CN103826575A - 用于均匀卷曲和展开聚合物骨架的方法 - Google Patents
用于均匀卷曲和展开聚合物骨架的方法 Download PDFInfo
- Publication number
- CN103826575A CN103826575A CN201280037830.0A CN201280037830A CN103826575A CN 103826575 A CN103826575 A CN 103826575A CN 201280037830 A CN201280037830 A CN 201280037830A CN 103826575 A CN103826575 A CN 103826575A
- Authority
- CN
- China
- Prior art keywords
- skeleton
- diameter
- curling
- sacculus
- expansion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/82—Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/86—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
- A61F2/90—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
- A61F2/91—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
- A61F2/915—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/95—Instruments specially adapted for placement or removal of stents or stent-grafts
- A61F2/958—Inflatable balloons for placing stents or stent-grafts
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/95—Instruments specially adapted for placement or removal of stents or stent-grafts
- A61F2/9522—Means for mounting a stent or stent-graft onto or into a placement instrument
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/82—Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/86—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
- A61F2/90—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
- A61F2/91—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
- A61F2/915—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
- A61F2002/9155—Adjacent bands being connected to each other
- A61F2002/91566—Adjacent bands being connected to each other connected trough to trough
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2240/00—Manufacturing or designing of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2240/001—Designing or manufacturing processes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49826—Assembling or joining
- Y10T29/49908—Joining by deforming
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49826—Assembling or joining
- Y10T29/49908—Joining by deforming
- Y10T29/49925—Inward deformation of aperture or hollow body wall
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49826—Assembling or joining
- Y10T29/49908—Joining by deforming
- Y10T29/49936—Surface interlocking
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Cardiology (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Transplantation (AREA)
- Heart & Thoracic Surgery (AREA)
- Vascular Medicine (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Media Introduction/Drainage Providing Device (AREA)
- Materials For Medical Uses (AREA)
- Prostheses (AREA)
Abstract
一种医疗装置,包括卷曲至具有扩张球囊之导管的骨架。所述骨架通过包括一个或更多个球囊加压步骤的过程卷曲于球囊。球囊加压步骤被选择为增强对球囊的骨架保持力,同时当球囊在卷曲机头部内加压和减压时(至少部分地)维持初始球囊褶。通过至少部分地维持初始球囊褶,改进了由球囊进行的骨架扩张的均匀性。
Description
技术领域
本发明涉及药物洗脱医疗装置,更特别地,该发明涉及将聚合物骨架(scaffold)卷曲(crimp)至递送球囊(balloon)的方法。
背景技术
本领域认为当聚合物骨架经受外部载荷(诸如卷曲和球囊扩张力)时,多种因素影响其维持结构完整性的能力。这些相互作用是复杂的并且作用机制未被完全理解。根据现有技术,存在众多显著特征将由塑性变形扩张至展开状态的这种类型的聚合物、生物可吸收骨架与功能类似的金属支架(stent)相区别。实际上,作为用于可靠地且一致地预测球囊可扩张骨架(下文称为“骨架”)的聚合物负荷承载部分的高度非线性化行为的方法/模型,公认的用于预测金属支架行为的分析或经验方法/模型中有数种即使不是不适当,也倾向于不可靠。模型不是总能提供对于将骨架植入到身体内或预测/预期经验数据所必需的可接受的确定度(degree ofcertainty)。
此外,认为在涉及医疗装置的球囊制造(例如用于骨架展开和/或血管形成术的非柔性(non-compliant)球囊)中,关于如下方面现有技术仅提供了有限信息:当用于通过由支杆(strut)相互连接的环形网络的塑性变形支持活体内的内腔时,聚合物材料可能如何表现。简言之,设计为提高膨胀的、薄壁球囊结构的机械特征(最类似于在球囊被膨胀且对内腔进行支承时预加载的膜的机械性能)的方法对展开的骨架之行为几乎没有提供任何的见解。例如,一个差异为在骨架中产生的断裂或裂纹的倾向。因此,尽管在材料类型中具有相似性,但现有技术认为机械问题差异太大而难以提供有益见解。球囊制造现有技术至多不过为试图改进骨架特性的技术人员提供泛泛的引导。
可以通过下列一些方法与用于形成骨架的金属材料相比较来描述被考虑用作骨架的聚合物材料(例如PLLA或PLGA)。合适的聚合物具有低的强度重量比,这意味着需要更多的材料来提供与金属的机械性能相当的机械性能。因此,支杆必须制成为较厚并且较宽,以具有需要的强度。骨架倾向于易碎或具有有限的断裂韧性。材料中固有的各向异性的与比例相关的非弹性性能(即,根据材料变形的比例而变化的材料的强度/刚度)在与聚合物特别是诸如PLLA或PLGA之类的生物可吸收性聚合物一起作用中才复合出这种复杂性。
因此,由于在相似加载状态下聚合物机械性能的非线性和有时不可预测的本质,对金属支架所执行的加工步骤、所作的设计改变(它们通常不引起对材料平均机械性能的预料不到的改变的关注,或无需对材料平均机械性能的预料不到的改变仔细关注)可能未同样应用至骨架。有时的情况是,技术人员需要在进行大量验证之后才甚至可能更大体上预测具体状态是由于一种因素还是另一种因素——例如,缺陷是由制造工艺中的一个或更多个步骤所导致的,还是在工艺方法中的骨架制造步骤之后发生的一个或更多个步骤例如卷曲步骤所导致的。因此,对于制造工艺、制造后工艺的改变,或者甚至对骨架式样设计的相对较小的改变,一般而言,必须比如果使用金属材料而不是聚合物的情况更彻底地研究。因此随后,与当在金属支架中做出的改进时相比,当在用于对其改进的不同骨架设计中进行选择时,能够获得的作为用于指导技术人员清楚无效路径并且朝向更有效改进路径之工具的发现的推论、理论、或系统方法少得多。
因此认为,当使用各向同性和可延展的金属材料时鉴于在现有技术中用于支架的验证或可行性的先前公认的推论,这种推论对于骨架可能是不适当的。在骨架式样方面的改变可不仅影响对内腔进行支承的呈展开状态的骨架的刚度或内腔覆盖,还影响当骨架被卷曲或被展开时发生断裂的倾向性。这意味着,与金属支架相比,一般不作出关于下述情况的假设:改变的支架式样是否可以不产生不利的结果,或在加工步骤(例如,管材成形、激光切割、卷曲等)中需要显著的改变。简言之,简化支架制造工艺之金属的非常有利的固有性能(相对于变形率或载荷朝向不变的应力/应变性质和材料的易延展本质)使得能够在改变的支架式样和/或加工步骤之间更容易地提出推论,并且能够可靠地制造具有新式样并且当被植入到活体内时没有缺陷的支架。
不幸的是,当卷曲至球囊时和当随后经球囊展开时,塑形变形的骨架的支杆和环之式样的改变不能像预测金属支架一样容易。实际上,据认为,改变的式样会导致在骨架制造步骤中可以出现预料不到的问题,而如果该式样改为由金属管形成,则将不需要任何改变。与在金属支架式样中的改变相比,在骨架式样中的改变在诸如卷曲和消毒之类的制造步骤或制造后工艺中需要其他改变。
用于治疗冠状血管经历者之骨架的最多部分经历主要为径向的载荷。然而,旨在用于外周血管的骨架经历非常不同的载荷,以至于支架适用性的传统度量(即其径向强度或刚性)无法精确地度量是否骨架具有足够的强度以支撑外周血管。这是因为外周骨架放置在与管状骨架显著不同的环境中。血管尺寸更大。并且血管的运动更多,特备是当位于附肢(appendage)附近时。如此,旨在用于外周血管的骨架将需要能够支撑更复杂的载荷,包括轴向、弯曲、扭转和径向载荷的组合。参见例如Bosiers,M.and Schwartz,L.,Development of Bioresorbable Scaffolds for theSuperficial Femoral Artery,SFA:Contemporary EndovascularManagement(“Interventions in the SFA”部分)。还在美国申请序列号13/015,474(案卷号104584.10)中对这些和相关的面向外周植入之支架或骨架的挑战进行了讨论。
特别地,面向外周骨架的一个挑战是卷曲至球囊和当球囊膨胀时骨架的扩张。出现的问题在于,一方面骨架无法卷曲至期望的尺寸而不引入结构破坏(即断裂或过度破裂),无论是在卷曲的状态还是经球囊从卷曲的状态扩张时。另一方面,虽然骨架可以被卷曲和展开,但在其展开状态中展开不均匀。在这些情况下,由于不规则地展开的环和/或单元(由于非均匀展开导致其载荷超过其设计限制)在血管内急性寿命(acute life)或疲劳寿命缩短,骨架对急性和疲劳破坏敏感。
已经使用膜状机头的(film-headed)卷曲机将聚合物骨架卷曲至球囊。参考图8A,显示了卷曲组件20的透视图,该卷曲组件20包括三个辊123、124、125,它们用于在卷曲之前将由非粘性材料制成的干净的片定位在卷曲叶片与金属支架之间。例如,上辊125保持被固定至背衬片的片,该片通过在卷曲机头20中的旋转机构(未示出)被从背衬片抽出。第二片被从中间辊124分配。在卷曲之后,第一片与第二片(所使用的)由下辊123收集。作为对非粘性片进行分配的辊的替代物,每个金属支架均可以在卷曲之前被包覆在薄的柔性保护套中。
图8B示出了相对于楔形件22和在卷曲组件20的孔中的金属支架100定位的第一片125a和第二片124a。如所示出的,两个片中的每个在支架10的相对侧上穿过两个叶片22之间并且随着卷曲组件窗孔(iris)的尺寸经汇聚叶片22减小,施加的张力T1和T2使过多的片材聚集。
使用非粘性材料分配片(或保护套)来避免覆层材料在用于涂覆有治疗剂之支架的卷曲机叶片上积聚。片125a、124a在每个卷曲序列之后由新的片代替。通过在每次卷曲之后使干净的片前进,避免了来自先前的已卷曲支架的污染覆层材料的累积。通过使用可更换的片,能够利用相同的卷曲组件来卷曲具有不同药物覆层的支架,而不存在因前面的支架卷曲的覆层材料的积聚或污染的风险。
考虑到上述问题,有必要提高周围植入骨架展开的均匀性,同时保持期望的保持力和用于递送至靶位点的最小截面(crossing profile)之间的适当平衡。并且对于在外周血管特有的反复的轴向、弯曲、径向载荷后解决外周植入骨架的结构完整性,存在持续的需要。
发明概述
本发明提供这样的方法,其用于提高经球囊膨胀的递送系统扩张的骨架的均匀性,同时维持期望的球囊-骨架保持力以防止在将骨架递送至血管内的靶位置期间骨架从球囊脱落。
已经证明可以通过以下卷曲方法提高递送球囊上的卷曲聚合物骨架的保持力,该卷曲方法包括将骨架卷曲到球囊上同时对球囊加压;即,在用卷曲机叶片减小骨架外径的同时对球囊加压。这样的卷曲方法的其他特征包括将骨架加热到接近但低于聚合物材料的玻璃化转变温度(TG)并且在暂停期间施加球囊压力(即,当所述骨架直径保持恒定时施加球囊压力)。
然而,当这些相同方法应用在外周植入骨架(当卷曲至球囊时有相对大的直径减小,例如,卷曲直径与扩张直径的比例为6∶1)时,所述骨架在体内的扩张遇到了问题。所述骨架无法以均匀方式一致地扩张。结果,为骨架提供径向强度和刚性的环支杆和/或单元结构继承了应力和应变的不均匀分布。过度扩张的单元由持续的高于正常的应力和应变引起,同时临近的扩张不足的单元未充分利用。与过度扩张的单元相关的球囊诱导的应力和应变可以超过材料在展开时的最终应力和应变水平,这导致破裂形成或断裂、或表现为疲劳寿命或断裂韧性降低,在这种情况下,断裂可以在植入后立即、在几天之后或在几周之后发生。骨架外植体的动物研究已经显示以不均匀方式扩张的骨架有该类型的行为。
外周植入的骨架中支杆断裂是复发性问题。与管状骨架相比,原因尚未完全知道,但据认为在于骨架大的直径减小/扩张和外周植入骨架的复杂载荷环境(相比于冠状支架)的结合。考虑到这些问题,因此需要实现更均匀扩张的外周植入骨架。
考虑到这些需要,发现一种卷曲方法,其维持期望的最小的在球囊上的骨架保持力和截面,同时显著改进扩张的均匀性和完整环结构或没有支杆断裂的环的数目。
根据本发明的一个方面,设计一种卷曲方法,其通过在在卷曲方法期间的适当阶段对球囊加压以维持更均匀的折叠的球囊形态来提高骨架单元扩张的均匀性。即,一旦骨架达到中间卷曲直径(intermediate crimpeddiameter)即发生球囊加压,其导致在加压解除时球囊至少部分地维持在球囊中的初始折叠并且骨架卷曲至其最终直径。
根据本发明的另一方面,基于体内或体外研究,已经发现对于经折叠或褶皱的球囊扩张的骨架存在临界卷曲外径(critical crimp outerdiameter,CCOD),其标识球囊扩张的最大直径。通过计算给定骨架和球囊的CCOD,人们可以估计骨架的最大OD用于引发球囊加压以实现对球囊的良好支架保持力同时还保持扩张的均匀性。基于研究导出两种用于计算CCOD的方法,一种比另一种更保守。可以在球囊加压开始之前使用CCOD估计所述骨架的最大外径,以确保均匀的骨架扩张。
所述方法可包括数个卷曲步骤。每个卷曲步骤之后,出现暂停期以允许骨架材料在进一步减小其直径前释放积聚的应变。一个或更多个初始卷曲步骤之后,从卷曲机头去除部分卷曲的骨架以检查球囊上的排列。这一步骤在本公开中被称为最终排列,或检查最终排列步骤。检查排列后,骨架返回到卷曲机进行最终卷曲。进行最终直径减小同时对球囊加压以驱动骨架支杆中缺口间的球囊材料。根据一个实施方案,不同于之前的卷曲方法,只使用了该单一的加压步骤。
根据本发明的另一方面,公开一种卷曲方法,其提高外周血管内的压溃恢复骨架扩张的均匀性。
通过引用并入
在本说明书中所提到的所有公开和专利申请通过引用并入本文,其程度如同每个单独的公开或专利申请被特别地并单独地表示为通过引用并入本文。如果在并入的出版物或专利与本说明书和权利要求书之间有任何不一致的用法的词和/或短语,这些单词和/或短语将会具有与其在本说明书中所使用的方式一致的意义。
附图说明
图1示出聚合物骨架的平面图,其表现出其用于为植入骨架提供径向强度和刚度的封闭单元的非均匀扩张。
图2是在骨架的孔内对球囊加压之后球囊导管(catheter)的前截面图,所述骨架具有第一部分卷曲直径。
图3是在骨架的孔内对球囊加压之后球囊导管的前截面图,所述骨架具有第二部分卷曲直径。
图4是详细描绘在图1中描绘的骨架在被卷曲至球囊前或松弛(as-lased,卷曲前)构形的方面。
图5是图4之骨架的一部分的部分透视图。
图6描绘了封闭在图4的虚框VB内的单元。
图7是提供图4之骨架尺寸的表。
图8A是用于卷曲图1之骨架的膜状机头的卷曲机的透视图。
图8B是当卷曲机夹紧装置被引至骨架上时,膜状机头的卷曲机之机头的前视图。
图9A是处于未扩张状态的五褶球囊的概略图。
图9B是图9A的气囊在部分膨胀压力下导致单一褶打开的图。
具体实施方案
由挤出PLLA制作的管形成根据本公开内容的通过球囊卷曲或扩张的骨架。描述于美国公开号2010/00025894的管形成方法可以用于形成该管。随后完成的经固化的PLLA聚合物管可以在径向和轴向通过吹塑方法变形,其中变形以预定的纵向速度沿管的纵向轴线逐步发生。例如,吹塑成型可按照美国公开号2009/0001633的描述进行。这种管成形后的双轴变形可以在从管切割出的不具有这种扩张的骨架结构件之机械性能中产生明显的改善。聚合物管经历的径向扩张表征诱导周向分子或晶体取向的程度。在一个优选实施方案中,径向扩张比例或RE比例为起始内径的450%并且轴向扩张比例或AE比例为起始管长度的150%。比例RA和AE如美国公开号2010/00025894号中所定义。
以上骨架的外径可以由其期望使用的位置(例如,在身体内的特定位置或面积)指定。然而,外径通常仅仅是过程中所需要的直径的近似。例如,一旦治疗药剂发挥作用,可以有大量的钙化(calcification)被除去,这可导致骨架从血管中脱离。此外,由于不能假定血管壁截面为圆,并且其实际尺寸只是近似,医生可以选择过度扩张骨架以确保其保持在原位。出于这个原因,优选使用具有直径大于预期的骨架扩展之直径的管。
如在以下更详细的和在美国申请序列号13/015,474(案卷号104584.10,“’474”申请,特别是图5B和图6B的“V59”骨架)中解释的,骨架具有8mm的松弛直径、约2.3mm的最终卷曲外径(从骨架移除卷曲机夹紧装置之前),其比骨架式样的“理论最小直径”更小、约6.5至7.0mm的膨胀直径(平均血管尺寸6.5mm)、和约9.5mm的通过膨胀后导管球囊的最大扩张直径(除非另有说明,骨架直径将指骨架外径)。从卷曲机移出后的直径为约0.092英寸。
根据一个实施方案,按照本发明的卷曲骨架可以具有约2.5∶1至3∶1
的膨胀直径与卷曲直径比例(对于标称直径为6mm的球囊而言)、和约3∶1至3.5∶1或约4∶1的卷曲前直径与卷曲直径比例(该比例通常依赖于膨胀的直径、截面和/或血管直径)。更通常地,对于血管直径(VD),可以使用’474申请的等式1和2确定骨架的SDPC和SDi,所述骨架具有用于在外周血管植入的期望性质,该等式被认为是本公开的一部分。
与外周植入的骨架相比,当在球囊上(特别是对于具有短长度的冠状骨架)时可存在对修改卷曲方法以提高冠状骨架保持力的更大需求。卷曲至球囊的骨架“保持力”指在骨架从球囊离开之前骨架-球囊能耐受的沿经过血管的方向施加至骨架的最大力。骨架在球囊上的保持力是通过卷曲方法设置的,通过骨架塑性变形到球囊表面上以形成耐受骨架从球囊脱落的装配。影响骨架在球囊上的保持力的因素很多。它们包括球囊和骨架之间的表面-表面接触程度、球囊和骨架表面的摩擦系数、以及骨架的支杆之间球囊材料突出或延伸的程度。由此,骨架的拉脱或保持力一般随长度变化。因此,骨架越短,其越有可能在推动导管穿过曲折的解剖组织时脱落。然而,外周骨架通常比冠状骨架长得多。因此保持力往往不像在短长度的冠状骨架的情况中有那么多的关注。
然而,虽说如此,与在等同的金属支架的情况中实现对球囊的相同量的保持力且不破坏骨架相比,安全地植入外周骨架至球囊更有挑战性。这是由于相对于金属支架可用于卷曲骨架的温度范围有限,例如在优选的实施方案中低于骨架玻璃化转变温度最小值(或“TG-low”)5至15度,并且血管支撑聚合物材料有更易碎的性质。另外,考虑到强度和刚性性质的降低,聚合物骨架的支杆必须更厚才能具有与金属支杆相当的性质,这导致用于球囊材料存放在骨架支杆之间的可用空间减小。
表1总结了用于卷曲描述于图4-6的骨架至球囊导管的卷曲阶段或步骤。将会理解,考虑到骨架中聚合物材料(优选)的粘弹性性质和极端的直径减小(需要约6∶1以达到目标截面同时保持卷曲前直径超过标称和加宽膨胀后的直径),卷曲方法是耗时的。9个阶段或步骤被编程到卷曲机构作为对卷曲骨架的控制设定。所使用的卷曲机构为在图8A和8B中举例说明的膜状机头的卷曲机。
表1.卷曲方法的控制设置
卷曲温度接近48摄氏度,并且用于骨架的材料是PLLA。第2列提供了在各个阶段卷曲机夹紧装置的直径,直径0.354英寸对应于骨架卷曲前的直径。最终卷曲直径设置为0.062英寸。当移开卷曲机时,骨架反弹至约0.092英寸。第3列显示了卷曲机夹紧装置降低的速率。这样,阶段1和2之间卷曲机直径以0.3英寸/秒的速率减小。每次直径减小后,卷曲机暂停30秒(第3列),其给出粘弹性材料所需时间以在被卷曲机叶片进一步变形之前释放应力。
在卷曲过程中发生3个加压阶段,初始加压发生30秒并且直径为0.13英寸(阶段5)。初始压力阶段之后,卷曲机打开允许从卷曲机移除骨架以检查其在球囊上的排列。所述骨架然后放入卷曲机并且重新设定口至0.14英寸(阶段6)。卷曲机夹紧装置达到0.13英寸(阶段7)后,施加至中间球囊的压力为50psi(磅/平方英寸),即在0.13英寸暂停30秒期间。一旦卷曲机达到0.10英寸(阶段8-最终压力步骤)施加球囊压力并维持在约50psi。在0.10暂停30秒之后,释放球囊压力并将夹紧装置设定为直径0.062英寸(阶段9)。在约环境压力下开始170秒暂停以释放骨架中的应力,这帮助减少骨架从卷曲机移出后的反弹。随后在从卷曲机移除骨架后立刻套上约束鞘以限制骨架的反弹。
在图4-6中描述的骨架,当根据表1卷曲时,能够达到低于理论最小直径(如在’474申请中所定义的)的卷曲直径,并且当在试验台测试或在体外加速生物测试和/或疲劳测试中时,不表现显著的或复发的断裂迹象或长度损失。然而当所述骨架在健康的猪模型中展开支持血管时,观察到产生了一些裂纹和/或断裂以及骨架的非均匀扩张。
图1举例说明了图4的骨架当根据表1的方法卷曲时表现的非均匀展开行为。该图基于扩展的骨架的FINESCAN图像。图1中骨架的区域A显示过度扩张的单元204(图4),例如已经过度扩张的区域A1、A2。结果在A1和A2的冠部角(crown angle)增加到超过其设计的角度,这导致冠附近更高的局部应力。区域B显示相应的单元204,例如扩张不足的B1、B2。因此,在这些冠的角小于当所述骨架达到其扩张的直径时的预期。虽然净结果是预期的膨胀直径,例如,对于平均直径6.0mm血管为约6至7mm,但应力在204单元中的分布是不均匀的并影响骨架的结构完整性。
虽然当骨架在血管内初始扩张时在区域A中高应力的面积是大致可以维持的,但是动物研究已经表明在重复的载荷破裂后导致在冠的疲劳韧性降低。在体外或试验台测试中未观察到相同的行为。该结果对以下观点给予了进一步支持,当骨架支持外周血管时,断裂倾向性是特别敏感且复杂的。如之前所提到,不同于冠状血管骨架,外周骨架经受组合的轴向、弯曲和径向载荷,与初始的径向载荷相反。该复杂的载荷环境被认为是观察到断裂问题的首要因素。举例来说,人们认为外周血管的轴向压缩和扩张是在动物研究过程期间观察到疲劳破坏的主要促成因素。
如在’474申请中所定义的,图7骨架的一个特征为其在冠的零半径(zero-radius),该特征使得其实现卷曲前直径与卷曲直径比例为6∶1。所述零半径冠使得骨架卷曲小至甚至超过其理论最小卷曲直径,并且当卷曲或从卷曲直径扩张时不断裂。然而,人们怀疑当超过这种骨架的冠部角,或几乎超过了卷曲前冠部角,其可以被看作是当骨架由血管提供载荷时径向强度和刚度的最大设计角度,骨架在冠部变得容易断裂或裂纹扩展,这会严重降低骨架的径向刚度和强度。
在聚合物骨架(包括具有比图7中描述的V59骨架更大冠部半径的那些)的更一般术语中,非均匀扩张(其导致一些冠部角超过预期的冠部角)增加当骨架由血管提供载荷时卷曲前冠部角被超过的机会,因为当初始扩张时冠部已经超过了预期的冠部角。结果,骨架在骨架的区域A中形成疲劳破损的更高倾向性,因为这是冠部角高于预期的地方。血管动力学甚至将很可能进一步增加这些角。由此,期望实现避免过度冠部角的卷曲方法,例如,当卷曲的骨架通过球囊扩张时,支杆间的角度扩展超过或恰好达到当骨架从聚合物管切割时形成的角度。当在冠部使用小半径时该需要是特别重要的,诸如图7中V59骨架中所使用的零半径冠部(zero-radiuscrown)。
再次参考表1,在方法的以下三个阶段球囊膨胀至50psi:骨架直径从0.16英寸减小至0.13英寸并且在最终排列(阶段5后),在直径从0.14英寸减小至0.13英寸(阶段7)并且当直径从0.13英寸减小至0.10英寸(阶段8)时再一次。如在美国申请序列号13/089,225(案卷号62571.517)中更详细解释的,球囊可以膨胀以提高骨架和球囊之间的保持力。通过在较大直径膨胀球囊,例如当骨架具有0.13英寸直径,在骨架支杆之间有更多的空间用于球囊材料扩张(有时称作“球囊吹气(puffing)”)。当球囊材料位于支杆之间,骨架在球囊上的保持力提高。另外,据相信在直径减小之后施加球囊压力,任何发生不规则变形的支杆可以通过中和施加至不规则卷曲支撑球囊的压力得到补偿。不规则卷曲的原因在美国申请号12/861,719(案卷号62571.448)中更详细地解释。因此,对于一些没有施加球囊压力的骨架实施方案,骨架更容易受到不规则卷曲的影响,其可以导致在冠部中高压力范围,支杆的破裂或翻转(flipping)。例如,观察到在’474申请的图4中描述的骨架式样容易受到不规则卷曲的影响以及甚至支杆的翻转,这可以被补偿,通过在其被卷曲时(特别是在卷曲方法的初始阶段期间)使用球囊支持骨架。然而,图4的骨架在卷曲期间没有表现出相同的问题。然而,体内研究显示了骨架的非均匀扩张。
图2示出骨架被移除的球囊导管3的截面。该图是在骨架已经获得0.13英寸的卷曲直径并且球按囊6膨胀至50psi(骨架卷曲至0.13英寸,球囊6膨胀,骨架和导管2从卷曲机移开,骨架从球囊6移开,随后导管轴4被切开约一半以显示球囊6的截面)后获得。如可以看到的,球囊4的褶8分布不对称或围绕轴4不均匀。右手边褶8和左手边褶是规则,使得球囊中的初始折叠基本不再存在。范围B’褶是压缩的或平放在导管轴上,同时褶似乎在范围A’内积累或积聚。这表明当后来骨架卷曲至这种状态的球囊时,由于接受骨架的球囊表面不均匀,骨架是不均匀卷曲的;或当球囊加压以扩张骨架时不均匀球囊力作用在骨架上,或这些效果的组合。当比较其与A中过度扩张的单元204与在范围A’中积累的褶时,总结出在图2
