝纤维网,之后被送入到开纤装置中进行开纤和固结,再利用导辊导入含有萃取剂的减量槽中进行萃取,萃取完成后进入到干燥箱中进行定型,最后通过卷绕装置,得到混纤长丝超细纤维非织造材料。The structural diagram of the device used in the preparation method of the mixed filament superfine fiber nonwoven material provided by the present invention is as shown in Figure 1, the polymer A is fed from the hopper, and forms the first melt through the screw extruder, polymer B and Polymer C is fed from another hopper and passes through the screw extruder to form the second melt; the first melt and the second melt respectively enter the spinning assembly through the metering pump to achieve compounding, and then pass through the drafter to achieve drafting. stretching, and then form a filament fiber web on the web forming curtain, and then send it to the fiber opening device for fiber opening and consolidation, and then use the guide roller to guide it into the weight reduction tank containing the extraction agent for extraction. After the extraction is completed, enter It is shaped in a drying box, and finally passed through a winding device to obtain a mixed fiber filament superfine fiber nonwoven material.
本发明提供的制备方法所用装置中的纺丝组件的结构图如图2所示,第一熔体和第二熔体通过计量泵后分别依次进入到入料口和流道中,之后通过导流沟将熔体导入导流孔中,再流入到喷丝板导入孔,制得裂离型纤维和海岛型纤维,最后经过喷丝板缩小孔和喷丝孔实现二者的复合,进而得到基质原纤型复合长丝前体。The structural diagram of the spinning assembly in the device used in the preparation method provided by the present invention is shown in Figure 2. After the first melt and the second melt pass through the metering pump, they enter the feed port and the flow channel in sequence, and then pass through the guide The groove guides the melt into the diversion hole, and then flows into the spinneret inlet hole to produce split fibers and island-in-the-sea fibers. Finally, the composite of the two is realized through the spinneret narrowing holes and spinneret holes, and then the matrix is obtained. Fibril type composite filament precursor.
本发明采用三种聚合物为原料,通过喷丝、成网、开纤、固结和萃取,得到了由海岛型纤维和裂离型纤维复合而成的非织造材料,并包括两种或两种以上不同直径的超细纤维,其中直径大的超细纤维承担主要的力学性能,直径小的超细纤维赋予混纤长丝超细纤维非织造材料柔软、吸水、透湿、视觉效果等特色;通过控制聚合物B的粘度低于聚合物C的粘度,实现了聚合物B对聚合物C的包覆,从而得到了海岛型纤维;采用与聚合物A和聚合物C均不相同的聚合物B,使得在萃取的过程中可以溶解全部聚合物B,实现了海岛型纤维与裂离型纤维复合的同时有效减小了海岛型纤维的纤维直径,并避免了裂离纤维的紧密堆积,提升了非织造材料的尺寸效应和表面效应。The present invention uses three kinds of polymers as raw materials, and obtains a non-woven material composed of sea-island fibers and split fibers through spinning, web forming, fiber opening, consolidation and extraction, and includes two or two More than one kind of superfine fiber with different diameters, among which the superfine fiber with large diameter bears the main mechanical properties, and the superfine fiber with small diameter endows the mixed fiber filament superfine fiber nonwoven material with softness, water absorption, moisture permeability, visual effects and other characteristics; By controlling the viscosity of polymer B to be lower than that of polymer C, the coating of polymer B on polymer C is realized, thereby obtaining sea-island fibers; using a polymer different from polymer A and polymer C B, so that all the polymer B can be dissolved during the extraction process, realizing the combination of sea-island fibers and split fibers while effectively reducing the fiber diameter of sea-island fibers, and avoiding the close accumulation of split fibers, improving Size effect and surface effect of nonwoven materials.
本发明提供了上述技术方案所述制备方法制备得到的混纤长丝超细纤维非织造材料,所述混纤长丝超细纤维非织造材料包括两种或两种以上不同直径的超细纤维。The present invention provides a mixed fiber filament ultrafine fiber nonwoven material prepared by the preparation method described in the above technical solution. The mixed fiber filament ultrafine fiber nonwoven material includes two or more ultrafine fibers with different diameters.
