CN103833228B - Chromium ion-doped devitrified glass of a kind of tetravalence and preparation method thereof - Google Patents
Chromium ion-doped devitrified glass of a kind of tetravalence and preparation method thereof Download PDFInfo
- Publication number
- CN103833228B CN103833228B CN201410031022.4A CN201410031022A CN103833228B CN 103833228 B CN103833228 B CN 103833228B CN 201410031022 A CN201410031022 A CN 201410031022A CN 103833228 B CN103833228 B CN 103833228B
- Authority
- CN
- China
- Prior art keywords
- glass
- doped
- chromium
- sio
- ion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000011521 glass Substances 0.000 title claims abstract description 37
- 239000011651 chromium Substances 0.000 title claims abstract description 22
- 229910052804 chromium Inorganic materials 0.000 title claims abstract description 13
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 title claims abstract description 12
- 238000002360 preparation method Methods 0.000 title abstract description 8
- 239000011159 matrix material Substances 0.000 claims abstract description 13
- 238000002844 melting Methods 0.000 claims abstract description 9
- 230000008018 melting Effects 0.000 claims abstract description 9
- 229910004298 SiO 2 Inorganic materials 0.000 claims abstract description 8
- 239000000126 substance Substances 0.000 claims abstract description 4
- 239000002241 glass-ceramic Substances 0.000 claims description 41
- 229910004283 SiO 4 Inorganic materials 0.000 claims description 10
- 229910001430 chromium ion Inorganic materials 0.000 claims description 9
- 238000010438 heat treatment Methods 0.000 claims description 8
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 7
- 238000000034 method Methods 0.000 claims description 7
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 6
- 239000000758 substrate Substances 0.000 claims description 6
- 229910018068 Li 2 O Inorganic materials 0.000 claims description 5
- 239000000203 mixture Substances 0.000 claims description 5
- 229910052742 iron Inorganic materials 0.000 claims description 3
- FUJCRWPEOMXPAD-UHFFFAOYSA-N Li2O Inorganic materials [Li+].[Li+].[O-2] FUJCRWPEOMXPAD-UHFFFAOYSA-N 0.000 claims description 2
- XUCJHNOBJLKZNU-UHFFFAOYSA-M dilithium;hydroxide Chemical compound [Li+].[Li+].[OH-] XUCJHNOBJLKZNU-UHFFFAOYSA-M 0.000 claims description 2
- 238000007669 thermal treatment Methods 0.000 abstract 1
- 150000002500 ions Chemical class 0.000 description 20
- 239000013078 crystal Substances 0.000 description 11
- 238000006467 substitution reaction Methods 0.000 description 9
- 239000000463 material Substances 0.000 description 7
- 239000006121 base glass Substances 0.000 description 6
- 238000000295 emission spectrum Methods 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 239000013081 microcrystal Substances 0.000 description 4
- 238000004321 preservation Methods 0.000 description 4
- 238000002189 fluorescence spectrum Methods 0.000 description 3
- 239000000156 glass melt Substances 0.000 description 3
- 238000010309 melting process Methods 0.000 description 3
- 239000002159 nanocrystal Substances 0.000 description 3
- 238000002425 crystallisation Methods 0.000 description 2
- 230000008025 crystallization Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- 229910020068 MgAl Inorganic materials 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000002178 crystalline material Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 239000003446 ligand Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Landscapes
- Glass Compositions (AREA)
Abstract
Description
技术领域 technical field
本发明涉及一种微晶玻璃,尤其涉及一种四价铬离子掺杂微晶玻璃及其制备方法,属于材料科学技术领域。 The invention relates to a glass-ceramic, in particular to a tetravalent chromium ion-doped glass-ceramic and a preparation method thereof, belonging to the technical field of material science.