的右手边上积累的球囊材料导致单元过度扩张。
还预期膜状机头的卷曲机的片(其在卷曲方法中在骨架上给予扭矩或扭曲)也可以促成图2中球囊褶的排布。当允许球囊在表1方法中在0.13英寸扩张时,认为可能骨架上的扭曲通过聚合物片可以促成在图2中所示的不平坦球囊褶。然而,根据比较使用或没有使用膜状机头的卷曲机的扩张骨架发现聚合物片不是显著促成因素。
根据本公开,经修改的卷曲方法提高整个骨架长度单元扩张的均匀性,同时还显著地不是不可接受地降低骨架和球囊之间的保持力,需要期望的膨胀之卷曲直径或卷曲前直径与卷曲直径的比例的减小,或者骨架结构的再设计。例如,在保留可接受的骨架球囊保持力的V59骨架的情况下,骨架设计没有改变,例如骨架仍然保留其零半径冠部,并且当使用经修改的方法时,卷曲前直径与卷曲直径的比例相同的6∶1比例(因此,保留低截面积(profile))。另外,体内研究测试显示在骨架的支杆中断裂的数目相比于使用表1之方法的相同骨架显著下降。
用于卷曲为了体内研究之骨架的方法总结于下表2中。与表1中的方法相比,仅在最终压力步骤(即当骨架直径通过卷曲机从0.1英寸减小至0.062英寸时)施加压力。该步骤之前,球囊不加压。
表2.修改的卷曲方法的控制设置
图3显示当在表2的方法获得具有0.10英寸直径的骨架时球囊6的截面。如从附图可以理解的,初始球囊褶仍然存在,即褶均匀地围绕导管轴4分布并且基本保持其最初的褶方向,如通过箭头11表示的。类似的,在图3相对图2中,球囊表面的顺应性围绕周部(circumference)更均匀,其促成环支杆围绕周部的更一致性卷曲,因此,骨架的扩张比在图2的情况中更加均匀。
比较骨架的直径与当在表2中施加球囊压力时,发现只有骨架已经卷曲至其于卷曲直径的30%时,扩张的均匀性显著改进。应当理解30%是充分地改善骨架扩张之均匀性的最大直径的近似值。例如,认为那些直径为32%或33%也可以产生显著的改进。
如之前提到的,使用表1和2图1和使用在图4至7中描述的V59骨架进行经修改的卷曲方法在体外和体内(外植体)研究骨架表现。这些测试比较扩张的骨架形状以观察扩张的均匀性,以及在两个方法之间破裂或断裂的环。这些测试还比较使用两种卷曲方法的脱落或骨架-至-球囊保持力。获得健康猪的股动脉外植体,前提在于扩张的骨架在猪模型的动脉内。使用FINESCAN成像便利地观察这些外植体。
通过施加带到经卷曲骨架的表面测试脱落或保持力,然后通过拉拽带测量骨架从球囊脱落所需的力。测试揭示当使用经修改的方法,脱落力减小(约1/2)。然而,该保持力测量在约1磅力(1bf),认为充分安全地递送骨架至血管中靶位置,没有骨架从球囊脱落的风险。
表3示出当使用两种卷曲方法时经扩张的V59骨架的比较。所述骨架具有约6.5mm的标称扩张直径和约7.0mm的膨胀后直径。给出的数值是平均值加上标准偏差。
表3一经扩张之V59骨架性质的比较
如从这些结果中可知,当使用经修改的卷曲方法时,完整环的数目有显著增加(均值为75%对100%),并且在10.5mm断裂的数目下降明显(均值为7.2对1.7)。
基于前述发现,总结出球囊中初始褶可以维持或基本维持,其导致扩张均匀性的显著提高并增加完整支杆的数目,没有负面影响如之前解释的其他重要卷曲目标。此外,基于这些观察(包括体内研究的结果)获得了有价值的见解,关于在更一般情况下骨架卷曲至折叠球囊的卷曲方法中适当的控制设置。
为了实现均匀的骨架开放单元和支杆角扩张,临界卷曲OD可以定义为骨架扩张的均匀性和骨架脱落力二者的最大值。该临界卷曲OD是卷曲直径的最大值以起始球囊加压,其以上扩张将变得非均匀。该临界卷曲直径经允许骨架保持力(较早的加压最好在较大的OD)和骨架均匀性以及扩张的支杆角(较晚加压最好在较小的OD)的最佳组合。
根据估计临界卷曲OD(CCOD)的方法1,一个开始于单一球囊褶打开的条件,而其他褶基本保持折叠。图9A和9B分别显示缩小的或部分膨胀的5-褶球囊。在图9A中每个褶Y1、Y2、Y3、Y4和Y5以其缩小的构型布置(早于卷曲间的任意球囊加压)。图9B显示球囊部分地膨胀,带有形成褶Y1的球囊部分(Y1A、Y1B、Y1C)彻底地打开使得来自图9A的原始褶消失。一旦球囊扩张来自图9B中的状态,骨架部分以上Y1A、Y1B、Y1C以不同于骨架部分以上折叠的区域Y2、Y3、Y4和Y5的速率膨胀(注意:图9不旨在显示球囊的实际构型,而是仅提供作为辅助以更好的理解方法1的进行)。
等式1、2、3(以下)导出方法1下的CCOD。n-褶球囊的(n-1)褶之弧长为:
(n-1)褶的弧长=等式1
其中为压缩的球囊被挤压在金属丝内腔4上的外径。对于图9A的5褶球囊,n=5且英寸(1.8288mm)。式1由此产生折叠部分Y2、Y3、Y4和Y5的总弧长4.596mm。下一步,单一扩张的(或彻底未打开的)褶,图9B中Y1A、Y1B、Y1C球囊褶部分的总和,从以下式2中求出
单一未折叠褶最大的球囊直径是等式1和2的和除以π。根据这一关系,通过添加两倍的骨架壁厚度来计算骨架的CCOD,其产生等式3。
对于V59骨架等式3得出0.126英寸,发现其是非常好的最大骨架直径尺寸的近似值,其可以存在于卷曲期间球囊加压的开端,不引起非均匀扩张。根据优选的实施方案,选择0.100英寸控制设置,然而可以使用更大的直径而不引起非均匀扩张。
在方法2下,CCOD表示在以下等式4中。本文的CCOD可以定义为褶(fold)或褶皱(pleat)的长度或LF、导管之金属线的外径、ODIM以及骨架壁厚度的函数,如下
CCOD(方法2)=等式4
等式4计算来自两个打开的褶直接穿过彼此情况的CCOD,而等式3计算基于单个打开褶的CCOD。例如,对于使用6mm标称球囊OD(5褶球囊导管)V59骨架,CCOD(方法2)如下计算
T支杆=0.28mm
ODIM=1.05mm
CCOD=2×(0.60mm+0.28mm)+1.05mm=2.81mm(0.11英寸)
方法2可以认为是CCOD的更保守估计。
等式3和4在相对低膨胀压力(仅拆开球囊如数个大气压力)是有效的。还可以施加真空压力帮助球囊再折叠,其应当提高均匀扩张的CCOD。然而,我们必须考虑抽出球囊末端以帮助骨架保持力(这种情况下,可能不希望使用真空压力来帮助球囊褶再折叠)。
现在将参考图4-7描述根据本公开的卷曲骨架的性质。该骨架的另外方面描述于美国申请号13/015,474(案卷号104584.10)。
参考图4,骨架式样200包括纵向间隔的由支杆230形成的环212。环212通过一些连接件234与邻近环连接,各自延伸平行于轴A-A。在骨架式样(式样200)的该第一实施方案中,四个连接件234将内部环212(指在图4中左右均有环的环)连接至相互邻近的两个环的每一个。这样,环212b通过4个连接件234连接至环212c并且通过4个连接件234连接至环212a。环212d是末端环,其仅与图4中其左侧的环连接。
环212由在冠部207、209和210处连接的支杆230形成。连接件234在冠部209(W-冠部)处和冠部210(Y-冠部)处与支杆230连接。冠部207(自由-冠部)没有与其连接的连接件234。优选地,从冠部207、209和210延伸的与冠部中心成恒定角度的支杆230,即环212,呈近似Z字形(zig-zag)的形状,与式样200的正弦曲线(sinusoidal)相对,不过在其他实施方案中也构思了具有弯曲支杆的环。这样,在该实施方案中,环212高度(即,相邻冠部207与209/210之间的纵向距离)可以从在冠部连接的两根支杆230的长度和冠部角θ导出。在一些实施方案中,不同冠部处的角θ会变化,取决于连接件234是连接至自由或无连接冠部、W-冠部还是Y-冠部。
环212的Z字形变化基本绕骨架的周部(即沿着图4中的B-B方向)发生。支杆212中心轴(centroidal axe)基本位于与支架的纵轴大约相同的径向距离上。理想地,在卷曲和展开期间,形成环的支杆间的基本上所有的相对运动也是轴向发生,而不是径向发生。但是,如下面所详细解释的,由于错位和/或所施加的不均匀径向载荷,聚合物骨架通常不以这种方式变形。
环212能够在卷曲过程中收缩至较小的直径,并且在血管内的展开过程中扩展至较大直径。根据本公开的一方面,卷曲前的直径(例如轴向和径向扩展的管的直径,骨架切割自所述管)总是大于递送球囊在膨胀时可以或能够产生的最大扩展骨架直径。根据一个实施方案,卷曲前的直径大于骨架的扩展直径,甚至当递送球囊为高膨胀、或膨胀超过球囊导管的最大使用直径时。
式样200包括四个连接件237(每个末端两个,图4中仅示出一个末端),所述四根连接件237具有在每个由连接件237形成的横向间隔的孔对中接纳不透射线材料的结构。这些连接件以在卷曲期间避免干扰连接件上方支杆折叠的方式构造,如下文详细解释的那样,这对于能够卷曲到约为最多Dmin直径的骨架、或对于在卷曲时实际上没有空间可供不透射线标志物支撑结构使用的骨架,是必要的。
图6描绘了与式样200相关的封闭单元元件的重复式样的方面。图6示出了以虚线框VB为界的式样200的部分。在其中示出了单元204。垂直轴线基准由轴B-B和纵轴A-A表示。在式样200中设有由每对环212形成的四个单元204,例如,四个单元204由环212b和212c以及连接该环对的连接件234形成,另一组四个单元204由环212a和212b以及连接该环对的连接件形成,等。
参见图6,单元204的空间236以示出的纵向隔开的环212b和212c部分以及周向隔开且平行的连接环212b和212c的连接件234a和234c为界。图4中连接件234b和234d分别与单元204右边和左边的相邻环连接。连接件234b在W-冠部209处连接至单元204。连接件234d在Y-冠部210连接至单元204。“Y-冠部”指其中在支杆230和连接件234d之间延伸的角为钝角(大于90度)的冠部。“W-冠部”指其中在支撑230和连接件234d之间延伸的角为锐角(小于90度)的冠部。对于单元204,在每个Y-冠部与W-冠部之间仅存在一个自由冠部。
图5B中单元204的其他方面包括对于各个冠部207、209和210的角。那些通常彼此不相等的角(见例如具有式样200的骨架的“V59”实施方案的图7)在图6中被标识为分别与冠部207、209和210相关的角267、269和2680。对于具有式样200的骨架,支杆230具有支杆宽度261和支杆长度266,冠部207、209、210具有冠部宽度270,而且连接件234具有连接件宽度261。每个环212具有环高度265。在冠部处的半径通常彼此不相等。在图6中,冠部的半径被标识为内半径262和外半径263。
单元204可以被认为是W闭合单元元件。空间236以类似于字母“W”的单元204为界。
在图6中,W单元204关于轴B-B和A-A是对称的。W单元204的特征在于在连接件234之间具有不超过一个冠部207。因此,对于式样200的每个闭合单元,Y-冠部或W-冠部总是位于每个冠部207之间。从这层意义上说,式样200可以被理解为具有重复的闭合单元式样,每个具有不多于一个未被连接件234支撑的冠部。
根据式样200的骨架比具有更少的连接性连接件构造的骨架更硬。根据式样200的骨架在轴向和纵向弯曲中更硬,因为使用了更多连接件236。然而,提高的刚度可能并不是所期望的。较大的刚度比刚度较小的骨架能造成更大的裂缝形成。例如,由附加的连接件所提高的刚度能在由附加的连接件234相互连接的环上诱发更多的应力,尤其当骨架承受组合的弯曲(环相对于彼此运动)和径向压缩和/或箍缩(pinching)(压溃,crushing)时。连接件234的存在除了使得环更硬之外,还将额外的载荷路径引入环中。
根据在图6中举例说明的具有W单元之骨架的一个实施方案的要素示于表7中。PLLA骨架的这些性质包括具有减小冠部形成之半径类型的W单元。所述半径rb为约0.00025英寸,其对应于可通过激光形成的最小半径。所述0.00025英寸半径并非构思作为靶半径或对半径尺寸的限制,尽管其已经产生该实施方案的所期望结果。相反,构思的是,半径可以尽可能的接近零以减小的剖面尺寸。因此,如将会被本领域的技术人员理解,在所述实施方案中半径可以为约0.00025(取决于切割工具)、大于该半径或小于该半径,以根据本公开实践本发明。例如构思构思的是,可以选择半径以根据期望减小卷曲的尺寸。出于本公开的目的,内径为约零意指形成冠部结构的工具的可能的最小化半径。根据一些实施方案的内径意指允许距离S减小至0的内径,即当骨架被卷曲时允许其临近和/或相互接触。
根据图4-6的骨架表现高度的压溃恢复性,这是外周植入骨架期望的属性。所述骨架当压溃至其初始直径的约33%时,具有超过约90%的压溃恢复能力,并且在偶然的压溃事件(例如,少于1分钟)之后压溃至其初始直径的约50%时,具有超过约80%的压溃恢复能力;和/或当压溃至其初始直径的约25%时,具有超过约90%的压溃恢复能力,并且当处于较长的持续压溃时期(例如约1分钟至5分钟,或长于约5分钟)压溃至其初始直径的约50%时,具有超过约80%的压溃恢复能力。适合用于外周骨架的其他骨架的性质是冠部角为95度至105度、或小于115度。
本发明的举例说明之实施方案的以上描述不旨在穷举或限制本发明为所公开的精确形式。尽管出于举例说明目的本文描述了本发明的特定实施方案和实例,相关领域的技术人员将会认识到在本发明范围内的多种修改是可能的。
可以根据以上详细描述对本发明做出这些修改。在权利要求书中使用的术语不应当被解释为将本发明限制为在本说明书中公开的具体实施方案,相反,本发明的范围将完全由权利要求书确定,其可以根据解释权利要求的既定原则来解释。
Claims (19)
1.一种卷曲方法,包括以下步骤:
提供由包含聚合物的经扩张的管形成的骨架,所述骨架具有相互连接的封闭单元的网络,
将骨架卷曲至球囊导管,所述骨架具有卷曲前直径和最终卷曲直径,其中卷曲前直径与最终卷曲直径的比例为至少3∶1,包括以下步骤:
将骨架直径从卷曲前直径减小至中间直径,所述中间直径小于卷曲前直径的约30%,
将所述骨架减小至所述中间直径后,将直径减小至最终卷曲直径并对球囊加压,以及
仅在骨架已经获得中间卷曲直径之后且在骨架获得最终卷曲直径之前开始进行球囊加压。
2.根据权利要求1所述的方法,还包括以下步骤:将骨架减小至第一中间直径,从卷曲机构移出骨架,使骨架返回至卷曲机构,然后将直径减小至第二中间直径,所述第二中间直径为卷曲前直径的约30%。
3.根据权利要求1所述的方法,其中在骨架直径从中间直径减小至最终卷曲直径期间施加球囊压力。
4.根据权利要求1所述的方法,其中卷曲前直径与最终卷曲直径的比例为至少4∶1。
5.根据权利要求1所述的方法,其中所述骨架具有不多于4个连接体元件使骨架的相邻环相互连接。
6.根据权利要求5所述的方法,其中所述连接体元件沿与所述骨架纵轴平行的方向延伸。
7.根据权利要求1所述的方法,其中球囊压力为约50psi。
8.根据权利要求1所述的方法,其中所述骨架包含PLLA。
9.根据权利要求1所述的方法,其中所述聚合物的特征在于玻璃化转变温度范围具有下限TG-low并且卷曲在TG-low以下约5至15度的温度下进行。
10.一种卷曲方法,包括以下步骤:
提供由包含PLLA的经扩张的管形成的骨架,所述PLLA的特征在于玻璃化转变温度范围具有下限TG-low,所述骨架具有相互连接的骨架元件和对称的封闭单元的网络,所述骨架元件包含90度至115度的冠部角并且所述封闭单元具有单一的W和Y冠部,
在TG-low以下约5至15度的卷曲温度下将骨架卷曲至球囊导管,所述骨架具有卷曲前直径和最终卷曲直径,包括以下步骤:
将骨架直径从卷曲前直径减小至中间直径,所述中间直径小于卷曲前直径的约30%,以及
将所述骨架减小至所述中间直径后,将直径减小至最终卷曲直径并对球囊加压,
其中所述球囊仅在骨架获得临界卷曲直径后被加压;以及其中当扩张时,所述骨架当压溃至其初始直径的约50%时具有超过约80%的压溃恢复性。
11.根据权利要求10所述的方法,其中所述骨架包括零半径冠部。
12.根据权利要求10所述的方法,其中所述骨架具有不多于4个连接体元件使骨架的相邻环相互连接。
14.根据权利要求13所述的方法,其中CCOD分别为约0.126英寸和0.11英寸。
15.根据权利要求13所述的方法,其中仅在所述骨架已经达到卷曲前直径的约30%之后施加球囊压力。
16.根据权利要求13所述的方法,其中仅在骨架直径小于卷曲前直径的约40%之后施加球囊压力。
17.根据权利要求13所述的方法,其中所述球囊具有五个褶并且所述球囊的标称经扩张直径为约6.0mm。
18.根据权利要求13所述的方法,其中所述骨架的支杆厚度为0.008英寸至0.011英寸。
19.根据权利要求13所述的方法,其中卷曲前直径(SDpc)满足不等式1.1×(SDi)×(1.2)-1≤SDpc≤1.7×(SDi)×(1.2)-1,其中SDi是球囊的标称膨胀直径。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610121369.7A CN105796221B (zh) | 2011-07-29 | 2012-06-08 | 用于卷曲的方法 |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/194,162 | 2011-07-29 | ||
US13/194,162 US8726483B2 (en) | 2011-07-29 | 2011-07-29 | Methods for uniform crimping and deployment of a polymer scaffold |
PCT/US2012/041692 WO2013019315A2 (en) | 2011-07-29 | 2012-06-08 | Methods for uniform crimping and deployment of a polymer scaffold |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610121369.7A Division CN105796221B (zh) | 2011-07-29 | 2012-06-08 | 用于卷曲的方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103826575A true CN103826575A (zh) | 2014-05-28 |
CN103826575B CN103826575B (zh) | 2016-04-13 |
Family
ID=46317535
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610121369.7A Active CN105796221B (zh) | 2011-07-29 | 2012-06-08 | 用于卷曲的方法 |
CN201280037830.0A Active CN103826575B (zh) | 2011-07-29 | 2012-06-08 | 用于均匀卷曲和展开聚合物骨架的方法 |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610121369.7A Active CN105796221B (zh) | 2011-07-29 | 2012-06-08 | 用于卷曲的方法 |
Country Status (6)
Country | Link |
---|---|
US (4) | US8726483B2 (zh) |
EP (1) | EP2736458B1 (zh) |
JP (1) | JP6069770B2 (zh) |
CN (2) | CN105796221B (zh) |
IN (1) | IN2014CN01437A (zh) |
WO (1) | WO2013019315A2 (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108836568A (zh) * | 2018-07-12 | 2018-11-20 | 苏州茵络医疗器械有限公司 | 一种球扩覆膜支架 |
CN112512463A (zh) * | 2018-06-11 | 2021-03-16 | 雅培心血管系统有限公司 | 聚合物支架结构均匀卷曲和展开的方法 |
CN115120395A (zh) * | 2022-06-15 | 2022-09-30 | 首都医科大学附属北京天坛医院 | 一种颅内动脉闭塞病变专用血管支架和球囊导管 |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104771248B (zh) | 2008-07-21 | 2018-06-05 | 爱德华兹生命科学卡迪尔克有限责任公司 | 可重新定位的腔内支撑结构及其应用 |
US8808353B2 (en) * | 2010-01-30 | 2014-08-19 | Abbott Cardiovascular Systems Inc. | Crush recoverable polymer scaffolds having a low crossing profile |
US8568471B2 (en) | 2010-01-30 | 2013-10-29 | Abbott Cardiovascular Systems Inc. | Crush recoverable polymer scaffolds |
US8539663B2 (en) | 2010-08-23 | 2013-09-24 | Abbott Cardiovascular Systems Inc. | Reducing crimping damage to polymer scaffold |
US9199408B2 (en) | 2012-04-03 | 2015-12-01 | Abbott Cardiovascular Systems Inc. | Uniform crimping and deployment methods for polymer scaffold |
US8726483B2 (en) | 2011-07-29 | 2014-05-20 | Abbott Cardiovascular Systems Inc. | Methods for uniform crimping and deployment of a polymer scaffold |
US9724219B2 (en) | 2012-10-04 | 2017-08-08 | Abbott Cardiovascular Systems Inc. | Method of uniform crimping and expansion of medical devices |
US9956097B2 (en) | 2012-10-23 | 2018-05-01 | Abbott Cardiovascular Systems Inc. | Methods for vascular restoration therapy |
US9662231B2 (en) | 2013-03-15 | 2017-05-30 | Abbott Cardiovascular Systems Inc. | Polymer scaffolds having enhanced axial fatigue properties |
WO2015070249A1 (en) * | 2013-11-11 | 2015-05-14 | Jenesis Surgical, Llc | Systems and methods for manufacturing a stent frame |
WO2016044788A2 (en) | 2014-09-18 | 2016-03-24 | Abbott Cardiovascular Systems Inc. | Thermal processing of polymer scaffolds |
US9931787B2 (en) * | 2014-09-18 | 2018-04-03 | Abbott Cardiovascular Systems Inc. | Crimping polymer scaffolds |
US11628077B2 (en) * | 2016-10-31 | 2023-04-18 | Razmodics Llc | Post deployment radial force recovery of biodegradable scaffolds |
US10660773B2 (en) | 2017-02-14 | 2020-05-26 | Abbott Cardiovascular Systems Inc. | Crimping methods for thin-walled scaffolds |
CN107625567B (zh) * | 2017-09-25 | 2023-12-19 | 上海百心安生物技术股份有限公司 | 一种卷曲装置和卷曲方法 |
US10555825B2 (en) | 2017-11-09 | 2020-02-11 | Abbott Cardiovascular Systems Inc. | Rotation of a medical device during crimping |
CN111175144B (zh) * | 2020-01-22 | 2023-02-17 | 合肥维信诺科技有限公司 | 卷曲测试方法和设备 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1998007390A1 (en) * | 1996-08-23 | 1998-02-26 | Scimed Life Systems, Inc. | Stent delivery system having stent securement apparatus |
US20040260379A1 (en) * | 2003-06-23 | 2004-12-23 | Jagger Karl A. | Asymmetric stent delivery system with proximal edge protection and method of manufacture thereof |
CN2787169Y (zh) * | 2004-09-08 | 2006-06-14 | 陈明志 | 具有补偿式机构的血管支架 |
US20070006441A1 (en) * | 2005-04-12 | 2007-01-11 | Advanced Cardiovascular Systems, Inc. | Method for retaining a vascular stent on a catheter |
US20070289117A1 (en) * | 2006-06-19 | 2007-12-20 | Bin Huang | Methods for improving stent retention on a balloon catheter |
CN101175454A (zh) * | 2005-04-29 | 2008-05-07 | 动脉再塑技术公司 | 支架卷曲方法 |
CN101394808A (zh) * | 2004-03-31 | 2009-03-25 | 梅林Md私人有限公司 | 一种医疗设备 |
US20100323091A1 (en) * | 2009-06-23 | 2010-12-23 | Abbott Cardiovascular Systems Inc. | Methods To Increase Fracture Resistance Of A Drug-Eluting Medical Device |
Family Cites Families (550)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2697863A (en) | 1952-04-09 | 1954-12-28 | Marietta A Moser | Pin fastener for furniture covers and the like |