本发明提供的混纤长丝超细纤维非织造材料包括两种或两种以上不同直径的超细纤维,直径大的超细纤维承担主要的力学性能,直径小的超细纤维赋予混纤长丝超细纤维非织造材料柔软、吸水、透湿、视觉效果等特色。The mixed filament ultrafine fiber nonwoven material provided by the present invention includes two or more ultrafine fibers with different diameters. The ultrafine fibers with large diameters bear the main mechanical properties, and the ultrafine fibers with small diameters endow the mixed filaments with superfine fibers. Fine fiber non-woven materials have the characteristics of softness, water absorption, moisture permeability, and visual effects.
在本发明中,所述不同直径的超细纤维的直径差为1000~9900nm,优选为1500~4000nm。In the present invention, the diameter difference of the ultrafine fibers with different diameters is 1000-9900 nm, preferably 1500-4000 nm.
本发明还提供了上述技术方案所述混纤长丝超细纤维非织造材料在合成革、分离净化、生物医用、传感或能源中的应用。The present invention also provides the application of the blended filament ultrafine fiber nonwoven material described in the above technical solution in synthetic leather, separation and purification, biomedicine, sensing or energy.
本发明对所述混纤长丝超细纤维非织造材料在合成革、分离净化、生物医用、传感或能源中的应用的方法没有特殊的限定,采用本领域技术人员熟知的非织造材料在合成革、分离净化、生物医用、传感或能源中的应用方法即可。The present invention has no special limitation on the application method of the mixed fiber filament superfine fiber nonwoven material in synthetic leather, separation and purification, biomedicine, sensing or energy, and adopts the nonwoven material well-known to those skilled in the art in the synthesis Application methods in leather, separation and purification, biomedicine, sensing or energy.
下面将结合本发明中的实施例,对本发明中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The technical solutions in the present invention will be clearly and completely described below in conjunction with the embodiments of the present invention. Apparently, the described embodiments are only some of the embodiments of the present invention, but not all of them. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without making creative efforts belong to the protection scope of the present invention.
实施例1Example 1
混纤长丝超细纤维非织造材料,由断面形貌为桔瓣形型、直径为3000~5000nm的聚对苯二甲酸乙二醇酯纤维和断面形貌为圆型、直径为100~1500nm的聚酰胺6纤维组成。Mixed fiber filament superfine fiber nonwoven material, composed of polyethylene terephthalate fiber with orange segment shape and diameter of 3000-5000nm and polyethylene terephthalate fiber with round shape of cross-section and diameter of 100-1500nm Composed of polyamide 6 fibers.
制备过程:Preparation Process:
(1)将聚对苯二甲酸乙二醇酯通过料斗加入到单螺杆挤压机中进行分段熔融,得到第一熔体;其中,分段熔融的温度为295℃;(1) Add polyethylene terephthalate to a single-screw extruder through a hopper for segmental melting to obtain a first melt; wherein, the temperature of segmental melting is 295° C.;
(2)将低密度聚乙烯和聚酰胺6按质量比为7:3混合后通过另一料斗加入到双螺杆挤压机中进行分段熔融,得到第二熔体;其中,分段熔融的温度为270℃;低密度聚乙烯和聚酰胺6的粘度差为2.05Pa·s;聚对苯二甲酸乙二醇酯与低密度聚乙烯的表观粘度比为1.0;(2) After mixing low-density polyethylene and polyamide 6 in a mass ratio of 7:3, they are added to a twin-screw extruder through another hopper for segmental melting to obtain a second melt; wherein, the segmental melting The temperature is 270 ° C; the viscosity difference between low-density polyethylene and polyamide 6 is 2.05 Pa s; the apparent viscosity ratio of polyethylene terephthalate and low-density polyethylene is 1.0;