背景技术 Background technique
微晶玻璃是指在连续的玻璃相中分布有纳米晶体的一类复合材料。其制备方法通常是,首先制备设计好组分的基质玻璃,然后将制备获得的基质玻璃在一定的温度下热处理原位析出纳米晶体,即得到微晶玻璃。微晶玻璃同时具有玻璃的物化性质稳定,机械强度高,易于加工的特点,又具有晶体低的声子能量的特点,可以降低掺杂发光离子的无辐射跃迁几率,提高其量子效率和发光效率。因此,在固体激光器、光通信和光信息等领域具有良好的应用前景。 Glass-ceramic refers to a class of composite materials in which nanocrystals are distributed in a continuous glass phase. The preparation method is usually to first prepare a matrix glass with designed components, and then heat-treat the prepared matrix glass at a certain temperature to precipitate nanocrystals in situ, that is, to obtain a glass-ceramic. Glass-ceramics also has the characteristics of stable physical and chemical properties of glass, high mechanical strength, and easy processing, and has the characteristics of low phonon energy in crystals, which can reduce the non-radiative transition probability of doped luminescent ions and improve its quantum efficiency and luminous efficiency. . Therefore, it has good application prospects in the fields of solid-state lasers, optical communications and optical information.
微晶玻璃中的纳米微晶一般都属于离子晶体,根据鲍林规则,离子晶体的结构排列主要取决于离子半径和配位数,因此具有相近离子半径和配位数的离子很容易发生相互间的取代,而不改变离子晶体本身的结构。在晶体材料的研究中,已有许多离子取代改善陶瓷材料性能的研究,如郑昌伟研究在MgAl2O4中通过Zn置换取代Mg,得到Mg1-xZnxAl2O4材料,显著提高了材料的介电常数、品质因数等介电性能;而张树人则研究在MgTiO3陶瓷中通过Zn置换取代Mg,得到Mg1-xZnxTiO3材料,提高了材料的烧结性能,降低了其烧结温度。 Nanocrystals in glass-ceramics generally belong to ionic crystals. According to Pauling's rules, the structural arrangement of ionic crystals mainly depends on the ionic radius and coordination number, so ions with similar ionic radii and coordination numbers are easy to interact with each other. substitution without changing the structure of the ionic crystal itself. In the study of crystal materials, there have been many studies on ion substitution to improve the performance of ceramic materials. For example, Zheng Changwei studied that Mg was replaced by Zn substitution in MgAl 2 O 4 to obtain Mg 1-x Zn x Al 2 O 4 materials, which significantly improved Dielectric properties such as the dielectric constant and quality factor of the material; while Zhang Shuren studied the replacement of Mg by Zn in MgTiO 3 ceramics to obtain Mg 1-x Zn x TiO 3 materials, which improved the sintering performance of the material and reduced its sintering performance. temperature.
研究得到,在晶体材料中,两个离子半径和配位数相近的离子,通过合适的制备工艺均能实现离子间的相互取代。然而,虽然在晶体材料中离子取代早已经实现,但至今并没有微晶玻璃中微晶离子间取代的研究。 It is found that in crystal materials, two ions with similar ionic radius and coordination number can realize the mutual substitution between ions through appropriate preparation process. However, although ion substitution in crystalline materials has been realized for a long time, so far there has been no research on the substitution of ions between crystallites in glass-ceramics.
发明内容 Contents of the invention
本发明的目的是为改善微晶玻璃的性能,提供一种微晶玻璃中微晶晶格离子Zn2+部分被Mg2+取代的四价铬离子掺杂微晶玻璃及其制备方法。 The purpose of the present invention is to improve the performance of glass ceramics, provide a tetravalent chromium ion doped glass ceramics in which the Zn 2+ part of the crystal lattice ions in the glass ceramics is replaced by Mg 2+ and a preparation method thereof.
本发明的四价铬离子掺杂微晶玻璃包括基质玻璃和掺杂铬离子,其中玻璃基体组分及质量百分比含量如下: The tetravalent chromium ion-doped glass-ceramics of the present invention includes matrix glass and doped chromium ions, wherein the glass matrix components and mass percent content are as follows:
SiO2 43.5% SiO 2 43.5%
Al2O3 16% Al 2 O 3 16%
ZnO 19.6% ZnO 19.6%
MgO 0.5% MgO 0.5%
Li2O 7.5% Li2O 7.5%
K2O 12.9% K 2 O 12.9%
掺杂铬离子以Cr2O3形式引入,其质量百分比为玻璃基体组分的0.01~1.5%, Doped chromium ions are introduced in the form of Cr 2 O 3 , and its mass percentage is 0.01~1.5% of the glass matrix components,
微晶玻璃的化学式为Li1.14Zn1.43-xMgxSiO4,0.01< x <0.1。 The chemical formula of glass ceramics is Li 1.14 Zn 1.43-x Mg x SiO 4 , 0.01< x <0.1.