US3476463A (en) | 1965-05-11 | 1969-11-04 | Perkin Elmer Corp | Coherent light optical system yielding an output beam of desired intensity distribution at a desired equiphase surface |
GB1237035A (en) | 1969-08-20 | 1971-06-30 | Tsi Travmatologii I Ortopedii | Magnesium-base alloy for use in bone surgery |
US3900632A (en) | 1970-02-27 | 1975-08-19 | Kimberly Clark Co | Laminate of tissue and random laid continuous filament web |
US3839743A (en) | 1972-04-21 | 1974-10-08 | A Schwarcz | Method for maintaining the normal integrity of blood |
US4104410A (en) | 1973-12-21 | 1978-08-01 | Malecki George J | Processing of green vegetables for color retention in canning |
US4110497A (en) | 1976-07-02 | 1978-08-29 | Snyder Manufacturing Co., Ltd. | Striped laminate and method and apparatus for making same |
JPS6037735B2 (ja) | 1978-10-18 | 1985-08-28 | 住友電気工業株式会社 | 人工血管 |
DE2928007A1 (de) | 1979-07-11 | 1981-01-15 | Riess Guido Dr | Knochen-implantatkoerper fuer prothesen und knochenverbindungsstuecke sowie verfahren zu seiner herstellung |
US4346028A (en) | 1979-12-14 | 1982-08-24 | Monsanto Company | Asbestiform crystalline calcium sodium or lithium phosphate, preparation and compositions |
DE3019996A1 (de) | 1980-05-24 | 1981-12-03 | Institute für Textil- und Faserforschung Stuttgart, 7410 Reutlingen | Hohlorgan |
US4902289A (en) | 1982-04-19 | 1990-02-20 | Massachusetts Institute Of Technology | Multilayer bioreplaceable blood vessel prosthesis |
US4517687A (en) | 1982-09-15 | 1985-05-21 | Meadox Medicals, Inc. | Synthetic woven double-velour graft |
US4656083A (en) | 1983-08-01 | 1987-04-07 | Washington Research Foundation | Plasma gas discharge treatment for improving the biocompatibility of biomaterials |
US4594407A (en) | 1983-09-20 | 1986-06-10 | Allied Corporation | Prosthetic devices derived from krebs-cycle dicarboxylic acids and diols |
US5197977A (en) | 1984-01-30 | 1993-03-30 | Meadox Medicals, Inc. | Drug delivery collagen-impregnated synthetic vascular graft |
US4633873A (en) | 1984-04-26 | 1987-01-06 | American Cyanamid Company | Surgical repair mesh |
US4596574A (en) | 1984-05-14 | 1986-06-24 | The Regents Of The University Of California | Biodegradable porous ceramic delivery system for bone morphogenetic protein |
US4886870A (en) | 1984-05-21 | 1989-12-12 | Massachusetts Institute Of Technology | Bioerodible articles useful as implants and prostheses having predictable degradation rates |
CH671337A5 (zh) | 1984-06-19 | 1989-08-31 | Ceskoslovenska Akademie Ved | |
US4879135A (en) | 1984-07-23 | 1989-11-07 | University Of Medicine And Dentistry Of New Jersey | Drug bonded prosthesis and process for producing same |
ES8705239A1 (es) | 1984-12-05 | 1987-05-01 | Medinvent Sa | Un dispositivo para implantar,mediante insercion en un lugarde dificil acceso, una protesis sustancialmente tubular y radialmente expandible |
US4718907A (en) | 1985-06-20 | 1988-01-12 | Atrium Medical Corporation | Vascular prosthesis having fluorinated coating with varying F/C ratio |
US4818559A (en) | 1985-08-08 | 1989-04-04 | Sumitomo Chemical Company, Limited | Method for producing endosseous implants |
US4733665C2 (en) | 1985-11-07 | 2002-01-29 | Expandable Grafts Partnership | Expandable intraluminal graft and method and apparatus for implanting an expandable intraluminal graft |
US5061281A (en) | 1985-12-17 | 1991-10-29 | Allied-Signal Inc. | Bioresorbable polymers and implantation devices thereof |
US4743252A (en) | 1986-01-13 | 1988-05-10 | Corvita Corporation | Composite grafts |
DE3786721D1 (de) | 1986-02-24 | 1993-09-02 | Fischell Robert | Vorrichtung zum aufweisen von blutgefaessen, sowie system zu deren einfuehrung. |
US4878906A (en) | 1986-03-25 | 1989-11-07 | Servetus Partnership | Endoprosthesis for repairing a damaged vessel |
EP0241838B1 (en) | 1986-04-07 | 1992-04-15 | Agency Of Industrial Science And Technology | Antithrombogenic material |
US4740207A (en) | 1986-09-10 | 1988-04-26 | Kreamer Jeffry W | Intralumenal graft |
US4723549A (en) | 1986-09-18 | 1988-02-09 | Wholey Mark H | Method and apparatus for dilating blood vessels |
US4722335A (en) | 1986-10-20 | 1988-02-02 | Vilasi Joseph A | Expandable endotracheal tube |
US4800882A (en) | 1987-03-13 | 1989-01-31 | Cook Incorporated | Endovascular stent and delivery system |
US4816339A (en) | 1987-04-28 | 1989-03-28 | Baxter International Inc. | Multi-layered poly(tetrafluoroethylene)/elastomer materials useful for in vivo implantation |
US5059211A (en) | 1987-06-25 | 1991-10-22 | Duke University | Absorbable vascular stent |
US5527337A (en) | 1987-06-25 | 1996-06-18 | Duke University | Bioabsorbable stent and method of making the same |
DK530787D0 (da) | 1987-10-09 | 1987-10-09 | Bukh Meditec | Indretning til indfoering i en legemshulhed |
US4886062A (en) | 1987-10-19 | 1989-12-12 | Medtronic, Inc. | Intravascular radially expandable stent and method of implant |
US4877030A (en) | 1988-02-02 | 1989-10-31 | Andreas Beck | Device for the widening of blood vessels |
US5192311A (en) | 1988-04-25 | 1993-03-09 | Angeion Corporation | Medical implant and method of making |
US4994298A (en) | 1988-06-07 | 1991-02-19 | Biogold Inc. | Method of making a biocompatible prosthesis |
US5502158A (en) | 1988-08-08 | 1996-03-26 | Ecopol, Llc | Degradable polymer composition |
US5328471A (en) | 1990-02-26 | 1994-07-12 | Endoluminal Therapeutics, Inc. | Method and apparatus for treatment of focal disease in hollow tubular organs and other tissue lumens |
AU4191989A (en) | 1988-08-24 | 1990-03-23 | Marvin J. Slepian | Biodegradable polymeric endoluminal sealing |
US5019090A (en) | 1988-09-01 | 1991-05-28 | Corvita Corporation | Radially expandable endoprosthesis and the like |
CA1322628C (en) | 1988-10-04 | 1993-10-05 | Richard A. Schatz | Expandable intraluminal graft |
US5085629A (en) | 1988-10-06 | 1992-02-04 | Medical Engineering Corporation | Biodegradable stent |
FI85223C (fi) | 1988-11-10 | 1992-03-25 | Biocon Oy | Biodegraderande kirurgiska implant och medel. |
US4977901A (en) | 1988-11-23 | 1990-12-18 | Minnesota Mining And Manufacturing Company | Article having non-crosslinked crystallized polymer coatings |
CA2004833A1 (en) | 1988-12-08 | 1990-06-08 | Leonard Armand Trudell | Prosthesis of foam polyurethane and collagen and uses thereof |
CH678393A5 (zh) | 1989-01-26 | 1991-09-13 | Ulrich Prof Dr Med Sigwart | |
JP2927942B2 (ja) | 1989-01-27 | 1999-07-28 | オーストラリアン メンブレイン アンド バイオテクノロジィ リサーチ インスティチュート | 受容体膜およびイオノホアのゲーテイング |
US5163958A (en) | 1989-02-02 | 1992-11-17 | Cordis Corporation | Carbon coated tubular endoprosthesis |
US5289831A (en) | 1989-03-09 | 1994-03-01 | Vance Products Incorporated | Surface-treated stent, catheter, cannula, and the like |
NZ228382A (en) | 1989-03-17 | 1992-08-26 | Carter Holt Harvey Plastic Pro | Drug administering coil-like device for insertion in body cavity of animal |
US5108755A (en) | 1989-04-27 | 1992-04-28 | Sri International | Biodegradable composites for internal medical use |
US5100429A (en) | 1989-04-28 | 1992-03-31 | C. R. Bard, Inc. | Endovascular stent and delivery system |
US4990158A (en) | 1989-05-10 | 1991-02-05 | United States Surgical Corporation | Synthetic semiabsorbable tubular prosthesis |
DE59009894D1 (de) | 1989-06-09 | 1996-01-04 | Boehringer Ingelheim Kg | Resorbierbare Formkörper und Verfahren zu ihrer Herstellung. |
US5084065A (en) | 1989-07-10 | 1992-01-28 | Corvita Corporation | Reinforced graft assembly |
US5971954A (en) | 1990-01-10 | 1999-10-26 | Rochester Medical Corporation | Method of making catheter |
EP0441516B1 (en) | 1990-02-08 | 1995-03-29 | Howmedica Inc. | Inflatable stent |
US5545208A (en) | 1990-02-28 | 1996-08-13 | Medtronic, Inc. | Intralumenal drug eluting prosthesis |
US5156623A (en) | 1990-04-16 | 1992-10-20 | Olympus Optical Co., Ltd. | Sustained release material and method of manufacturing the same |
US5123917A (en) | 1990-04-27 | 1992-06-23 | Lee Peter Y | Expandable intraluminal vascular graft |
AU7909691A (en) | 1990-05-14 | 1991-12-10 | Gary R. Jernberg | Surgical implant and method incorporating chemotherapeutic agents |
US5290271A (en) | 1990-05-14 | 1994-03-01 | Jernberg Gary R | Surgical implant and method for controlled release of chemotherapeutic agents |
EP0528993A1 (en) | 1990-05-18 | 1993-03-03 | STACK, Richard S. | Intraluminal stent |
US5279594A (en) | 1990-05-23 | 1994-01-18 | Jackson Richard R | Intubation devices with local anesthetic effect for medical use |
JPH0433791A (ja) | 1990-05-29 | 1992-02-05 | Matsushita Electric Ind Co Ltd | レーザ加工装置 |
US6060451A (en) | 1990-06-15 | 2000-05-09 | The National Research Council Of Canada | Thrombin inhibitors based on the amino acid sequence of hirudin |
US5236447A (en) | 1990-06-29 | 1993-08-17 | Nissho Corporation | Artificial tubular organ |
US5342395A (en) | 1990-07-06 | 1994-08-30 | American Cyanamid Co. | Absorbable surgical repair devices |
US5112457A (en) | 1990-07-23 | 1992-05-12 | Case Western Reserve University | Process for producing hydroxylated plasma-polymerized films and the use of the films for enhancing the compatiblity of biomedical implants |
US5455040A (en) | 1990-07-26 | 1995-10-03 | Case Western Reserve University | Anticoagulant plasma polymer-modified substrate |
SE9102448D0 (sv) | 1990-08-28 | 1991-08-26 | Meadox Medicals Inc | Ravel-resistant, self-supporting woven graft |
AU659097B2 (en) | 1990-08-28 | 1995-05-11 | Meadox Medicals, Inc. | Self-supporting woven vascular graft |
US5108417A (en) | 1990-09-14 | 1992-04-28 | Interface Biomedical Laboratories Corp. | Anti-turbulent, anti-thrombogenic intravascular stent |
US5163952A (en) | 1990-09-14 | 1992-11-17 | Michael Froix | Expandable polymeric stent with memory and delivery apparatus and method |
US5258020A (en) | 1990-09-14 | 1993-11-02 | Michael Froix | Method of using expandable polymeric stent with memory |
DE69116130T2 (de) | 1990-10-18 | 1996-05-15 | Ho Young Song | Selbstexpandierender, endovaskulärer dilatator |
US5104410A (en) | 1990-10-22 | 1992-04-14 | Intermedics Orthopedics, Inc | Surgical implant having multiple layers of sintered porous coating and method |
JPH06506366A (ja) | 1990-12-06 | 1994-07-21 | ダブリュ.エル.ゴア アンド アソシエーツ,インコーポレイティド | 植設可能な生体吸収性部材 |
US5163951A (en) | 1990-12-27 | 1992-11-17 | Corvita Corporation | Mesh composite graft |
JP3199124B2 (ja) | 1990-12-28 | 2001-08-13 | 株式会社ニデック | レーザアブレーション装置 |
CS277367B6 (en) | 1990-12-29 | 1993-01-13 | Krajicek Milan | Three-layered vascular prosthesis |
EP0525210A4 (en) | 1991-02-20 | 1993-07-28 | Tdk Corporation | Composite bio-implant and production method therefor |
SE9100610D0 (sv) | 1991-03-04 | 1991-03-04 | Procordia Ortech Ab | Bioresorbable material for medical use |
WO1992015342A1 (en) | 1991-03-08 | 1992-09-17 | Keiji Igaki | Stent for vessel, structure of holding said stent, and device for mounting said stent |
US5383925A (en) | 1992-09-14 | 1995-01-24 | Meadox Medicals, Inc. | Three-dimensional braided soft tissue prosthesis |
SE9101752D0 (sv) | 1991-06-10 | 1991-06-10 | Procordia Ortech Ab | Method of producing a microstructure in a bioresorbable element |
US5356433A (en) | 1991-08-13 | 1994-10-18 | Cordis Corporation | Biocompatible metal surfaces |
US5811447A (en) | 1993-01-28 | 1998-09-22 | Neorx Corporation | Therapeutic inhibitor of vascular smooth muscle cells |
US6515009B1 (en) | 1991-09-27 | 2003-02-04 | Neorx Corporation | Therapeutic inhibitor of vascular smooth muscle cells |
WO1993006792A1 (en) | 1991-10-04 | 1993-04-15 | Scimed Life Systems, Inc. | Biodegradable drug delivery vascular stent |
US5500013A (en) | 1991-10-04 | 1996-03-19 | Scimed Life Systems, Inc. | Biodegradable drug delivery vascular stent |
US5234457A (en) | 1991-10-09 | 1993-08-10 | Boston Scientific Corporation | Impregnated stent |
US5282860A (en) | 1991-10-16 | 1994-02-01 | Olympus Optical Co., Ltd. | Stent tube for medical use |
DE69230040T2 (de) | 1991-10-21 | 2000-01-05 | Peptech Ltd | Biokompatibles implantat für die zeitliche abstimmung der ovulation von stuten |
CA2079417C (en) | 1991-10-28 | 2003-01-07 | Lilip Lau | Expandable stents and method of making same |