(3)将步骤(1)得到的第一熔体和步骤(2)得到的第二熔体分别通过计量泵后汇入纺丝组件中,通过纺丝组件中的喷丝板(喷丝板的规格为:8+8中空桔瓣型,2000孔/米),形成裂离型纤维和海岛型纤维,再通过纺丝组件中的喷丝板缩小孔和喷丝孔,实现裂离型纤维和海岛型纤维的复合,之后在侧吹冷却风的作用下进行牵伸,形成基质原纤型复合长丝,最后在成网帘上均匀铺网,得到克重为100g/m2的基质原纤型复合长丝纤维网;其中,第一熔体和第二熔体的质量比为5:5,裂离型纤维的瓣数为16瓣,海岛型纤维中的岛为不定岛;牵伸的速度为5000m/s,牵伸的压力为4.2bar;冷却风的压力为550Pa,冷却风的温度为15℃,冷却风的湿度为70%;(3) The first melt that step (1) obtains and the second melt that step (2) obtains pass respectively through the metering pump and flow into the spinning assembly, and pass through the spinneret (spinneret) in the spinning assembly The specifications are: 8+8 hollow orange segment type, 2000 holes/m), forming splitting fibers and island-in-the-sea fibers, and then through the spinneret in the spinning assembly to narrow the holes and spinneret holes to realize splitting fibers Composite with island-in-the-sea fibers, and then draw under the action of side-blown cooling air to form matrix fibril composite filaments, and finally lay the net evenly on the web-forming curtain to obtain matrix raw fibers with a grammage of 100g/m 2 Fiber type composite filament fiber net; Wherein, the mass ratio of the first melt and the second melt is 5:5, and the petal number of split-off type fiber is 16 petals, and the island in the island-in-the-sea fiber is an indeterminate island; drafting The speed is 5000m/s, the drafting pressure is 4.2bar; the pressure of the cooling air is 550Pa, the temperature of the cooling air is 15°C, and the humidity of the cooling air is 70%;
(4)将步骤(3)得到的基质原纤型复合长丝纤维网经预湿后依次进行针刺和水刺,得到由桔瓣型纤维M1和桔瓣型纤维M2组成的裂离型复合纤维非织造材料;其中,桔瓣型纤维M1的成分为聚合物A,直径为3000~5000nm,桔瓣型纤维M2的成分为聚合物B和聚合物C,直径为3000~4000nm;针刺的压力为5MPa,水刺的压力为:1区10MPa、2区15MPa、3区15MPa、4区10MPa;(4) The matrix fibril type composite filament fiber web obtained in step (3) is subjected to acupuncture and spunlace successively after prewetting to obtain a split-type composite fiber network composed of segmental segmented fiber M1 and segmental segmental segmental fiber M2. Fibrous non-woven materials; wherein, the composition of segmental segment fiber M1 is polymer A, with a diameter of 3000-5000 nm, and segmental segmental fiber M2 is composed of polymer B and polymer C, with a diameter of 3000-4000 nm; The pressure is 5MPa, and the pressure of spunlace is: 10MPa in zone 1, 15MPa in zone 2, 15MPa in zone 3, and 10MPa in
(5)将步骤(4)得到的裂离型复合纤维非织造材料置于装有NaOH溶液的循环萃取装置中萃取25min,待聚合物B全部溶解后,将非织造材料在100℃下干燥30min,卷绕得到混纤长丝超细纤维非织造材料。(5) Extract the split-type composite fiber nonwoven material obtained in step (4) in a circulating extraction device equipped with NaOH solution for 25 minutes, and after polymer B is completely dissolved, dry the nonwoven material at 100° C. for 30 minutes , and wind up to obtain the mixed filament superfine fiber nonwoven material.