本发明的四价铬离子掺杂微晶玻璃的制备方法,步骤如下: The preparation method of tetravalent chromium ion-doped glass ceramics of the present invention, the steps are as follows:
1) 按质量百分比称取43.5%的SiO2、16%的Al2O3、19.6%的ZnO、0.5%的MgO、7.5%的Li2O、12.9%的K2O、并加入上述总量0.01~1.5%的Cr2O3;将上述组分混合均匀,在1500~1600 ℃温度下保温30~60分钟,然后降低熔制温度为1300~1400℃保温10~30分钟,将熔融液倒入预热的铁质模具上,于500 ℃保温1小时退火后,自然冷却至室温,得到铬掺杂玻璃基体; 1) Weigh 43.5% of SiO 2 , 16% of Al 2 O 3 , 19.6% of ZnO, 0.5% of MgO, 7.5% of Li 2 O, 12.9% of K 2 O, and add the above total amount 0.01~1.5% Cr 2 O 3 ; mix the above components evenly, keep the temperature at 1500~1600 ℃ for 30~60 minutes, then reduce the melting temperature to 1300~1400 ℃ and keep it for 10~30 minutes, pour the molten liquid Put it into a preheated iron mold, heat it at 500°C for 1 hour and anneal it, then cool it down to room temperature naturally to get a chromium-doped glass matrix;
2) 将步骤1)制得的铬掺杂玻璃基体在625~675 ℃保温12~24小时进行热处理,然后升温至700~800 ℃保温1~4小时,自然降至室温,得到四价铬离子掺杂微晶玻璃。 2) Heat the chromium-doped glass substrate prepared in step 1) at 625-675 °C for 12-24 hours for heat treatment, then raise the temperature to 700-800 °C for 1-4 hours, then cool down to room temperature naturally to obtain tetravalent chromium ions Doped glass-ceramic.
本发明四价铬离子掺杂微晶玻璃的制备包括玻璃的熔制工艺和微晶玻璃热处理工艺。在玻璃熔制工艺中,采用了两步熔制法,首先在相对较高的熔制温度(1500~1600 ℃)下保温,以提高玻璃熔体的流动性,从而达到各组分原料充分均匀混合的目的,为后续热处理中微晶晶格离子取代创造了一致的环境,然后降低熔制温度(1300~1400℃),增加玻璃熔体的粘度,降低玻璃熔体的流动性,使玻璃便于成型。 The preparation of the tetravalent chromium ion-doped glass-ceramic of the present invention includes glass melting process and glass-ceramic heat treatment process. In the glass melting process, a two-step melting method is adopted. Firstly, heat preservation is carried out at a relatively high melting temperature (1500~1600 ℃) to improve the fluidity of the glass melt, so as to achieve full and uniform raw materials of each component. The purpose of mixing is to create a consistent environment for the substitution of microcrystalline lattice ions in the subsequent heat treatment, and then reduce the melting temperature (1300~1400°C), increase the viscosity of the glass melt, reduce the fluidity of the glass melt, and make the glass more convenient forming.
在微晶玻璃的热处理工艺中,采用两步热处理法,首先在低于玻璃析晶开始温度(625~675 ℃)长时间保温,此温度下微晶处于不定形态向晶态转变间的介稳态,活性比较高,有利于离子半径和配位体相近离子间发生取代反应,且长时间的保温也不会使微晶过分生长,致使微晶玻璃析透变得不透明,然后升高热处理温度至微晶析晶温度范围(700~800 ℃),微晶析出。 In the heat treatment process of glass-ceramics, a two-step heat treatment method is adopted. First, the temperature is lower than the glass crystallization start temperature (625~675 ℃) for a long time. At this temperature, the crystallites are metastable between amorphous and crystalline states state, the activity is relatively high, which is conducive to the substitution reaction between ions with similar ionic radii and ligands, and long-term heat preservation will not cause excessive growth of the crystallites, resulting in the crystallized glass-ceramics becoming opaque, and then increasing the heat treatment temperature To the crystallization temperature range of microcrystals (700~800 ℃), microcrystals are precipitated.