US5167614A (en) | 1991-10-29 | 1992-12-01 | Medical Engineering Corporation | Prostatic stent |
US5756476A (en) | 1992-01-14 | 1998-05-26 | The United States Of America As Represented By The Department Of Health And Human Services | Inhibition of cell proliferation using antisense oligonucleotides |
CA2087132A1 (en) | 1992-01-31 | 1993-08-01 | Michael S. Williams | Stent capable of attachment within a body lumen |
US5573934A (en) | 1992-04-20 | 1996-11-12 | Board Of Regents, The University Of Texas System | Gels for encapsulation of biological materials |
EP0633798B1 (en) | 1992-03-31 | 2003-05-07 | Boston Scientific Corporation | Vascular filter |
DE4222380A1 (de) | 1992-07-08 | 1994-01-13 | Ernst Peter Prof Dr M Strecker | In den Körper eines Patienten perkutan implantierbare Endoprothese |
US5306294A (en) | 1992-08-05 | 1994-04-26 | Ultrasonic Sensing And Monitoring Systems, Inc. | Stent construction of rolled configuration |
US5514379A (en) | 1992-08-07 | 1996-05-07 | The General Hospital Corporation | Hydrogel compositions and methods of use |
AU664913B2 (en) | 1992-08-13 | 1995-12-07 | Implico B.V. | A hydrogel composition and methods of making it |
US5853408A (en) | 1992-08-20 | 1998-12-29 | Advanced Cardiovascular Systems, Inc. | In-vivo modification of the mechanical properties of surgical devices |
US5342621A (en) | 1992-09-15 | 1994-08-30 | Advanced Cardiovascular Systems, Inc. | Antithrombogenic surface |
US5770609A (en) | 1993-01-28 | 1998-06-23 | Neorx Corporation | Prevention and treatment of cardiovascular pathologies |
US5830461A (en) | 1992-11-25 | 1998-11-03 | University Of Pittsburgh Of The Commonwealth System Of Higher Education | Methods for promoting wound healing and treating transplant-associated vasculopathy |
US5342348A (en) | 1992-12-04 | 1994-08-30 | Kaplan Aaron V | Method and device for treating and enlarging body lumens |
US5380976A (en) | 1992-12-11 | 1995-01-10 | Hypertherm, Inc. | Process for high quality plasma arc and laser cutting of stainless steel and aluminum |
EP0604022A1 (en) | 1992-12-22 | 1994-06-29 | Advanced Cardiovascular Systems, Inc. | Multilayered biodegradable stent and method for its manufacture |
US5443458A (en) | 1992-12-22 | 1995-08-22 | Advanced Cardiovascular Systems, Inc. | Multilayered biodegradable stent and method of manufacture |
US5981568A (en) | 1993-01-28 | 1999-11-09 | Neorx Corporation | Therapeutic inhibitor of vascular smooth muscle cells |
JP3583801B2 (ja) | 1993-03-03 | 2004-11-04 | ボストン サイエンティフィック リミテッド | 管腔用のステントおよび移植体 |
WO1994021196A2 (en) | 1993-03-18 | 1994-09-29 | C.R. Bard, Inc. | Endovascular stents |
FI92465C (fi) | 1993-04-14 | 1994-11-25 | Risto Tapani Lehtinen | Menetelmä endo-osteaalisten materiaalien käsittelemiseksi |
US5441515A (en) | 1993-04-23 | 1995-08-15 | Advanced Cardiovascular Systems, Inc. | Ratcheting stent |
US5464650A (en) | 1993-04-26 | 1995-11-07 | Medtronic, Inc. | Intravascular stent and method |
US5716981A (en) | 1993-07-19 | 1998-02-10 | Angiogenesis Technologies, Inc. | Anti-angiogenic compositions and methods of use |
EG20321A (en) | 1993-07-21 | 1998-10-31 | Otsuka Pharma Co Ltd | Medical material and process for producing the same |
DE69330132T2 (de) | 1993-07-23 | 2001-11-15 | Cook Inc., Bloomington | Flexibler stent mit einer aus einem materialbogen geformten konfiguration |
US5565215A (en) | 1993-07-23 | 1996-10-15 | Massachusettes Institute Of Technology | Biodegradable injectable particles for imaging |
AU677866B2 (en) | 1993-08-26 | 1997-05-08 | Board Of Trustees Of The University Of Illinois, The | Neural regeneration using human bone morphogenetic proteins |
ES2116384T3 (es) | 1993-10-20 | 1998-07-16 | Schneider Europ Ag | Endoprotesis. |
US5723004A (en) | 1993-10-21 | 1998-03-03 | Corvita Corporation | Expandable supportive endoluminal grafts |
US5389106A (en) | 1993-10-29 | 1995-02-14 | Numed, Inc. | Impermeable expandable intravascular stent |
JPH07124766A (ja) | 1993-11-04 | 1995-05-16 | Hitachi Ltd | エキシマレーザ加工制御方法 |
US5599301A (en) | 1993-11-22 | 1997-02-04 | Advanced Cardiovascular Systems, Inc. | Motor control system for an automatic catheter inflation system |
SE9303977L (sv) | 1993-11-30 | 1995-01-09 | Corimed Gmbh | Förfarande för framställning av keramiskt implantatmaterial, företrädesvis hydroxylapatit uppvisande keramiskt implantatmaterial |
US5626611A (en) | 1994-02-10 | 1997-05-06 | United States Surgical Corporation | Composite bioabsorbable materials and surgical articles made therefrom |
US5556413A (en) | 1994-03-11 | 1996-09-17 | Advanced Cardiovascular Systems, Inc. | Coiled stent with locking ends |
EP0804249A2 (en) | 1994-03-15 | 1997-11-05 | Brown University Research Foundation | Polymeric gene delivery system |
US5599922A (en) | 1994-03-18 | 1997-02-04 | Lynx Therapeutics, Inc. | Oligonucleotide N3'-P5' phosphoramidates: hybridization and nuclease resistance properties |
EP0754242A4 (en) | 1994-03-18 | 1997-06-11 | Lynx Therapeutics Inc | SYNTHESIS AND SUBSTANCE, HYBRIDIZATION AND NUCLEASE-RESISTANT PROPERTIES OF OLIGONUCLEOTID-N3'-m (7) P5'-PHOSPHORAMIDATE |
US5726297A (en) | 1994-03-18 | 1998-03-10 | Lynx Therapeutics, Inc. | Oligodeoxyribonucleotide N3' P5' phosphoramidates |
US5656186A (en) | 1994-04-08 | 1997-08-12 | The Regents Of The University Of Michigan | Method for controlling configuration of laser induced breakdown and ablation |
US5399666A (en) | 1994-04-21 | 1995-03-21 | E. I. Du Pont De Nemours And Company | Easily degradable star-block copolymers |
DE69510986T2 (de) | 1994-04-25 | 1999-12-02 | Advanced Cardiovascular Systems, Inc. | Strahlungsundurchlässige Stentsmarkierungen |
CA2188563C (en) | 1994-04-29 | 2005-08-02 | Andrew W. Buirge | Stent with collagen |
US5629077A (en) | 1994-06-27 | 1997-05-13 | Advanced Cardiovascular Systems, Inc. | Biodegradable mesh and film stent |
US5670558A (en) | 1994-07-07 | 1997-09-23 | Terumo Kabushiki Kaisha | Medical instruments that exhibit surface lubricity when wetted |
US6007845A (en) | 1994-07-22 | 1999-12-28 | Massachusetts Institute Of Technology | Nanoparticles and microparticles of non-linear hydrophilic-hydrophobic multiblock copolymers |
US5554120A (en) | 1994-07-25 | 1996-09-10 | Advanced Cardiovascular Systems, Inc. | Polymer blends for use in making medical devices including catheters and balloons for dilatation catheters |
US5817327A (en) | 1994-07-27 | 1998-10-06 | The Trustees Of The University Of Pennsylvania | Incorporation of biologically active molecules into bioactive glasses |
US6015429A (en) | 1994-09-08 | 2000-01-18 | Gore Enterprise Holdings, Inc. | Procedures for introducing stents and stent-grafts |
US5593403A (en) | 1994-09-14 | 1997-01-14 | Scimed Life Systems Inc. | Method for modifying a stent in an implanted site |
US5578073A (en) | 1994-09-16 | 1996-11-26 | Ramot Of Tel Aviv University | Thromboresistant surface treatment for biomaterials |
US5649977A (en) | 1994-09-22 | 1997-07-22 | Advanced Cardiovascular Systems, Inc. | Metal reinforced polymer stent |
ATE198979T1 (de) | 1994-10-12 | 2001-02-15 | Focal Inc | Zielgerichte verabreichung mittels biologisch abbaubarer polymere |
US5765682A (en) | 1994-10-13 | 1998-06-16 | Menlo Care, Inc. | Restrictive package for expandable or shape memory medical devices and method of preventing premature change of same |
US5836965A (en) | 1994-10-19 | 1998-11-17 | Jendersee; Brad | Stent delivery and deployment method |
US5836964A (en) | 1996-10-30 | 1998-11-17 | Medinol Ltd. | Stent fabrication method |
IL115755A0 (en) | 1994-10-27 | 1996-01-19 | Medinol Ltd | X-ray visible stent |
US5707385A (en) | 1994-11-16 | 1998-01-13 | Advanced Cardiovascular Systems, Inc. | Drug loaded elastic membrane and method for delivery |
CA2301351C (en) | 1994-11-28 | 2002-01-22 | Advanced Cardiovascular Systems, Inc. | Method and apparatus for direct laser cutting of metal stents |
US5637113A (en) | 1994-12-13 | 1997-06-10 | Advanced Cardiovascular Systems, Inc. | Polymer film for wrapping a stent structure |
US6017577A (en) | 1995-02-01 | 2000-01-25 | Schneider (Usa) Inc. | Slippery, tenaciously adhering hydrophilic polyurethane hydrogel coatings, coated polymer substrate materials, and coated medical devices |
US5919570A (en) | 1995-02-01 | 1999-07-06 | Schneider Inc. | Slippery, tenaciously adhering hydrogel coatings containing a polyurethane-urea polymer hydrogel commingled with a poly(N-vinylpyrrolidone) polymer hydrogel, coated polymer and metal substrate materials, and coated medical devices |
US5876743A (en) | 1995-03-21 | 1999-03-02 | Den-Mat Corporation | Biocompatible adhesion in tissue repair |
US5605696A (en) | 1995-03-30 | 1997-02-25 | Advanced Cardiovascular Systems, Inc. | Drug loaded polymeric material and method of manufacture |
US6099562A (en) | 1996-06-13 | 2000-08-08 | Schneider (Usa) Inc. | Drug coating with topcoat |
US6120536A (en) | 1995-04-19 | 2000-09-19 | Schneider (Usa) Inc. | Medical devices with long term non-thrombogenic coatings |
US5837313A (en) | 1995-04-19 | 1998-11-17 | Schneider (Usa) Inc | Drug release stent coating process |
JP2795824B2 (ja) | 1995-05-12 | 1998-09-10 | オオタ株式会社 | チタン系インプラントの表面処理方法及び生体親和性チタン系インプラント |
US5603722A (en) | 1995-06-06 | 1997-02-18 | Quanam Medical Corporation | Intravascular stent |
US5954744A (en) | 1995-06-06 | 1999-09-21 | Quanam Medical Corporation | Intravascular stent |
US5820917A (en) | 1995-06-07 | 1998-10-13 | Medtronic, Inc. | Blood-contacting medical device and method |
US6129761A (en) | 1995-06-07 | 2000-10-10 | Reprogenesis, Inc. | Injectable hydrogel compositions |
US5591199A (en) | 1995-06-07 | 1997-01-07 | Porter; Christopher H. | Curable fiber composite stent and delivery system |
CA2178541C (en) | 1995-06-07 | 2009-11-24 | Neal E. Fearnot | Implantable medical device |
US5609629A (en) | 1995-06-07 | 1997-03-11 | Med Institute, Inc. | Coated implantable medical device |
US5667767A (en) | 1995-07-27 | 1997-09-16 | Micro Therapeutics, Inc. | Compositions for use in embolizing blood vessels |
GB9611437D0 (en) | 1995-08-03 | 1996-08-07 | Secr Defence | Biomaterial |
DK171865B1 (da) | 1995-09-11 | 1997-07-21 | Cook William Europ | Ekspanderbar endovasculær stent |
EP0765913B1 (en) | 1995-09-29 | 2002-08-28 | Dainippon Ink And Chemicals, Inc. | Process for the preparation of lactic acid-based polyester compositions |
US5830879A (en) | 1995-10-02 | 1998-11-03 | St. Elizabeth's Medical Center Of Boston, Inc. | Treatment of vascular injury using vascular endothelial growth factor |
US5736152A (en) | 1995-10-27 | 1998-04-07 | Atrix Laboratories, Inc. | Non-polymeric sustained release delivery system |
US5607442A (en) | 1995-11-13 | 1997-03-04 | Isostent, Inc. | Stent with improved radiopacity and appearance characteristics |
US6048964A (en) | 1995-12-12 | 2000-04-11 | Stryker Corporation | Compositions and therapeutic methods using morphogenic proteins and stimulatory factors |
ATE330644T1 (de) | 1995-12-18 | 2006-07-15 | Angiotech Biomaterials Corp | Vernetzten polymerisatmassen und verfahren für ihre verwendung |
DE69732794T2 (de) | 1996-01-05 | 2006-04-06 | Medtronic, Inc., Minneapolis | Expandierbare endoluminale prothesen |
US6150630A (en) | 1996-01-11 | 2000-11-21 | The Regents Of The University Of California | Laser machining of explosives |
JP2001502605A (ja) | 1996-01-30 | 2001-02-27 | メドトロニック,インコーポレーテッド | ステントを作るための物品および方法 |
CN1213316A (zh) | 1996-03-11 | 1999-04-07 | 富克尔公司 | 放射性核素及放射性医药品的聚合物输送 |
US6458096B1 (en) | 1996-04-01 | 2002-10-01 | Medtronic, Inc. | Catheter with autoinflating, autoregulating balloon |
US5824042A (en) | 1996-04-05 | 1998-10-20 | Medtronic, Inc. | Endoluminal prostheses having position indicating markers |
US6071266A (en) | 1996-04-26 | 2000-06-06 | Kelley; Donald W. | Lubricious medical devices |
US6241760B1 (en) | 1996-04-26 | 2001-06-05 | G. David Jang | Intravascular stent |
US6592617B2 (en) | 1996-04-30 | 2003-07-15 | Boston Scientific Scimed, Inc. | Three-dimensional braided covered stent |
US5670161A (en) | 1996-05-28 | 1997-09-23 | Healy; Kevin E. | Biodegradable stent |
US5733326A (en) | 1996-05-28 | 1998-03-31 | Cordis Corporation | Composite material endoprosthesis |