图3为本实施例制备的基质原纤型复合长丝的断面示意图。由图3可以看出,本实施例制备的基质原纤型复合长丝中裂离型纤维和海岛型纤维交替排列,裂离型纤维的截面为桔瓣形,海岛型纤维的截面为海岛形结构,海岛型纤维中的岛的截面为圆形。Fig. 3 is a schematic cross-sectional view of the matrix fibril type composite filament prepared in this example. As can be seen from Figure 3, in the matrix fibrillar composite filaments prepared in this example, split-off fibers and sea-island fibers are arranged alternately, the cross-section of split-off fibers is orange-shaped, and the cross-section of sea-island fibers is island-in-sea The cross-section of the island in the sea-island fiber is circular.
实施例2Example 2
混纤长丝超细纤维非织造材料,由断面形貌为桔瓣形型、直径为3000~5000nm的聚对苯二甲酸乙二醇酯纤维和断面形貌为圆型、直径为100~1500nm的聚酰胺6纤维组成;Mixed fiber filament superfine fiber nonwoven material, composed of polyethylene terephthalate fiber with orange segment shape and diameter of 3000-5000nm and polyethylene terephthalate fiber with round shape of cross-section and diameter of 100-1500nm Polyamide 6 fiber composition;
与实施例1的不同之处在于,将低密度聚乙烯替换为乙酸丁酸纤维素。The difference from Example 1 is that the low-density polyethylene is replaced by cellulose acetate butyrate.
图4为本实施例制备的混纤长丝超细纤维非织造材料的断面的SEM图。由图4可以看出,桔瓣形纤维与圆形纤维均匀混合,形成了混纤长丝超细纤维非织造材料。Fig. 4 is the SEM picture of the section of the mixed filament superfine fiber nonwoven material prepared in this embodiment. It can be seen from Figure 4 that the segmental-shaped fibers are uniformly mixed with the round fibers to form a mixed-fiber filament ultrafine fiber nonwoven material.
实施例3Example 3
混纤长丝超细纤维非织造材料,由断面形貌为桔瓣形型、直径为5000~10000nm的聚对苯二甲酸乙二醇酯纤维和断面形貌为圆型、直径为200~2000nm的聚酰胺6纤维组成;Mixed filament superfine fiber non-woven material, composed of polyethylene terephthalate fiber with orange segment shape and diameter of 5000-10000nm and polyethylene terephthalate fiber with round shape of cross-section and diameter of 200-2000nm Polyamide 6 fiber composition;
与实施例1的不同之处在于,将瓣数由中空16瓣替换为中空8瓣,将低密度聚乙烯和聚酰胺6的质量比由7:3替换为6:4。The difference from Example 1 is that the number of petals is replaced by hollow 16 petals to hollow 8 petals, and the mass ratio of low-density polyethylene to polyamide 6 is replaced from 7:3 to 6:4.
对比例comparative example
(1)将聚对苯二甲酸乙二醇酯切片和聚酰胺6切片分别经输送、干燥(其中,聚对苯二甲酸乙二醇酯的干燥温度为140℃,聚酰胺6的干燥温度为60℃)、螺杆挤压机挤压熔融(聚对苯二甲酸乙二醇酯的熔融温度为275~285℃,聚酰胺6的熔融温度为253~268℃)、过滤器过滤、计量泵定量(聚对苯二甲酸乙二醇酯的聚酰胺6质量比为7:3)后送入280℃的纺丝箱体中,并依次经喷丝板喷出(喷丝板的规格为:8+8中空桔瓣型,2000孔/米)、侧吹风冷却(压力为600Pa,温度为15℃,湿度为70%)和管式牵伸器牵伸(牵伸的压力为4.2bar,牵伸的速度为5000m/s),得到复合长丝,再将复合长丝均匀铺置在输网帘上,形成纤维网;(1) The polyethylene terephthalate slices and the polyamide 6 slices are conveyed and dried respectively (wherein, the drying temperature of the polyethylene terephthalate is 140° C., and the drying temperature of the polyamide 6 is 60°C), screw extruder extrusion melting (the melting temperature of polyethylene terephthalate is 275-285°C, the melting temperature of polyamide 6 is 253-268°C), filter filtration, metering pump quantitative (The mass ratio of polyamide 6 of polyethylene terephthalate is 7:3) and then sent into the spinning box at 280°C, and sprayed out through the spinneret in sequence (the specification of the spinneret is: 8 +8 hollow orange segment type, 2000 holes/m), side blowing cooling (pressure 600Pa, temperature 15°C, humidity 70%) and tubular drafter drafting (drawing pressure 4.2bar, drafting The speed is 5000m/s), to obtain composite filaments, and then the composite filaments are evenly laid on the mesh curtain to form a fiber web;
(2)将步骤(1)得到的纤维网经预加湿后进行3道水刺,最后经烘干(烘干的设备为六圆网烘燥机,烘干的形式为热风式穿透,烘干的加热方式为导热油加热)、切边和卷绕,得到克重为85g/m2的双组份纺粘水刺超细纤维非织造材料。(2) After the fiber web obtained in step (1) is pre-humidified, spunlace is carried out three times, and finally dried (the drying equipment is a six-circular mesh dryer, and the drying method is hot air penetration, drying The dry heating method is heat conduction oil heating), edge trimming and winding to obtain a two-component spunbond spunlace superfine fiber nonwoven material with a grammage of 85g/ m2 .