本发明通过优化玻璃熔制工艺和微晶玻璃热处理工艺,制备获得了四价铬离子掺杂的微晶玻璃Li1.14Zn1.43-xMgxSiO4,0.01< x <0.1,实现了微晶玻璃中微晶晶格离子取代,改善了微晶玻璃的性能。 The present invention prepares tetravalent chromium ion-doped glass-ceramic Li 1.14 Zn 1.43-x Mg x SiO 4 by optimizing the glass melting process and glass-ceramic heat treatment process, 0.01<x<0.1, realizing the glass-ceramics Substitution of ions in the microcrystalline lattice improves the properties of the glass-ceramics.
附图说明:Description of drawings:
图1 是实施例1微晶玻璃的XRD图谱; Fig. 1 is the XRD collection of illustrative plates of embodiment 1 glass-ceramics;
图2是实施例1微晶玻璃的荧光光谱图谱。 Fig. 2 is the fluorescence spectrogram of the glass-ceramic of embodiment 1.
具体实施方式 Detailed ways
以下结合具体实施例对本发明作进一步描述。 The present invention will be further described below in conjunction with specific examples.
实施例1: Example 1:
按基体玻璃组分43.5SiO2-16Al2O3-20.1ZnO-7.5Li2O-12.9K2O(质量百分比),Cr2O3掺杂浓度为基体玻璃的0.1%(质量百分比),分别称取,43.5 g的SiO2、16 g的Al2O3、19.6 g的ZnO、0.5 g的MgO、7.5 g的Li2O、12.9 g的K2O和0.1 g的Cr2O3,将上述组分混合均匀,首先在1550 ℃温度下保温40分钟,然后降低熔制温度为1350 ℃保温30分钟,将熔融液倒入预热的铁质模具上,于500 ℃保温1小时进行退火,再自然降至室温,取出得到铬掺杂玻璃基体; According to the base glass composition 43.5SiO 2 -16Al 2 O 3 -20.1ZnO-7.5Li 2 O-12.9K 2 O (mass percentage), the Cr 2 O 3 doping concentration is 0.1% (mass percentage) of the base glass, respectively Weigh, 43.5 g of SiO 2 , 16 g of Al 2 O 3 , 19.6 g of ZnO, 0.5 g of MgO, 7.5 g of Li 2 O, 12.9 g of K 2 O and 0.1 g of Cr 2 O 3 , the The above components are mixed evenly. First, keep the temperature at 1550 °C for 40 minutes, then reduce the melting temperature to 1350 °C and keep it for 30 minutes. Then cool down to room temperature naturally, and take out to obtain the chromium-doped glass matrix;
将上述铬掺杂玻璃基体首先在650 ℃保温18小时进行热处理,然后升高热处理温度至720 ℃保温2小时,再自然降至室温,即得到本发明的四价铬离子掺杂的微晶玻璃。 The above-mentioned chromium-doped glass substrate is first heat-treated at 650°C for 18 hours, then raised to 720°C for 2 hours, and then naturally lowered to room temperature to obtain the tetravalent chromium ion-doped glass-ceramics of the present invention. .
该微晶玻璃的XRD测试结果如图1所示,由图可得,该微晶晶相衍射峰完全与JCPDS标准卡片中Li1.14Zn1.43SiO4晶相完全对应,但2θ角度有0.8°的右移,表明微晶中虽然晶格结构没有发生变化,但晶格离子可能发生了变化,表明Li1.14Zn1.43SiO4微晶中部分Zn2+离子被Mg2+离子取代。 The XRD test results of the glass-ceramic are shown in Figure 1. It can be seen from the figure that the diffraction peaks of the crystallite crystal phase completely correspond to the Li 1.14 Zn 1.43 SiO 4 crystal phase in the JCPDS standard card, but there is a 0.8° difference in the 2θ angle. Shifting to the right indicates that although the lattice structure has not changed in the microcrystal, the lattice ions may have changed, indicating that some Zn 2+ ions in the Li 1.14 Zn 1.43 SiO 4 microcrystal are replaced by Mg 2+ ions.