US5874165A (en) | 1996-06-03 | 1999-02-23 | Gore Enterprise Holdings, Inc. | Materials and method for the immobilization of bioactive species onto polymeric subtrates |
US5914182A (en) | 1996-06-03 | 1999-06-22 | Gore Hybrid Technologies, Inc. | Materials and methods for the immobilization of bioactive species onto polymeric substrates |
US5830178A (en) | 1996-10-11 | 1998-11-03 | Micro Therapeutics, Inc. | Methods for embolizing vascular sites with an emboilizing composition comprising dimethylsulfoxide |
GB9616032D0 (en) | 1996-07-31 | 1996-09-11 | Ici Plc | Cassette casing for thermal transfer printing dye ribbon |
US5800516A (en) | 1996-08-08 | 1998-09-01 | Cordis Corporation | Deployable and retrievable shape memory stent/tube and method |
US6123712A (en) * | 1996-08-23 | 2000-09-26 | Scimed Life Systems, Inc. | Balloon catheter with stent securement means |
US6344271B1 (en) | 1998-11-06 | 2002-02-05 | Nanoenergy Corporation | Materials and products using nanostructured non-stoichiometric substances |
US5855618A (en) | 1996-09-13 | 1999-01-05 | Meadox Medicals, Inc. | Polyurethanes grafted with polyethylene oxide chains containing covalently bonded heparin |
US5807404A (en) | 1996-09-19 | 1998-09-15 | Medinol Ltd. | Stent with variable features to optimize support and method of making such stent |
US5913871A (en) | 1996-09-25 | 1999-06-22 | Medtronic, Inc. | Balloon modification for improved stent fixation and deployment |
US6387121B1 (en) | 1996-10-21 | 2002-05-14 | Inflow Dynamics Inc. | Vascular and endoluminal stents with improved coatings |
EP0842729A1 (en) | 1996-10-21 | 1998-05-20 | Arterial Vascular Engineering, Inc. | Method and apparatus for laser processing of intravascular devices |
US5868781A (en) | 1996-10-22 | 1999-02-09 | Scimed Life Systems, Inc. | Locking stent |
US5833651A (en) | 1996-11-08 | 1998-11-10 | Medtronic, Inc. | Therapeutic intraluminal stents |
US5741881A (en) | 1996-11-25 | 1998-04-21 | Meadox Medicals, Inc. | Process for preparing covalently bound-heparin containing polyurethane-peo-heparin coating compositions |
US5877263A (en) | 1996-11-25 | 1999-03-02 | Meadox Medicals, Inc. | Process for preparing polymer coatings grafted with polyethylene oxide chains containing covalently bonded bio-active agents |
US5728751A (en) | 1996-11-25 | 1998-03-17 | Meadox Medicals, Inc. | Bonding bio-active materials to substrate surfaces |
US5704082A (en) | 1996-11-26 | 1998-01-06 | Smith; Catherine V. | Anchor pin for dust ruffle |
JPH10166156A (ja) | 1996-12-06 | 1998-06-23 | Hitachi Zosen Corp | プラズマ切断装置 |
IT1289728B1 (it) | 1996-12-10 | 1998-10-16 | Sorin Biomedica Cardio Spa | Dispositivo di impianto e corredo che lo comprende |
US6206911B1 (en) | 1996-12-19 | 2001-03-27 | Simcha Milo | Stent combination |
US5980972A (en) | 1996-12-20 | 1999-11-09 | Schneider (Usa) Inc | Method of applying drug-release coatings |
US5906759A (en) | 1996-12-26 | 1999-05-25 | Medinol Ltd. | Stent forming apparatus with stent deforming blades |
IT1291001B1 (it) | 1997-01-09 | 1998-12-14 | Sorin Biomedica Cardio Spa | Stent per angioplastica e suo procedimento di produzione |
US5925061A (en) | 1997-01-13 | 1999-07-20 | Gore Enterprise Holdings, Inc. | Low profile vascular stent |
US5733330A (en) | 1997-01-13 | 1998-03-31 | Advanced Cardiovascular Systems, Inc. | Balloon-expandable, crush-resistant locking stent |
US6159951A (en) | 1997-02-13 | 2000-12-12 | Ribozyme Pharmaceuticals Inc. | 2'-O-amino-containing nucleoside analogs and polynucleotides |
US6582472B2 (en) | 1997-02-26 | 2003-06-24 | Applied Medical Resources Corporation | Kinetic stent |
DE69840069D1 (de) | 1997-04-01 | 2008-11-13 | Cap Biotechnology Inc | Kalziumphosphat-mikroträger und -mikrokugeln |
US5874101A (en) | 1997-04-14 | 1999-02-23 | Usbiomaterials Corp. | Bioactive-gel compositions and methods |
US6240616B1 (en) | 1997-04-15 | 2001-06-05 | Advanced Cardiovascular Systems, Inc. | Method of manufacturing a medicated porous metal prosthesis |
US6273913B1 (en) | 1997-04-18 | 2001-08-14 | Cordis Corporation | Modified stent useful for delivery of drugs along stent strut |
FI103715B1 (fi) | 1997-04-21 | 1999-08-31 | Heimo Ylaenen | Uusi komposiitti ja sen käyttö |
US5879697A (en) | 1997-04-30 | 1999-03-09 | Schneider Usa Inc | Drug-releasing coatings for medical devices |
US5741327A (en) | 1997-05-06 | 1998-04-21 | Global Therapeutics, Inc. | Surgical stent featuring radiopaque markers |
US6610764B1 (en) | 1997-05-12 | 2003-08-26 | Metabolix, Inc. | Polyhydroxyalkanoate compositions having controlled degradation rates |
US6303901B1 (en) | 1997-05-20 | 2001-10-16 | The Regents Of The University Of California | Method to reduce damage to backing plate |
US5891192A (en) | 1997-05-22 | 1999-04-06 | The Regents Of The University Of California | Ion-implanted protein-coated intralumenal implants |
US6056993A (en) | 1997-05-30 | 2000-05-02 | Schneider (Usa) Inc. | Porous protheses and methods for making the same wherein the protheses are formed by spraying water soluble and water insoluble fibers onto a rotating mandrel |
US6110483A (en) | 1997-06-23 | 2000-08-29 | Sts Biopolymers, Inc. | Adherent, flexible hydrogel and medicated coatings |
JP3844848B2 (ja) | 1997-06-24 | 2006-11-15 | 三菱電機株式会社 | レーザ加工機 |
DE19731021A1 (de) | 1997-07-18 | 1999-01-21 | Meyer Joerg | In vivo abbaubares metallisches Implantat |
US5980928A (en) | 1997-07-29 | 1999-11-09 | Terry; Paul B. | Implant for preventing conjunctivitis in cattle |
US6340367B1 (en) | 1997-08-01 | 2002-01-22 | Boston Scientific Scimed, Inc. | Radiopaque markers and methods of using the same |
US5980564A (en) | 1997-08-01 | 1999-11-09 | Schneider (Usa) Inc. | Bioabsorbable implantable endoprosthesis with reservoir |
US6245103B1 (en) | 1997-08-01 | 2001-06-12 | Schneider (Usa) Inc | Bioabsorbable self-expanding stent |
US6174330B1 (en) | 1997-08-01 | 2001-01-16 | Schneider (Usa) Inc | Bioabsorbable marker having radiopaque constituents |
US6121027A (en) | 1997-08-15 | 2000-09-19 | Surmodics, Inc. | Polybifunctional reagent having a polymeric backbone and photoreactive moieties and bioactive groups |
US6117979A (en) | 1997-08-18 | 2000-09-12 | Medtronic, Inc. | Process for making a bioprosthetic device and implants produced therefrom |
US6129928A (en) | 1997-09-05 | 2000-10-10 | Icet, Inc. | Biomimetic calcium phosphate implant coatings and methods for making the same |
US6284333B1 (en) | 1997-09-10 | 2001-09-04 | Scimed Life Systems, Inc. | Medical devices made from polymer blends containing low melting temperature liquid crystal polymers |
US6010445A (en) | 1997-09-11 | 2000-01-04 | Implant Sciences Corporation | Radioactive medical device and process |
US5976181A (en) | 1997-09-22 | 1999-11-02 | Ave Connaught | Balloon mounted stent and method therefor |
US6127173A (en) | 1997-09-22 | 2000-10-03 | Ribozyme Pharmaceuticals, Inc. | Nucleic acid catalysts with endonuclease activity |
JP4292710B2 (ja) | 1997-09-24 | 2009-07-08 | エム イー ディ インスチィチュート インク | 半径方向に拡張可能なステント |
US6042606A (en) | 1997-09-29 | 2000-03-28 | Cook Incorporated | Radially expandable non-axially contracting surgical stent |
US5972027A (en) | 1997-09-30 | 1999-10-26 | Scimed Life Systems, Inc | Porous stent drug delivery system |
US5976182A (en) | 1997-10-03 | 1999-11-02 | Advanced Cardiovascular Systems, Inc. | Balloon-expandable, crush-resistant locking stent and method of loading the same |
DE19745294A1 (de) | 1997-10-14 | 1999-04-15 | Biotronik Mess & Therapieg | Verfahren zur Herstellung feinstrukturierter medizintechnischer Implantate |
US7128737B1 (en) | 1997-10-22 | 2006-10-31 | Carl Zeiss Meditec Ag | Object figuring device |
DE29724852U1 (de) | 1997-10-22 | 2005-01-13 | Carl Zeiss Meditec Ag | Vorrichtung zur Formgebung von Objekten |
DE19746882A1 (de) | 1997-10-23 | 1999-04-29 | Angiomed Ag | Aufgeweiteter Stent und Verfahren zum Herstellen desselben |
US6015541A (en) | 1997-11-03 | 2000-01-18 | Micro Therapeutics, Inc. | Radioactive embolizing compositions |
WO1999026674A2 (de) | 1997-11-24 | 1999-06-03 | Jennissen Herbert P | Verfahren zur immobilisierung von mediatormolekülen auf anorganischen und metallischen implantatmaterialien |
US6156062A (en) | 1997-12-03 | 2000-12-05 | Ave Connaught | Helically wrapped interlocking stent |
US6093463A (en) | 1997-12-12 | 2000-07-25 | Intella Interventional Systems, Inc. | Medical devices made from improved polymer blends |
US5957975A (en) | 1997-12-15 | 1999-09-28 | The Cleveland Clinic Foundation | Stent having a programmed pattern of in vivo degradation |
US6022374A (en) | 1997-12-16 | 2000-02-08 | Cardiovasc, Inc. | Expandable stent having radiopaque marker and method |
US6626939B1 (en) | 1997-12-18 | 2003-09-30 | Boston Scientific Scimed, Inc. | Stent-graft with bioabsorbable structural support |
US5986169A (en) | 1997-12-31 | 1999-11-16 | Biorthex Inc. | Porous nickel-titanium alloy article |
WO1999034750A1 (en) | 1998-01-06 | 1999-07-15 | Bioamide, Inc. | Bioabsorbable fibers and reinforced composites produced therefrom |
US6503271B2 (en) | 1998-01-09 | 2003-01-07 | Cordis Corporation | Intravascular device with improved radiopacity |
US6224626B1 (en) | 1998-02-17 | 2001-05-01 | Md3, Inc. | Ultra-thin expandable stent |
ATE266434T1 (de) | 1998-02-23 | 2004-05-15 | Massachusetts Inst Technology | Bioabbaubare polymere mit formgedächtnis |
TR200002451T2 (tr) | 1998-02-23 | 2001-03-21 | Mnemo Science Gmbh | Şekil Belleği olan polimerler |
US5938697A (en) | 1998-03-04 | 1999-08-17 | Scimed Life Systems, Inc. | Stent having variable properties |
US6110188A (en) | 1998-03-09 | 2000-08-29 | Corvascular, Inc. | Anastomosis method |
US7500988B1 (en) | 2000-11-16 | 2009-03-10 | Cordis Corporation | Stent for use in a stent graft |
US6563998B1 (en) | 1999-04-15 | 2003-05-13 | John Farah | Polished polymide substrate |
US6296655B1 (en) | 1998-04-27 | 2001-10-02 | Advanced Cardiovascular Systems, Inc. | Catheter balloon with biased multiple wings |
US6113629A (en) | 1998-05-01 | 2000-09-05 | Micrus Corporation | Hydrogel for the therapeutic treatment of aneurysms |
US6083258A (en) | 1998-05-28 | 2000-07-04 | Yadav; Jay S. | Locking stent |
EP0966979B1 (de) | 1998-06-25 | 2006-03-08 | Biotronik AG | Implantierbare, bioresorbierbare Gefässwandstütze, insbesondere Koronarstent |
DE19856983A1 (de) | 1998-06-25 | 1999-12-30 | Biotronik Mess & Therapieg | Implantierbare, bioresorbierbare Gefäßwandstütze, insbesondere Koronarstent |
US6153252A (en) | 1998-06-30 | 2000-11-28 | Ethicon, Inc. | Process for coating stents |
US6325824B2 (en) | 1998-07-22 | 2001-12-04 | Advanced Cardiovascular Systems, Inc. | Crush resistant stent |
US20050283228A1 (en) | 1998-07-29 | 2005-12-22 | Stanford Ulf H | Expandable stent with relief holes capable of carrying medicines and other materials |
EP1119379A1 (en) | 1998-09-02 | 2001-08-01 | Boston Scientific Limited | Drug delivery device for stent |
US6682554B2 (en) | 1998-09-05 | 2004-01-27 | Jomed Gmbh | Methods and apparatus for a stent having an expandable web structure |
WO2000023123A1 (en) | 1998-10-19 | 2000-04-27 | Synthes Ag Chur | Hardenable ceramic hydraulic cement |
DE19855421C2 (de) | 1998-11-02 | 2001-09-20 | Alcove Surfaces Gmbh | Implantat |
CA2254002A1 (en) | 1998-11-12 | 2000-05-12 | Takiron Co., Ltd. | Shape-memory, biodegradable and absorbable material |
US6125523A (en) | 1998-11-20 | 2000-10-03 | Advanced Cardiovascular Systems, Inc. | Stent crimping tool and method of use |
US6350277B1 (en) | 1999-01-15 | 2002-02-26 | Scimed Life Systems, Inc. | Stents with temporary retaining bands |
EP1600124B1 (en) | 1999-01-22 | 2008-01-02 | Gore Enterprise Holdings, Inc. | Method for compacting an endoprosthesis |
EP1121066B1 (en) | 1999-01-22 | 2006-05-17 | Gore Enterprise Holdings, Inc. | Covered endoprosthesis |
WO2000045734A1 (en) | 1999-02-02 | 2000-08-10 | Wright Medical Technology, Inc. | Controlled release composite |
US6361557B1 (en) | 1999-02-05 | 2002-03-26 | Medtronic Ave, Inc. | Staplebutton radiopaque marker |
US6187045B1 (en) | 1999-02-10 | 2001-02-13 | Thomas K. Fehring | Enhanced biocompatible implants and alloys |
US6273910B1 (en) | 1999-03-11 | 2001-08-14 | Advanced Cardiovascular Systems, Inc. | Stent with varying strut geometry |