根据NFG52-033-2012《皮革物理和机械试验柔软度的测定》对实施例1~3和对比例制备的非织造材料进行柔软度测试,根据GB/T 24218.3-2010《纺织品非织造布试验方法第3部分:断裂强力和断裂伸长率的测定》对实施例1~3和对比例制备的非织造材料进行拉伸强力及断裂伸长率测试,根据GB/T 24218.15-2018《纺织品非织造布试验方法第15部分:透气性的测定》对实施例1~3和对比例制备的非织造材料进行透气性测试,根据GB/T12704.2-200%《纺织品织物透湿性试验方法第2部分:蒸发法》对实施例1~3和对比例制备的非织造材料进行透湿性测试。According to NFG52-033-2012 "Measurement of Softness in Physical and Mechanical Tests of Leather", the nonwoven materials prepared in Examples 1 to 3 and Comparative Examples were tested for softness, according to GB/T 24218.3-2010 "Test Method for Textile Nonwovens" Part 3: Determination of breaking strength and elongation at break "Test the tensile strength and elongation at break of the nonwoven materials prepared in Examples 1 to 3 and Comparative Examples, according to GB/T 24218.15-2018 "Textile Nonwovens Cloth Test Method Part 15: Determination of Air Permeability "Test the air permeability of the non-woven materials prepared in Examples 1-3 and Comparative Example according to GB/T12704.2-200% "Test Method for Moisture Permeability of Textile Fabrics Part 2 : Evaporation method "The non-woven material that embodiment 1~3 and comparative example prepare carries out moisture permeability test.
表1实施例1~3和对比例制备的非织造材料的性能The performance of the nonwoven material prepared by table 1 embodiment 1~3 and comparative example
由以上实施例可以看出,本发明提供的制备方法制备的混纤长丝超细纤维非织造材料由裂离型纤维和海岛型纤维复合而成,并具有良好的透湿性、柔软度和透气性,透气性为550mm/s,透湿性为6000g/(m2·24h),厚度为0.34mm,柔软度为5.2mm。As can be seen from the above examples, the mixed fiber filament superfine fiber nonwoven material prepared by the preparation method provided by the present invention is composed of split-type fibers and sea-island fibers, and has good moisture permeability, softness and air permeability , the air permeability is 550mm/s, the moisture permeability is 6000g/(m 2 ·24h), the thickness is 0.34mm, and the softness is 5.2mm.