该微晶玻璃的荧光光谱测试结果如图2所示,由图可得,该微晶玻璃发射中心为1268 nm,发射光谱半高宽为280 nm,相对于四价铬离子掺杂Li1.14Zn1.43SiO4微晶玻璃,该微晶玻璃的发射中心发生了红移,发射光谱半高宽变宽。 The test results of the fluorescence spectrum of the glass-ceramics are shown in Figure 2. It can be seen from the figure that the emission center of the glass-ceramics is 1268 nm, and the half-maximum width of the emission spectrum is 280 nm. Compared with tetravalent chromium ions doped with Li 1.14 Zn 1.43 SiO 4 glass-ceramics, the emission center of the glass-ceramics has been red-shifted, and the half-maximum width of the emission spectrum has become wider.
实施例2: Example 2:
按基体玻璃组分43.5SiO2-16Al2O3-20.1ZnO-7.5Li2O-12.9K2O(质量百分比),Cr2O3掺杂浓度为基体玻璃的0.5%(质量百分比),分别称取,43.5 g的SiO2、16 g的Al2O3、19.6 g的ZnO、0.5 g的MgO、7.5 g的Li2O、12.9 g的K2O和0.5 g的Cr2O3,将上述组分混合均匀,首先在1600 ℃温度下保温30分钟,然后降低熔制温度为1300 ℃保温10分钟,将熔融液倒入预热的铁质模具上,于500 ℃保温1小时进行退火,再自然降至室温,取出铬掺杂玻璃基体; According to the base glass composition 43.5SiO 2 -16Al 2 O 3 -20.1ZnO-7.5Li 2 O-12.9K 2 O (mass percentage), the Cr 2 O 3 doping concentration is 0.5% (mass percentage) of the base glass, respectively Weigh, 43.5 g of SiO 2 , 16 g of Al 2 O 3 , 19.6 g of ZnO, 0.5 g of MgO, 7.5 g of Li 2 O, 12.9 g of K 2 O and 0.5 g of Cr 2 O 3 , put The above components are mixed evenly. First, keep the temperature at 1600°C for 30 minutes, then lower the melting temperature to 1300°C and keep it for 10 minutes. Then cool down to room temperature naturally, and take out the chromium-doped glass substrate;
将上述铬掺杂玻璃基体首先在625 ℃保温24小时进行热处理,然后升高热处理温度至800 ℃保温1小时,再自然降至室温,即得到本发明的四价铬离子掺杂的微晶玻璃。 The above-mentioned chromium-doped glass substrate is firstly heat-treated at 625°C for 24 hours, then raised to 800°C for 1 hour, and then naturally lowered to room temperature to obtain the tetravalent chromium ion-doped glass-ceramic of the present invention. .
XRD测试结果表明,该微晶玻璃中微晶为Li1.14Zn1.43SiO4晶相,且衍射峰有0.7°的右移,表明微晶中虽然晶格结构没有发生变化,但晶格离子可能发生了变化,表明Li1.14Zn1.43SiO4微晶中部分Zn2+离子被Mg2+离子取代。 The XRD test results show that the crystallites in the glass-ceramics are Li 1.14 Zn 1.43 SiO 4 crystal phase, and the diffraction peaks shift to the right by 0.7°, indicating that although the lattice structure does not change in the crystallites, lattice ions may occur The changes showed that part of the Zn 2+ ions in the Li 1.14 Zn 1.43 SiO 4 crystallites were replaced by Mg 2+ ions.
荧光光谱测试结果表明,该微晶玻璃发射中心为1265 nm,发射光谱半高宽为285 nm,相对于四价铬离子掺杂Li1.14Zn1.43SiO4微晶玻璃,该微晶玻璃的发射中心发生了红移,发射光谱半高宽变宽。 The results of the fluorescence spectrum test show that the emission center of the glass - ceramic is 1265 nm , and the half-maximum width of the emission spectrum is 285 nm. A red shift occurs, and the half-maximum width of the emission spectrum becomes wider.