US6066156A (en) | 1999-03-11 | 2000-05-23 | Advanced Cardiovascular Systems, Inc. | Temperature activated adhesive for releasably attaching stents to balloons |
US6183505B1 (en) | 1999-03-11 | 2001-02-06 | Medtronic Ave, Inc. | Method of stent retention to a delivery catheter balloon-braided retainers |
US6730116B1 (en) | 1999-04-16 | 2004-05-04 | Medtronic, Inc. | Medical device for intraluminal endovascular stenting |
US6273911B1 (en) | 1999-04-22 | 2001-08-14 | Advanced Cardiovascular Systems, Inc. | Variable strength stent |
EP1175236A1 (en) | 1999-04-23 | 2002-01-30 | Agion Technologies, L.L.C. | Stent having antimicrobial agent |
US6368346B1 (en) | 1999-06-03 | 2002-04-09 | American Medical Systems, Inc. | Bioresorbable stent |
US6667049B2 (en) | 1999-06-14 | 2003-12-23 | Ethicon, Inc. | Relic process for producing bioresorbable ceramic tissue scaffolds |
US6312459B1 (en) | 1999-06-30 | 2001-11-06 | Advanced Cardiovascular Systems, Inc. | Stent design for use in small vessels |
US6258121B1 (en) | 1999-07-02 | 2001-07-10 | Scimed Life Systems, Inc. | Stent coating |
US6177523B1 (en) | 1999-07-14 | 2001-01-23 | Cardiotech International, Inc. | Functionalized polyurethanes |
AUPQ170799A0 (en) | 1999-07-20 | 1999-08-12 | Cardiac Crc Nominees Pty Limited | Shape memory polyurethane or polyurethane-urea polymers |
US6569193B1 (en) | 1999-07-22 | 2003-05-27 | Advanced Cardiovascular Systems, Inc. | Tapered self-expanding stent |
CN1241442A (zh) | 1999-07-27 | 2000-01-19 | 林代平 | 术后防粘连方法 |
US6890350B1 (en) | 1999-07-28 | 2005-05-10 | Scimed Life Systems, Inc. | Combination self-expandable, balloon-expandable endoluminal device |
DE19938704C1 (de) | 1999-08-14 | 2001-10-31 | Ivoclar Vivadent Ag | Verfahren zur Herstellung von Reaktionssystemen zur Implantation in den menschlichen und tierischen Körper als Knochenersatz, die u.a. Calcium und Phosphor enthalten |
US6479565B1 (en) | 1999-08-16 | 2002-11-12 | Harold R. Stanley | Bioactive ceramic cement |
US6379381B1 (en) | 1999-09-03 | 2002-04-30 | Advanced Cardiovascular Systems, Inc. | Porous prosthesis and a method of depositing substances into the pores |
JP4172883B2 (ja) | 1999-09-08 | 2008-10-29 | Hoya株式会社 | 薬物徐放用担体および薬物徐放用担体の製造方法 |
US6283234B1 (en) | 1999-09-17 | 2001-09-04 | Sylvan Engineering Company | Apparatus for mounting PCD compacts |
WO2001026584A1 (en) | 1999-10-14 | 2001-04-19 | United Stenting, Inc. | Stents with multilayered struts |
US7226475B2 (en) | 1999-11-09 | 2007-06-05 | Boston Scientific Scimed, Inc. | Stent with variable properties |
DE19953771C1 (de) | 1999-11-09 | 2001-06-13 | Coripharm Medizinprodukte Gmbh | Resorbierbares Knochen-Implantatmaterial sowie Verfahren zur Herstellung desselben |
EP1229901B1 (en) | 1999-11-17 | 2009-03-18 | Boston Scientific Limited | Microfabricated devices for the delivery of molecules into a carrier fluid |
US7947069B2 (en) | 1999-11-24 | 2011-05-24 | University Of Washington | Medical devices comprising small fiber biomaterials, and methods of use |
US6554854B1 (en) | 1999-12-10 | 2003-04-29 | Scimed Life Systems, Inc. | Process for laser joining dissimilar metals and endoluminal stent with radiopaque marker produced thereby |
US6654183B2 (en) | 1999-12-15 | 2003-11-25 | International Business Machines Corporation | System for converting optical beams to collimated flat-top beams |
US6295168B1 (en) | 1999-12-15 | 2001-09-25 | International Business Machines Corporation | Refractive optical system that converts a laser beam to a collimated flat-top beam |
US6981987B2 (en) | 1999-12-22 | 2006-01-03 | Ethicon, Inc. | Removable stent for body lumens |
US6494908B1 (en) | 1999-12-22 | 2002-12-17 | Ethicon, Inc. | Removable stent for body lumens |
US6338739B1 (en) | 1999-12-22 | 2002-01-15 | Ethicon, Inc. | Biodegradable stent |
US6355058B1 (en) | 1999-12-30 | 2002-03-12 | Advanced Cardiovascular Systems, Inc. | Stent with radiopaque coating consisting of particles in a binder |
US6471721B1 (en) | 1999-12-30 | 2002-10-29 | Advanced Cardiovascular Systems, Inc. | Vascular stent having increased radiopacity and method for making same |
US6589227B2 (en) | 2000-01-28 | 2003-07-08 | William Cook Europe Aps | Endovascular medical device with plurality of wires |
US6375826B1 (en) | 2000-02-14 | 2002-04-23 | Advanced Cardiovascular Systems, Inc. | Electro-polishing fixture and electrolyte solution for polishing stents and method |
KR100371559B1 (ko) | 2000-04-03 | 2003-02-06 | 주식회사 경원메디칼 | 생체적합적 골재생을 촉진하는 골대체 및 재생소재용칼슘포스페이트 인조골 |
US6527801B1 (en) | 2000-04-13 | 2003-03-04 | Advanced Cardiovascular Systems, Inc. | Biodegradable drug delivery material for stent |
US6616689B1 (en) | 2000-05-03 | 2003-09-09 | Advanced Cardiovascular Systems, Inc. | Intravascular stent |
AU2001259488A1 (en) | 2000-05-05 | 2001-11-20 | The Board Of Trustees Of The Leland Standford Junior University | Multilayer stents having enhanced flexibility and hoop strength |
EP1153621A1 (de) | 2000-05-12 | 2001-11-14 | MERCK PATENT GmbH | Biozemente auf TCP-PHA-Basismischung mit verbesserter Kompressionsfestigkeit |
US7394591B2 (en) | 2000-05-23 | 2008-07-01 | Imra America, Inc. | Utilization of Yb: and Nd: mode-locked oscillators in solid-state short pulse laser systems |
US6395326B1 (en) | 2000-05-31 | 2002-05-28 | Advanced Cardiovascular Systems, Inc. | Apparatus and method for depositing a coating onto a surface of a prosthesis |
US6629350B2 (en) | 2000-06-08 | 2003-10-07 | Tom Motsenbocker | Stent crimping apparatus and method |
US6652579B1 (en) | 2000-06-22 | 2003-11-25 | Advanced Cardiovascular Systems, Inc. | Radiopaque stent |
IL137090A (en) | 2000-06-29 | 2010-04-15 | Pentech Medical Devices Ltd | Polymeric stent |
US6716252B2 (en) | 2000-06-30 | 2004-04-06 | Wit Ip Corporation | Prostatic stent with localized tissue engaging anchoring means and methods for inhibiting obstruction of the prostatic urethra |
US6974473B2 (en) | 2000-06-30 | 2005-12-13 | Vascular Architects, Inc. | Function-enhanced thrombolytic AV fistula and method |
US6569191B1 (en) | 2000-07-27 | 2003-05-27 | Bionx Implants, Inc. | Self-expanding stent with enhanced radial expansion and shape memory |
US6574851B1 (en) | 2000-07-31 | 2003-06-10 | Advanced Cardiovascular Systems, Inc. | Stent made by rotational molding or centrifugal casting and method for making the same |
GB0020491D0 (en) | 2000-08-18 | 2000-10-11 | Angiomed Ag | Stent with attached element and method of making such a stent |
AU2001288809A1 (en) | 2000-09-26 | 2002-04-08 | Advanced Cardiovascular Systems Inc. | A method of loading a substance onto an implantable device |
US6485512B1 (en) | 2000-09-27 | 2002-11-26 | Advanced Cardiovascular Systems, Inc. | Two-stage light curable stent and delivery system |
US6805898B1 (en) | 2000-09-28 | 2004-10-19 | Advanced Cardiovascular Systems, Inc. | Surface features of an implantable medical device |
US20020111590A1 (en) | 2000-09-29 | 2002-08-15 | Davila Luis A. | Medical devices, drug coatings and methods for maintaining the drug coatings thereon |
US6746773B2 (en) | 2000-09-29 | 2004-06-08 | Ethicon, Inc. | Coatings for medical devices |
US6863685B2 (en) | 2001-03-29 | 2005-03-08 | Cordis Corporation | Radiopacity intraluminal medical device |
US6492615B1 (en) | 2000-10-12 | 2002-12-10 | Scimed Life Systems, Inc. | Laser polishing of medical devices |
US6506437B1 (en) | 2000-10-17 | 2003-01-14 | Advanced Cardiovascular Systems, Inc. | Methods of coating an implantable device having depots formed in a surface thereof |
WO2003061502A1 (en) | 2000-10-26 | 2003-07-31 | Scimed Life Systems, Inc. | Stent having radiopaque markers and method of fabricating the same |
US6758859B1 (en) | 2000-10-30 | 2004-07-06 | Kenny L. Dang | Increased drug-loading and reduced stress drug delivery device |
FR2816227B1 (fr) | 2000-11-09 | 2003-01-24 | Air Liquide | Procede de coupage laser a haute vitesse avec gaz adapte |
US6517888B1 (en) | 2000-11-28 | 2003-02-11 | Scimed Life Systems, Inc. | Method for manufacturing a medical device having a coated portion by laser ablation |
US6664335B2 (en) | 2000-11-30 | 2003-12-16 | Cardiac Pacemakers, Inc. | Polyurethane elastomer article with “shape memory” and medical devices therefrom |
US7498042B2 (en) | 2000-11-30 | 2009-03-03 | Kyoto Medical Planning Co., Ltd. | Stent for blood vessel and material for stent for blood vessel |
JP3881508B2 (ja) | 2000-12-04 | 2007-02-14 | 株式会社ニデック | レーザ治療装置 |
DE10064596A1 (de) | 2000-12-18 | 2002-06-20 | Biotronik Mess & Therapieg | Verfahren zum Anbringen eines Markerelements an einem Implantat sowie mit einem Markerelement versehenes Implantat |
US20030050692A1 (en) | 2000-12-22 | 2003-03-13 | Avantec Vascular Corporation | Delivery of therapeutic capable agents |
US6565599B1 (en) | 2000-12-28 | 2003-05-20 | Advanced Cardiovascular Systems, Inc. | Hybrid stent |
US6540777B2 (en) | 2001-02-15 | 2003-04-01 | Scimed Life Systems, Inc. | Locking stent |
US6563080B2 (en) | 2001-02-15 | 2003-05-13 | Scimed Life Systems, Inc. | Laser cutting of stents and other medical devices |
US7572270B2 (en) | 2001-02-16 | 2009-08-11 | Cordis Corporation | Balloon catheter stent delivery system with ridges |
US8262687B2 (en) | 2001-02-27 | 2012-09-11 | Kyoto Medical Planning Co., Ltd. | Stent holding member and stent feeding system |
WO2002074480A1 (en) | 2001-03-16 | 2002-09-26 | Laser Machining, Inc. | Laser ablation technique |
US6739033B2 (en) | 2001-03-29 | 2004-05-25 | Scimed Life Systems, Inc. | Thermal regulation of a coated work-piece during the reconfiguration of the coated work-piece |
US6764505B1 (en) | 2001-04-12 | 2004-07-20 | Advanced Cardiovascular Systems, Inc. | Variable surface area stent |
US6913762B2 (en) | 2001-04-25 | 2005-07-05 | Mayo Foundation For Medical Education And Research | Stent having non-woven framework containing cells |
CA2444894C (en) | 2001-04-26 | 2013-06-25 | Control Delivery Systems, Inc. | Sustained release drug delivery system containing codrugs |
US8182527B2 (en) | 2001-05-07 | 2012-05-22 | Cordis Corporation | Heparin barrier coating for controlled drug release |
US6629994B2 (en) | 2001-06-11 | 2003-10-07 | Advanced Cardiovascular Systems, Inc. | Intravascular stent |
US6939373B2 (en) | 2003-08-20 | 2005-09-06 | Advanced Cardiovascular Systems, Inc. | Intravascular stent |
US6679980B1 (en) | 2001-06-13 | 2004-01-20 | Advanced Cardiovascular Systems, Inc. | Apparatus for electropolishing a stent |
US6521865B1 (en) | 2001-06-14 | 2003-02-18 | Advanced Cardiovascular Systems, Inc. | Pulsed fiber laser cutting system for medical implants |
US6673106B2 (en) | 2001-06-14 | 2004-01-06 | Cordis Neurovascular, Inc. | Intravascular stent device |
US6695920B1 (en) | 2001-06-27 | 2004-02-24 | Advanced Cardiovascular Systems, Inc. | Mandrel for supporting a stent and a method of using the mandrel to coat a stent |
US6585755B2 (en) | 2001-06-29 | 2003-07-01 | Advanced Cardiovascular | Polymeric stent suitable for imaging by MRI and fluoroscopy |
US6926733B2 (en) | 2001-08-02 | 2005-08-09 | Boston Scientific Scimed, Inc. | Method for enhancing sheet or tubing metal stent radiopacity |
DE10138866B4 (de) | 2001-08-08 | 2007-05-16 | Bosch Gmbh Robert | Verfahren zum Bohren eines Lochs in ein Werkstück mittels Laserstrahls |
US6997944B2 (en) | 2001-08-13 | 2006-02-14 | Advanced Cardiovascular Systems, Inc. | Apparatus and method for decreasing stent gap size |
JP2003053577A (ja) | 2001-08-15 | 2003-02-26 | Sumitomo Heavy Ind Ltd | トップフラットビームの生成方法、装置、及び、これを用いたレーザ加工方法、装置 |
US7252679B2 (en) | 2001-09-13 | 2007-08-07 | Cordis Corporation | Stent with angulated struts |
IN2014DN10834A (zh) | 2001-09-17 | 2015-09-04 | Psivida Inc | |
US6863683B2 (en) | 2001-09-19 | 2005-03-08 | Abbott Laboratoris Vascular Entities Limited | Cold-molding process for loading a stent onto a stent delivery system |
US20030060872A1 (en) | 2001-09-26 | 2003-03-27 | Gary Gomringer | Stent with radiopaque characteristics |
JP4460296B2 (ja) | 2001-09-28 | 2010-05-12 | ボストン サイエンティフィック リミテッド | ナノコンポジットを含む医療機器 |
US20040143180A1 (en) | 2001-11-27 | 2004-07-22 | Sheng-Ping Zhong | Medical devices visible under magnetic resonance imaging |