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。The above is only a preferred embodiment of the present invention, it should be pointed out that, for those of ordinary skill in the art, without departing from the principle of the present invention, some improvements and modifications can also be made, and these improvements and modifications can also be made. It should be regarded as the protection scope of the present invention.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111507864.9A CN114108187B (en) | 2021-12-10 | 2021-12-10 | A kind of mixed filament superfine fiber nonwoven material and its preparation method and application |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111507864.9A CN114108187B (en) | 2021-12-10 | 2021-12-10 | A kind of mixed filament superfine fiber nonwoven material and its preparation method and application |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114108187A CN114108187A (en) | 2022-03-01 |
CN114108187B true CN114108187B (en) | 2023-02-17 |
Family
ID=80364603
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111507864.9A Active CN114108187B (en) | 2021-12-10 | 2021-12-10 | A kind of mixed filament superfine fiber nonwoven material and its preparation method and application |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114108187B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115386976A (en) * | 2022-09-02 | 2022-11-25 | 王辉 | Novel functional textile material with good air permeability and moisture removal |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000192332A (en) * | 1998-12-24 | 2000-07-11 | Kuraray Co Ltd | Mixed spun fiber and method for producing the same |
CN1675415A (en) * | 2002-08-30 | 2005-09-28 | 金伯利-克拉克环球有限公司 | Stretchable nonwoven materials with controlled retraction force and methods of making same |
CN101050599A (en) * | 2006-04-03 | 2007-10-10 | 三芳化学工业股份有限公司 | Synthetic leather with composite fibers in base material and ultra-fine fibers |
CN101641469A (en) * | 2005-06-24 | 2010-02-03 | 北卡罗来纳州立大学 | High-strength and durable micro- and nanofiber fabrics produced from fibrillated bicomponent island-in-the-sea fibers |
CN102181953A (en) * | 2011-03-30 | 2011-09-14 | 绍兴文理学院 | Efficient multi-end spinning process of composite super-fine fibers |
CN102758263A (en) * | 2011-04-29 | 2012-10-31 | 顾海云 | Fabricating method of tangerine section shaped composite fiber |
CN102797071A (en) * | 2011-05-24 | 2012-11-28 | 顾海云 | Orange petal-shaped composite filaments and manufacturing method thereof |
CN103789926A (en) * | 2014-01-24 | 2014-05-14 | 廊坊中纺新元无纺材料有限公司 | Sea-island type spunbond filament non-woven material and manufacturing method thereof |
CN106521956A (en) * | 2017-01-14 | 2017-03-22 | 天津工业大学 | Orange petal type superfine fiber simulation leather base cloth preparation method |
CN112281310A (en) * | 2020-10-23 | 2021-01-29 | 中原工学院 | Improved spun-bonding device, forming method and split type double-component filament-based superfine fiber material |
CN113417078A (en) * | 2021-07-09 | 2021-09-21 | 天津工业大学 | Preparation method of high-shrinkage orange-peel-type two-component spun-bonded spunlace microfiber leather base fabric |
-
2021
- 2021-12-10 CN CN202111507864.9A patent/CN114108187B/en active Active
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000192332A (en) * | 1998-12-24 | 2000-07-11 | Kuraray Co Ltd | Mixed spun fiber and method for producing the same |
CN1675415A (en) * | 2002-08-30 | 2005-09-28 | 金伯利-克拉克环球有限公司 | Stretchable nonwoven materials with controlled retraction force and methods of making same |
CN101641469A (en) * | 2005-06-24 | 2010-02-03 | 北卡罗来纳州立大学 | High-strength and durable micro- and nanofiber fabrics produced from fibrillated bicomponent island-in-the-sea fibers |
CN101050599A (en) * | 2006-04-03 | 2007-10-10 | 三芳化学工业股份有限公司 | Synthetic leather with composite fibers in base material and ultra-fine fibers |
CN102181953A (en) * | 2011-03-30 | 2011-09-14 | 绍兴文理学院 | Efficient multi-end spinning process of composite super-fine fibers |
CN102758263A (en) * | 2011-04-29 | 2012-10-31 | 顾海云 | Fabricating method of tangerine section shaped composite fiber |
CN102797071A (en) * | 2011-05-24 | 2012-11-28 | 顾海云 | Orange petal-shaped composite filaments and manufacturing method thereof |