实施例3: Example 3:
按基体玻璃组分43.5SiO2-16Al2O3-20.1ZnO-7.5Li2O-12.9K2O(质量百分比),Cr2O3掺杂浓度为基体玻璃的1.5 %(质量百分比),分别称取,43.5 g的SiO2、16 g的Al2O3、19.6 g的ZnO、0.5 g的MgO、7.5 g的Li2O、12.9 g的K2O和1.5 g的Cr2O3,将上述组分混合均匀,首先在1500 ℃温度下保温60分钟,然后降低熔制温度为1400 ℃保温30分钟,将熔融液倒入预热的铁质模具上,于500 ℃保温1小时进行退火,再自然降至室温,取出得到铬掺杂玻璃基体; According to the base glass composition 43.5SiO 2 -16Al 2 O 3 -20.1ZnO-7.5Li 2 O-12.9K 2 O (mass percentage), the doping concentration of Cr 2 O 3 is 1.5% (mass percentage) of the base glass, respectively Weigh, 43.5 g of SiO 2 , 16 g of Al 2 O 3 , 19.6 g of ZnO, 0.5 g of MgO, 7.5 g of Li 2 O, 12.9 g of K 2 O and 1.5 g of Cr 2 O 3 , put The above components are mixed evenly. First, heat preservation at 1500 °C for 60 minutes, then reduce the melting temperature to 1400 °C and heat preservation for 30 minutes, pour the molten liquid into a preheated iron mold, and heat at 500 °C for 1 hour for annealing Then cool down to room temperature naturally, and take out to obtain the chromium-doped glass matrix;
将上述铬掺杂玻璃基体首先在675 ℃保温12小时进行热处理,然后升高热处理温度至700 ℃保温4小时,再自然降至室温,即得到本发明的四价铬离子掺杂的微晶玻璃。 The above-mentioned chromium-doped glass substrate is first heat-treated at 675°C for 12 hours, then raised to 700°C for 4 hours, and then naturally lowered to room temperature to obtain the tetravalent chromium ion-doped glass-ceramics of the present invention. .
XRD测试结果表明,该微晶玻璃中微晶为Li1.14Zn1.43SiO4晶相,且衍射峰有0.85°的右移,表明微晶中虽然晶格结构没有发生变化,但晶格离子可能发生了变化,表明Li1.14Zn1.43SiO4微晶中部分Zn2+离子被Mg2+离子取代。 The XRD test results show that the crystallites in the glass-ceramics are Li 1.14 Zn 1.43 SiO 4 crystal phase, and the diffraction peaks shift to the right by 0.85°, indicating that although the lattice structure does not change in the crystallites, lattice ions may occur The changes showed that part of the Zn 2+ ions in the Li 1.14 Zn 1.43 SiO 4 crystallites were replaced by Mg 2+ ions.
荧光光谱测试结果表明,该微晶玻璃发射中心为1270 nm,发射光谱半高宽为290 nm,相对于四价铬离子掺杂Li1.14Zn1.43SiO4微晶玻璃,该微晶玻璃的发射中心发生了红移,发射光谱半高宽变宽。 The results of the fluorescence spectrum test show that the emission center of the glass - ceramic is 1270 nm , and the half-maximum width of the emission spectrum is 290 nm. A red shift occurs, and the half-maximum width of the emission spectrum becomes wider.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410031022.4A CN103833228B (en) | 2014-01-23 | 2014-01-23 | Chromium ion-doped devitrified glass of a kind of tetravalence and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410031022.4A CN103833228B (en) | 2014-01-23 | 2014-01-23 | Chromium ion-doped devitrified glass of a kind of tetravalence and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103833228A CN103833228A (en) | 2014-06-04 |
CN103833228B true CN103833228B (en) | 2015-10-28 |
Family
ID=50797173
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410031022.4A Expired - Fee Related CN103833228B (en) | 2014-01-23 | 2014-01-23 | Chromium ion-doped devitrified glass of a kind of tetravalence and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103833228B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115504672B (en) * | 2022-09-26 | 2023-10-31 | 江西理工大学 | Chromium ion doped multiphase near infrared glass ceramic and preparation method thereof |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1379742A (en) * | 1999-10-18 | 2002-11-13 | 康宁股份有限公司 | Transparent glass-ceramics based on alpha-and beta-willemite |
US6531420B1 (en) * | 1999-10-18 | 2003-03-11 | Corning Incorporated | Transparent lithium zinc magnesium orthosilicate glass-ceramics |
-
2014