US20030176914A1 (en) | 2003-01-21 | 2003-09-18 | Rabkin Dmitry J. | Multi-segment modular stent and methods for manufacturing stents |
US20030105530A1 (en) | 2001-12-04 | 2003-06-05 | Inion Ltd. | Biodegradable implant and method for manufacturing one |
US6752826B2 (en) | 2001-12-14 | 2004-06-22 | Thoratec Corporation | Layered stent-graft and methods of making the same |
US6866805B2 (en) | 2001-12-27 | 2005-03-15 | Advanced Cardiovascular Systems, Inc. | Hybrid intravascular stent |
US7163553B2 (en) | 2001-12-28 | 2007-01-16 | Advanced Cardiovascular Systems, Inc. | Intravascular stent and method of use |
US7326245B2 (en) | 2002-01-31 | 2008-02-05 | Boston Scientific Scimed, Inc. | Medical device for delivering biologically active material |
US20030153971A1 (en) | 2002-02-14 | 2003-08-14 | Chandru Chandrasekaran | Metal reinforced biodegradable intraluminal stents |
US20030155328A1 (en) | 2002-02-15 | 2003-08-21 | Huth Mark C. | Laser micromachining and methods and systems of same |
US7691461B1 (en) | 2002-04-01 | 2010-04-06 | Advanced Cardiovascular Systems, Inc. | Hybrid stent and method of making |
US20030187495A1 (en) | 2002-04-01 | 2003-10-02 | Cully Edward H. | Endoluminal devices, embolic filters, methods of manufacture and use |
US7270675B2 (en) | 2002-05-10 | 2007-09-18 | Cordis Corporation | Method of forming a tubular membrane on a structural frame |
DE10222117B4 (de) | 2002-05-17 | 2004-09-16 | W&H Dentalwerk Bürmoos Gesellschaft m.b.H. | Dentalmedizinisches Laserbearbeitungsgerät zur plasmainduzierten Ablation |
US20030236563A1 (en) | 2002-06-20 | 2003-12-25 | Dan Fifer | Stent delivery catheter with retention bands |
US20030236565A1 (en) | 2002-06-21 | 2003-12-25 | Dimatteo Kristian | Implantable prosthesis |
US6780261B2 (en) | 2002-06-27 | 2004-08-24 | Scimed Life Systems, Inc. | Method of manufacturing an implantable stent having improved mechanical properties |
US20040034405A1 (en) | 2002-07-26 | 2004-02-19 | Dickson Andrew M. | Axially expanding polymer stent |
US7141063B2 (en) | 2002-08-06 | 2006-11-28 | Icon Medical Corp. | Stent with micro-latching hinge joints |
US7273492B2 (en) | 2002-08-27 | 2007-09-25 | Advanced Cardiovascular Systems Inc. | Stent for treating vulnerable plaque |
AU2003254132A1 (en) | 2002-08-30 | 2004-03-19 | Advanced Cardiovascular Systems, Inc. | Stent with nested rings |
US20040044399A1 (en) | 2002-09-04 | 2004-03-04 | Ventura Joseph A. | Radiopaque links for self-expanding stents |
JP2005538780A (ja) | 2002-09-13 | 2005-12-22 | リンバテック・コーポレイション | 延伸および拡張されたステント |
US6818063B1 (en) | 2002-09-24 | 2004-11-16 | Advanced Cardiovascular Systems, Inc. | Stent mandrel fixture and method for minimizing coating defects |
AU2003270817B2 (en) | 2002-09-26 | 2009-09-17 | Vactronix Scientific, Llc | High strength vacuum deposited nitionol alloy films, medical thin film graft materials and method of making same |
US7331986B2 (en) | 2002-10-09 | 2008-02-19 | Boston Scientific Scimed, Inc. | Intraluminal medical device having improved visibility |
US6745445B2 (en) | 2002-10-29 | 2004-06-08 | Bard Peripheral Vascular, Inc. | Stent compression method |
US20040088039A1 (en) | 2002-11-01 | 2004-05-06 | Lee Nathan T. | Method of securing radiopaque markers to an implant |
US7637942B2 (en) | 2002-11-05 | 2009-12-29 | Merit Medical Systems, Inc. | Coated stent with geometry determinated functionality and method of making the same |
US20040098090A1 (en) | 2002-11-14 | 2004-05-20 | Williams Michael S. | Polymeric endoprosthesis and method of manufacture |
US20050187615A1 (en) | 2004-02-23 | 2005-08-25 | Williams Michael S. | Polymeric endoprostheses with enhanced strength and flexibility and methods of manufacture |
US6696667B1 (en) | 2002-11-22 | 2004-02-24 | Scimed Life Systems, Inc. | Laser stent cutting |
US7491234B2 (en) | 2002-12-03 | 2009-02-17 | Boston Scientific Scimed, Inc. | Medical devices for delivery of therapeutic agents |
US7776926B1 (en) | 2002-12-11 | 2010-08-17 | Advanced Cardiovascular Systems, Inc. | Biocompatible coating for implantable medical devices |
US6899729B1 (en) | 2002-12-18 | 2005-05-31 | Advanced Cardiovascular Systems, Inc. | Stent for treating vulnerable plaque |
US6852946B2 (en) | 2002-12-20 | 2005-02-08 | Caterpillar Inc | Laser-induced plasma micromachining |
US8088158B2 (en) | 2002-12-20 | 2012-01-03 | Boston Scientific Scimed, Inc. | Radiopaque ePTFE medical devices |
US20040126405A1 (en) | 2002-12-30 | 2004-07-01 | Scimed Life Systems, Inc. | Engineered scaffolds for promoting growth of cells |
US7455687B2 (en) | 2002-12-30 | 2008-11-25 | Advanced Cardiovascular Systems, Inc. | Polymer link hybrid stent |
DE10300475B4 (de) | 2003-01-09 | 2008-11-13 | Alveolus Inc. | Stent mit einem tubulären aufweitbaren Stützgerät |
US20040143317A1 (en) | 2003-01-17 | 2004-07-22 | Stinson Jonathan S. | Medical devices |
US20040143338A1 (en) | 2003-01-21 | 2004-07-22 | Brian Burkinshaw | Multi-piece modular patellar prosthetic system |
US20040167610A1 (en) | 2003-02-26 | 2004-08-26 | Fleming James A. | Locking stent |
WO2004075789A2 (en) | 2003-02-26 | 2004-09-10 | Cook Incorporated | PROTHESIS ADAPTED FOR PLACEDd UNDER EXTERNAL IMAGING |
US20040249442A1 (en) | 2003-02-26 | 2004-12-09 | Fleming James A. | Locking stent having multiple locking points |
US7487579B2 (en) | 2003-03-12 | 2009-02-10 | Boston Scientific Scimed, Inc. | Methods of making medical devices |
US7163555B2 (en) | 2003-04-08 | 2007-01-16 | Medtronic Vascular, Inc. | Drug-eluting stent for controlled drug delivery |
US7625398B2 (en) | 2003-05-06 | 2009-12-01 | Abbott Laboratories | Endoprosthesis having foot extensions |
US6846323B2 (en) | 2003-05-15 | 2005-01-25 | Advanced Cardiovascular Systems, Inc. | Intravascular stent |
US20040236409A1 (en) | 2003-05-20 | 2004-11-25 | Pelton Alan R. | Radiopacity intraluminal medical device |
US20050015138A1 (en) | 2003-05-22 | 2005-01-20 | Andreas Schuessler | Stent made of a material with low radio-opaqueness |
US20050211680A1 (en) | 2003-05-23 | 2005-09-29 | Mingwei Li | Systems and methods for laser texturing of surfaces of a substrate |
DE10325678A1 (de) | 2003-06-02 | 2004-12-23 | Biotronik Meß- und Therapiegeräte GmbH & Co. Ingenieurbüro Berlin | Verbindungssystem zur Verbindung eines Stents mit einem radioopaken Marker sowie Verfahren zur Herstellung einer Verbindung zwischen einem Stent und zwei oder mehreren radioopaken Markern |
EP1633280A4 (en) | 2003-06-16 | 2011-03-16 | Univ Nanyang Tech | POLYMERIC STENT AND MANUFACTURING PROCESS |
US8021418B2 (en) | 2003-06-19 | 2011-09-20 | Boston Scientific Scimed, Inc. | Sandwiched radiopaque marker on covered stent |
WO2004112863A1 (en) | 2003-06-20 | 2004-12-29 | Mcgill University | Biodegradable membrane-covered implant comprising chitosan |
US20050118344A1 (en) | 2003-12-01 | 2005-06-02 | Pacetti Stephen D. | Temperature controlled crimping |
US7959665B2 (en) | 2003-07-31 | 2011-06-14 | Abbott Cardiovascular Systems Inc. | Intravascular stent with inverted end rings |
US7166099B2 (en) | 2003-08-21 | 2007-01-23 | Boston Scientific Scimed, Inc. | Multilayer medical devices |
DE10340931A1 (de) | 2003-09-05 | 2005-03-31 | Herbert Walter | Verfahren und Vorrichtung zum Bohren feinster Löcher |
US20050060025A1 (en) | 2003-09-12 | 2005-03-17 | Mackiewicz David A. | Radiopaque markers for medical devices |
US7597702B2 (en) * | 2003-09-17 | 2009-10-06 | Boston Scientific Scimed, Inc. | Balloon assembly with a torque |
WO2005037360A1 (ja) | 2003-10-15 | 2005-04-28 | Kabushikikaisha Igaki Iryo Sekkei | 脈管用ステント供給装置 |
US20050087520A1 (en) | 2003-10-28 | 2005-04-28 | Lixiao Wang | Method and apparatus for selective ablation of coatings from medical devices |
US7090694B1 (en) | 2003-11-19 | 2006-08-15 | Advanced Cardiovascular Systems, Inc. | Portal design for stent for treating bifurcated vessels |
US8309112B2 (en) | 2003-12-24 | 2012-11-13 | Advanced Cardiovascular Systems, Inc. | Coatings for implantable medical devices comprising hydrophilic substances and methods for fabricating the same |
DE10361942A1 (de) | 2003-12-24 | 2005-07-21 | Restate Patent Ag | Radioopaker Marker für medizinische Implantate |
US20050157382A1 (en) | 2004-01-07 | 2005-07-21 | Kafka James D. | Industrial directly diode-pumped ultrafast amplifier system |
US7284401B2 (en) | 2004-01-12 | 2007-10-23 | Boston Scientific Scimed, Inc. | Stent reducing system and device |
US7243408B2 (en) | 2004-02-09 | 2007-07-17 | Boston Scientific Scimed, Inc. | Process method for attaching radio opaque markers to shape memory stent |
JP4665109B2 (ja) | 2004-04-02 | 2011-04-06 | アルテリアル リモデリング テクノロジーズ, インコーポレイテッド | ポリマーベースのステントアセンブリ |
US6943964B1 (en) | 2004-06-01 | 2005-09-13 | Southeastern Univ. Research Assn. | Single element laser beam shaper |
US20050283226A1 (en) | 2004-06-18 | 2005-12-22 | Scimed Life Systems, Inc. | Medical devices |
US7763065B2 (en) | 2004-07-21 | 2010-07-27 | Reva Medical, Inc. | Balloon expandable crush-recoverable stent device |
US7731890B2 (en) | 2006-06-15 | 2010-06-08 | Advanced Cardiovascular Systems, Inc. | Methods of fabricating stents with enhanced fracture toughness |
US20110066222A1 (en) | 2009-09-11 | 2011-03-17 | Yunbing Wang | Polymeric Stent and Method of Making Same |
US8012402B2 (en) | 2008-08-04 | 2011-09-06 | Abbott Cardiovascular Systems Inc. | Tube expansion process for semicrystalline polymers to maximize fracture toughness |
US7971333B2 (en) | 2006-05-30 | 2011-07-05 | Advanced Cardiovascular Systems, Inc. | Manufacturing process for polymetric stents |
US20060020330A1 (en) | 2004-07-26 | 2006-01-26 | Bin Huang | Method of fabricating an implantable medical device with biaxially oriented polymers |
US8268228B2 (en) | 2007-12-11 | 2012-09-18 | Abbott Cardiovascular Systems Inc. | Method of fabricating stents from blow molded tubing |
US7763066B2 (en) | 2004-07-28 | 2010-07-27 | Cook Incorporated | Stent with an end member having a lateral extension |
US8158904B2 (en) | 2004-08-13 | 2012-04-17 | Boston Scientific Scimed, Inc. | Method and apparatus for forming a feature in a workpiece by laser ablation with a laser beam having an adjustable intensity profile to redistribute the energy density impinging on the workpiece |
US9283099B2 (en) | 2004-08-25 | 2016-03-15 | Advanced Cardiovascular Systems, Inc. | Stent-catheter assembly with a releasable connection for stent retention |
US8366762B2 (en) | 2004-08-31 | 2013-02-05 | Advanced Cardiovascular Systems, Inc. | Method of making a medical device with regioselective structure-property distribution |
DE102004045994A1 (de) | 2004-09-22 | 2006-03-30 | Campus Gmbh & Co. Kg | Stent zur Implantation in oder um ein Hohlorgan mit Markerelementen aus einem röntgenopaken Material |
US7887579B2 (en) | 2004-09-29 | 2011-02-15 | Merit Medical Systems, Inc. | Active stent |
US7875233B2 (en) | 2004-09-30 | 2011-01-25 | Advanced Cardiovascular Systems, Inc. | Method of fabricating a biaxially oriented implantable medical device |
DE102004054084B4 (de) | 2004-11-09 | 2007-08-02 | Admedes Schuessler Gmbh | Stent mit einem Marker zur Verbesserung der Röntgensichtbarkeit, die Verwendung sowie ein Verfahren zum Herstellen eines derartigen Stents |
US8070793B2 (en) | 2004-11-12 | 2011-12-06 | Kabushikikaisha Igaki Iryo Sekkei | Stent for vessel |
US7508853B2 (en) | 2004-12-07 | 2009-03-24 | Imra, America, Inc. | Yb: and Nd: mode-locked oscillators and fiber systems incorporated in solid-state short pulse laser systems |
WO2006069094A1 (en) | 2004-12-20 | 2006-06-29 | Cook Incorporated | Intraluminal support frame and medical devices including the support frame |
US9114033B2 (en) | 2005-01-10 | 2015-08-25 | Trireme Medical, Inc. | Stent with self-deployable portion |
US7316148B2 (en) | 2005-02-15 | 2008-01-08 | Boston Scientific Scimed, Inc. | Protective sheet loader |
US20060271170A1 (en) | 2005-05-31 | 2006-11-30 | Gale David C | Stent with flexible sections in high strain regions |
US7914574B2 (en) | 2005-08-02 | 2011-03-29 | Reva Medical, Inc. | Axially nested slide and lock expandable device |
US7476245B2 (en) | 2005-08-16 | 2009-01-13 | Advanced Cardiovascular Systems, Inc. | Polymeric stent patterns |