CN103789926A (en) * | 2014-01-24 | 2014-05-14 | 廊坊中纺新元无纺材料有限公司 | Sea-island type spunbond filament non-woven material and manufacturing method thereof |
CN106521956A (en) * | 2017-01-14 | 2017-03-22 | 天津工业大学 | Orange petal type superfine fiber simulation leather base cloth preparation method |
CN112281310A (en) * | 2020-10-23 | 2021-01-29 | 中原工学院 | Improved spun-bonding device, forming method and split type double-component filament-based superfine fiber material |
CN113417078A (en) * | 2021-07-09 | 2021-09-21 | 天津工业大学 | Preparation method of high-shrinkage orange-peel-type two-component spun-bonded spunlace microfiber leather base fabric |
Also Published As
Publication number | Publication date |
---|---|
CN114108187A (en) | 2022-03-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2703971B2 (en) | Ultrafine composite fiber and its woven or nonwoven fabric | |
CN100451204C (en) | Double component molten and jetted non-woven fabric and its making process | |
CN107385683B (en) | Non-woven filter medium and preparation method and application thereof | |
EP1896635B1 (en) | Method for the production of nonwoven fabrics | |
JP5272229B2 (en) | Split type composite fiber, aggregate thereof, and fiber molded body using the split type composite fiber | |
CN102121173B (en) | Method for preparing sound-absorbing and heat-insulating materials formed by superfine fiber nonwovens | |
CN104271827A (en) | Method of producing a hydroentangled nonwoven material | |
CN110438666B (en) | Composite melt-blown non-woven fabric and preparation method thereof | |
CN110528172A (en) | A method of so that Flash Spinning Nonwovens surface is adhered to electrostatic | |
CN101195947A (en) | A kind of spun-bonded nonwoven fabric and its manufacturing method | |
CN109825956A (en) | A kind of reverse osmosis membrane support material and preparation method thereof | |
CN113106631B (en) | Waterproof and oilproof elastic soft non-woven fabric and manufacturing process thereof | |
CN114108187B (en) | A kind of mixed filament superfine fiber nonwoven material and its preparation method and application | |
CN113413684A (en) | Polylactic acid nano double-layer fiber membrane filter element and preparation method thereof | |
KR101716598B1 (en) | Spinning nozzle, process for producing fibrous mass, fibrous mass, and paper | |
CN108265394A (en) | A kind of biodegradable melt-blown poly butylene succinate non-woven fabrics and preparation method thereof | |
JP2016030862A (en) | Fibrilized fiber and method for producing the same | |
CN109183190B (en) | Functional textile material and preparation method and application thereof | |
CN101089274A (en) | Polyamide superfine fiber nonwoven fabric and its manufacturing method | |
CN215800077U (en) | Splitting type crimped spun-bonded filament production equipment and non-woven fabric production line comprising same | |
CN214362071U (en) | Single-layer melt-blown fabric production system with low resistance and high filtering effect | |
JP3725716B2 (en) | Ultrafine fiber generation possible fiber, ultrafine fiber generated from this, and fiber sheet using this ultrafine fiber | |
CN116837536A (en) | Preparation method and device of multilayer composite non-woven fabric | |
CN113430714B (en) | A kind of β-crystal polypropylene anti-aging geotextile and preparation method thereof | |
CN108265405A (en) | A kind of Static Spinning nanometer multicomponent fibre non-woven material and its preparation method and application |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
CB03 | Change of inventor or designer information | ||
CB03 | Change of inventor or designer information |
Inventor after: Qian Xiaoming Inventor after: Duo Yongchao Inventor after: Wang Wenyu Inventor after: Zhao Baobao Inventor after: Zhao Xiaolong Inventor after: Qin Guichang Inventor after: Huang Youpei Inventor after: Zhang Aimin Inventor before: Qian Xiaoming Inventor before: Duo Yongchao Inventor before: Wang Wenyu Inventor before: Zhao Baobao Inventor before: Zhao Xiaolong Inventor before: Qin Guichang Inventor before: Huang Youpei Inventor before: Zhang Aiming |
|
GR01 | Patent grant | ||
GR01 | Patent grant |