- 2014-01-23 CN CN201410031022.4A patent/CN103833228B/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1379742A (en) * | 1999-10-18 | 2002-11-13 | 康宁股份有限公司 | Transparent glass-ceramics based on alpha-and beta-willemite |
US6531420B1 (en) * | 1999-10-18 | 2003-03-11 | Corning Incorporated | Transparent lithium zinc magnesium orthosilicate glass-ceramics |
Non-Patent Citations (1)
Title |
---|
Cr4+掺杂Li1.14Zn1.43Si04透明微晶玻璃近红外宽带光谱特性;马红萍等;《物理学报》;20131231;第62卷(第17期);177801-1-177801-7 * |
Also Published As
Publication number | Publication date |
---|---|
CN103833228A (en) | 2014-06-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5616002B2 (en) | Lithium ion conductive solid electrolyte and method for producing the same | |
CN104529152B (en) | A kind of CdSe quantum dot doped-glass and preparation method thereof | |
CN107382052B (en) | Alkali-free silicate glass and preparation method and application thereof | |
CN101239783A (en) | Rare earth doped oxyfluorine tellurate glass ceramics and preparation method thereof | |
CN105418068B (en) | A kind of niobate glass ceramics energy storage material and its preparation method and application | |
JP2012056835A (en) | Crystallized glass with negative coefficient of thermal expansion and method for producing the same | |
CN109574506A (en) | A kind of CsPb1-xTixBr3Quantum dot devitrified glass and preparation method thereof | |
CN112225460B (en) | Alkali metal oxide substituted niobate glass ceramics with low dielectric loss and high energy storage density, preparation method and application | |
CN101265026A (en) | Microcrystalline glass for precipitating La2O3 nano-crystalline and preparation method thereof | |
CN101597138B (en) | A kind of crystallized glass which precipitates LiAl5O8 nanocrystal and preparation method thereof | |
CN1325412C (en) | Nano-multicrystal phase glass ceramics and its production method | |
CN102887641B (en) | A kind of Bi 2o 3-SiO 2glass of system and preparation method thereof | |
CN103833228B (en) | Chromium ion-doped devitrified glass of a kind of tetravalence and preparation method thereof | |
CN106865980B (en) | A kind of praseodymium doped CdS quantum dot glass and preparation method thereof | |
CN109354417B (en) | A kind of germanosilicate glass-ceramic with precipitation of NaTbF4 nanocrystals and preparation method thereof | |
JP6040699B2 (en) | Glass plate for thin film solar cell | |
CN110204209A (en) | A kind of upper conversion glass ceramic composite material of the rear-earth-doped scandium base fluorinated nano crystalline substance of selectivity | |
CN102225845B (en) | Preparation method of zinc aluminum silicate glass codoped with zinc oxide nanocrystals and rare-earth ions | |
CN113233770B (en) | High dielectric borate glass ceramics containing Na0.9K0.1NbO3 crystal phase and its preparation and application | |
CN103539358B (en) | The method of the controlled precipitation of a kind of super-broadband fiber amplifier transparent glass-ceramics crystalline phase | |
CN114835403A (en) | Zinc fluoride-aluminum fluoride based microcrystalline glass and preparation method thereof | |
CN114455842B (en) | Precipitation of Bi 2 GeO 5 Nanocrystalline high-density bismuth germanate microcrystalline glass and preparation method thereof | |
CN109180011B (en) | PbTe/CdTe double quantum dot co-doped borosilicate glass and preparation process thereof | |
CN103288352B (en) | SiO 2-NaF-Er 3+: GGG series vitro-ceramic and preparation method thereof | |
CN108585527A (en) | A kind of Pb1-xSrxSe ternary quantum dots doped-glasses and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20151028 Termination date: 20190123 |