WO2007033963A1 (en) | 2005-09-19 | 2007-03-29 | Minvasys | Apparatus and methods for protected angioplasty and stenting at a carotid bifurcation |
US20070135898A1 (en) | 2005-12-13 | 2007-06-14 | Robert Burgermeister | Polymeric stent having modified molecular structures in the flexible connectors and the radial arcs of the hoops |
US20070142903A1 (en) | 2005-12-15 | 2007-06-21 | Dave Vipul B | Laser cut intraluminal medical devices |
US20070156230A1 (en) | 2006-01-04 | 2007-07-05 | Dugan Stephen R | Stents with radiopaque markers |
US7951185B1 (en) | 2006-01-06 | 2011-05-31 | Advanced Cardiovascular Systems, Inc. | Delivery of a stent at an elevated temperature |
US20070191926A1 (en) | 2006-02-14 | 2007-08-16 | Advanced Cardiovascular Systems, Inc. | Stent pattern for high stent retention |
WO2007105067A1 (en) | 2006-03-14 | 2007-09-20 | Arterial Remodeling Technologies, S.A. | Method of monitoring positioning of polymeric stents |
US20070266542A1 (en) | 2006-05-08 | 2007-11-22 | Cook Incorporated | Radiopaque marker for intraluminal medical device |
US7761968B2 (en) | 2006-05-25 | 2010-07-27 | Advanced Cardiovascular Systems, Inc. | Method of crimping a polymeric stent |
US20130331926A1 (en) | 2006-05-26 | 2013-12-12 | Abbott Cardiovascular Systems Inc. | Stents With Radiopaque Markers |
US20070282433A1 (en) | 2006-06-01 | 2007-12-06 | Limon Timothy A | Stent with retention protrusions formed during crimping |
US20070290412A1 (en) | 2006-06-19 | 2007-12-20 | John Capek | Fabricating a stent with selected properties in the radial and axial directions |
US7740791B2 (en) | 2006-06-30 | 2010-06-22 | Advanced Cardiovascular Systems, Inc. | Method of fabricating a stent with features by blow molding |
US20080009938A1 (en) | 2006-07-07 | 2008-01-10 | Bin Huang | Stent with a radiopaque marker and method for making the same |
US20080033523A1 (en) | 2006-07-10 | 2008-02-07 | Gale David C | Stent crack reduction |
US20080015684A1 (en) | 2006-07-11 | 2008-01-17 | Wu Patrick P | Method And Apparatus For Attaching Radiopaque Markers To A Stent |
US20080033524A1 (en) | 2006-07-11 | 2008-02-07 | Gale David C | Heated balloon assembly for delivery of polymeric stents |
US7886419B2 (en) * | 2006-07-18 | 2011-02-15 | Advanced Cardiovascular Systems, Inc. | Stent crimping apparatus and method |
US8252041B2 (en) | 2006-08-23 | 2012-08-28 | Abbott Laboratories | Stent designs for use in peripheral vessels |
US8211163B2 (en) | 2006-09-13 | 2012-07-03 | Boston Scientific Scimed, Inc. | Hybrid symmetrical stent designs |
US8691321B2 (en) | 2006-10-20 | 2014-04-08 | Orbusneich Medical, Inc. | Bioabsorbable polymeric composition and medical device background |
US8099849B2 (en) | 2006-12-13 | 2012-01-24 | Abbott Cardiovascular Systems Inc. | Optimizing fracture toughness of polymeric stent |
US20080177373A1 (en) | 2007-01-19 | 2008-07-24 | Elixir Medical Corporation | Endoprosthesis structures having supporting features |
US20130150943A1 (en) | 2007-01-19 | 2013-06-13 | Elixir Medical Corporation | Biodegradable endoprostheses and methods for their fabrication |
US20080195193A1 (en) | 2007-02-01 | 2008-08-14 | Cook Incorporated | Covered balloon expandable stent design and method of covering |
US8303644B2 (en) | 2007-05-04 | 2012-11-06 | Abbott Cardiovascular Systems Inc. | Stents with high radial strength and methods of manufacturing same |
US8002817B2 (en) | 2007-05-04 | 2011-08-23 | Abbott Cardiovascular Systems Inc. | Stents with high radial strength and methods of manufacturing same |
US8388673B2 (en) | 2008-05-02 | 2013-03-05 | Abbott Cardiovascular Systems Inc. | Polymeric stent |
US7666342B2 (en) | 2007-06-29 | 2010-02-23 | Abbott Cardiovascular Systems Inc. | Method of manufacturing a stent from a polymer tube |
US20110130822A1 (en) | 2007-07-20 | 2011-06-02 | Orbusneich Medical, Inc. | Bioabsorbable Polymeric Compositions and Medical Devices |
US8046897B2 (en) | 2007-09-28 | 2011-11-01 | Abbott Cardiovascular Systems Inc. | Method and apparatus for stent retention on a balloon catheter |
US20100298926A1 (en) | 2007-10-16 | 2010-11-25 | Kabushikikaisha Kyoto Iryo Sekkei | Cylindrically-shaped element for luminal stent, and luminal stent |
US20090105797A1 (en) | 2007-10-18 | 2009-04-23 | Med Institute, Inc. | Expandable stent |
US7972373B2 (en) | 2007-12-19 | 2011-07-05 | Advanced Technologies And Regenerative Medicine, Llc | Balloon expandable bioabsorbable stent with a single stress concentration region interconnecting adjacent struts |
US20090204203A1 (en) | 2008-02-07 | 2009-08-13 | Medtronic Vascular, Inc. | Bioabsorbable Stent Having a Radiopaque Marker |
WO2009121048A1 (en) | 2008-03-28 | 2009-10-01 | Ethicon, Inc. | Method of manufacturing a polymeric stent having a circumferential ring configuration |
US8252215B2 (en) | 2008-03-31 | 2012-08-28 | Abbott Cardiovascular Systems Inc. | Method for fabricating a stent with nucleating agent |
US20090248131A1 (en) | 2008-03-31 | 2009-10-01 | Medtronic Vascular, Inc. | Covered Stent and Method of Making Same |
US7882806B2 (en) * | 2008-05-28 | 2011-02-08 | Ver Hage Richard P | Cage with micro filter top |
US8206636B2 (en) | 2008-06-20 | 2012-06-26 | Amaranth Medical Pte. | Stent fabrication via tubular casting processes |
US20110260352A1 (en) | 2010-04-21 | 2011-10-27 | Fuh-Wei Tang | Stabilizing Semi-Crystalline Polymers To Improve Storage Performance Of Medical Devices |
US8123793B2 (en) | 2008-09-10 | 2012-02-28 | Boston Scientific Scimed, Inc. | Pre-crimp balloon inflation |
WO2010107681A1 (en) | 2009-03-16 | 2010-09-23 | Med Institute, Inc. | Hybrid stent and method of making such a stent |
US20100292777A1 (en) | 2009-05-13 | 2010-11-18 | Boston Scientific Scimed, Inc. | Stent |
US20110027038A1 (en) * | 2009-07-28 | 2011-02-03 | Pen-Chun YU | Heat sink anchoring apparatus |
US8435437B2 (en) | 2009-09-04 | 2013-05-07 | Abbott Cardiovascular Systems Inc. | Setting laser power for laser machining stents from polymer tubing |
US8808353B2 (en) * | 2010-01-30 | 2014-08-19 | Abbott Cardiovascular Systems Inc. | Crush recoverable polymer scaffolds having a low crossing profile |
US8568471B2 (en) | 2010-01-30 | 2013-10-29 | Abbott Cardiovascular Systems Inc. | Crush recoverable polymer scaffolds |
US8562670B2 (en) | 2010-04-01 | 2013-10-22 | Abbott Cardiovascular Systems Inc. | Implantable prosthesis with depot retention feature |
US8370120B2 (en) | 2010-04-30 | 2013-02-05 | Abbott Cardiovascular Systems Inc. | Polymeric stents and method of manufacturing same |
US8261423B2 (en) | 2010-04-30 | 2012-09-11 | Abbott Cardiovascular Systems Inc. | Methods for crimping a polymeric stent onto a delivery balloon |
US8844113B2 (en) | 2010-04-30 | 2014-09-30 | Abbott Cardiovascular Systems, Inc. | Methods for crimping a polymeric stent scaffold onto a delivery balloon |
US8679394B2 (en) | 2010-06-10 | 2014-03-25 | Abbott Cardiovascular Systems Inc. | Laser system and processing conditions for manufacturing bioabsorbable stents |
US8752261B2 (en) | 2010-07-07 | 2014-06-17 | Abbott Cardiovascular Systems Inc. | Mounting stents on stent delivery systems |
US20120029618A1 (en) | 2010-07-28 | 2012-02-02 | Boston Scientific Scimed, Inc. | Stent Connector Bump Design |
US8539663B2 (en) | 2010-08-23 | 2013-09-24 | Abbott Cardiovascular Systems Inc. | Reducing crimping damage to polymer scaffold |
US9345602B2 (en) | 2010-09-23 | 2016-05-24 | Abbott Cardiovascular Systems Inc. | Processes for making crush recoverable polymer scaffolds |
US8595913B2 (en) | 2010-09-30 | 2013-12-03 | Advanced Cardiovascular Systems, Inc. | Stent crimping methods |
EP2624791B1 (en) | 2010-10-08 | 2017-06-21 | Confluent Medical Technologies, Inc. | Alternating circumferential bridge stent design |
US8961848B2 (en) | 2011-04-18 | 2015-02-24 | Abbott Cardiovascular Systems Inc. | Methods for increasing a retention force between a polymeric scaffold and a delivery balloon |
US9199408B2 (en) | 2012-04-03 | 2015-12-01 | Abbott Cardiovascular Systems Inc. | Uniform crimping and deployment methods for polymer scaffold |
US20120290063A1 (en) * | 2011-05-09 | 2012-11-15 | Abbott Cardiovascular Systems Inc. | Method of Increasing Stent Retention of Bioabsorbable Scaffolding with a Sheath |
US8752265B2 (en) * | 2011-05-13 | 2014-06-17 | Abbott Cardiovascular Systems Inc. | Methods for crimping a polymeric scaffold to a delivery balloon and achieving stable mechanical properties in the scaffold after crimping |
US8747728B2 (en) | 2011-05-24 | 2014-06-10 | Abbott Cardiovascular Systems Inc. | Method and system for manufacturing a polymer endoprosthesis by injection molding and blow molding |
US8726483B2 (en) | 2011-07-29 | 2014-05-20 | Abbott Cardiovascular Systems Inc. | Methods for uniform crimping and deployment of a polymer scaffold |
-
2011
- 2011-07-29 US US13/194,162 patent/US8726483B2/en not_active Expired - Fee Related
-
2012
- 2012-06-08 WO PCT/US2012/041692 patent/WO2013019315A2/en active Application Filing
- 2012-06-08 CN CN201610121369.7A patent/CN105796221B/zh active Active
- 2012-06-08 EP EP12728005.5A patent/EP2736458B1/en not_active Not-in-force
- 2012-06-08 CN CN201280037830.0A patent/CN103826575B/zh active Active
- 2012-06-08 IN IN1437CHN2014 patent/IN2014CN01437A/en unknown
- 2012-06-08 JP JP2014522820A patent/JP6069770B2/ja not_active Expired - Fee Related
-
2014
- 2014-03-24 US US14/223,844 patent/US9161852B2/en active Active
-
2015
- 2015-10-13 US US14/882,337 patent/US9554928B2/en active Active
-
2016
- 2016-12-19 US US15/383,821 patent/US10307274B2/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1998007390A1 (en) * | 1996-08-23 | 1998-02-26 | Scimed Life Systems, Inc. | Stent delivery system having stent securement apparatus |
US20040260379A1 (en) * | 2003-06-23 | 2004-12-23 | Jagger Karl A. | Asymmetric stent delivery system with proximal edge protection and method of manufacture thereof |
CN101394808A (zh) * | 2004-03-31 | 2009-03-25 | 梅林Md私人有限公司 | 一种医疗设备 |
CN2787169Y (zh) * | 2004-09-08 | 2006-06-14 | 陈明志 | 具有补偿式机构的血管支架 |
US20070006441A1 (en) * | 2005-04-12 | 2007-01-11 | Advanced Cardiovascular Systems, Inc. | Method for retaining a vascular stent on a catheter |
CN101175454A (zh) * | 2005-04-29 | 2008-05-07 | 动脉再塑技术公司 | 支架卷曲方法 |
US20070289117A1 (en) * | 2006-06-19 | 2007-12-20 | Bin Huang | Methods for improving stent retention on a balloon catheter |
US20100323091A1 (en) * | 2009-06-23 | 2010-12-23 | Abbott Cardiovascular Systems Inc. | Methods To Increase Fracture Resistance Of A Drug-Eluting Medical Device |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112512463A (zh) * | 2018-06-11 | 2021-03-16 | 雅培心血管系统有限公司 | 聚合物支架结构均匀卷曲和展开的方法 |
CN108836568A (zh) * | 2018-07-12 | 2018-11-20 | 苏州茵络医疗器械有限公司 | 一种球扩覆膜支架 |
CN115120395A (zh) * | 2022-06-15 | 2022-09-30 | 首都医科大学附属北京天坛医院 | 一种颅内动脉闭塞病变专用血管支架和球囊导管 |
CN115120395B (zh) * | 2022-06-15 | 2024-06-21 | 首都医科大学附属北京天坛医院 | 一种颅内动脉闭塞病变专用血管支架和球囊导管 |
Also Published As
Publication number | Publication date |
---|---|
US9554928B2 (en) | 2017-01-31 |
CN103826575B (zh) | 2016-04-13 |
US10307274B2 (en) | 2019-06-04 |
JP2014523789A (ja) | 2014-09-18 |
JP6069770B2 (ja) | 2017-02-01 |
CN105796221A (zh) | 2016-07-27 |
US20170095361A1 (en) | 2017-04-06 |
WO2013019315A2 (en) | 2013-02-07 |
WO2013019315A3 (en) | 2013-04-04 |
US20140201973A1 (en) | 2014-07-24 |
EP2736458A2 (en) | 2014-06-04 |
CN105796221B (zh) | 2018-01-02 |
US8726483B2 (en) | 2014-05-20 |
US20160030214A1 (en) | 2016-02-04 |
IN2014CN01437A (zh) | 2015-05-08 |
US20130025110A1 (en) | 2013-01-31 |
EP2736458B1 (en) | 2017-04-19 |
US9161852B2 (en) | 2015-10-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103826575B (zh) | 用于均匀卷曲和展开聚合物骨架的方法 | |
CN103476365B (zh) | 用于制造压溃可恢复聚合物支架的方法 | |
JP6108242B2 (ja) | 圧縮復元可能な高分子スキャフォールド | |
CN105050550B (zh) | 使医疗装置均匀卷曲和扩张的方法 | |
CN104427957B (zh) | 用于外周血管的聚合物支架 | |
CN102740806A (zh) | 压溃可恢复的聚合物支架 | |
CN103607979B (zh) | 用于聚合物支架的均匀卷曲和展开的方法 | |
US9814610B2 (en) | Stent with elongating struts | |
US10478323B2 (en) | Biodegradable stent and shape memory expanding method therefor | |
US20190201225A1 (en) | Stent delivery systems with shaped expansion balloons |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |