CN103361499A - Method for recovering rare earth elements from spent automobile catalyst - Google Patents
Method for recovering rare earth elements from spent automobile catalyst Download PDFInfo
- Publication number
- CN103361499A CN103361499A CN2013103110988A CN201310311098A CN103361499A CN 103361499 A CN103361499 A CN 103361499A CN 2013103110988 A CN2013103110988 A CN 2013103110988A CN 201310311098 A CN201310311098 A CN 201310311098A CN 103361499 A CN103361499 A CN 103361499A
- Authority
- CN
- China
- Prior art keywords
- rare earth
- catalysts
- solution
- spent
- spent auto
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910052761 rare earth metal Inorganic materials 0.000 title claims abstract description 68
- 239000003054 catalyst Substances 0.000 title claims abstract description 54
- 238000000034 method Methods 0.000 title claims abstract description 26
- 150000002910 rare earth metals Chemical class 0.000 claims abstract description 44
- 238000002386 leaching Methods 0.000 claims abstract description 19
- 239000002253 acid Substances 0.000 claims abstract description 15
- 150000003839 salts Chemical class 0.000 claims abstract description 10
- 239000003513 alkali Substances 0.000 claims abstract description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 8
- 239000007788 liquid Substances 0.000 claims abstract description 6
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims description 33
- 238000001556 precipitation Methods 0.000 claims description 15
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 12
- 229910052751 metal Inorganic materials 0.000 claims description 8
- 239000003795 chemical substances by application Substances 0.000 claims description 7
- 239000002184 metal Substances 0.000 claims description 7
- -1 platinum metals Chemical class 0.000 claims description 7
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 claims description 5
- 229910052938 sodium sulfate Inorganic materials 0.000 claims description 5
- 235000011152 sodium sulphate Nutrition 0.000 claims description 5
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 claims description 4
- 239000000843 powder Substances 0.000 claims description 4
- 230000001376 precipitating effect Effects 0.000 claims description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 3
- 238000006243 chemical reaction Methods 0.000 claims description 3
- 239000001257 hydrogen Substances 0.000 claims description 3
- 229910052739 hydrogen Inorganic materials 0.000 claims description 3
- 239000000395 magnesium oxide Substances 0.000 claims description 2
- 230000035484 reaction time Effects 0.000 claims description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Substances [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims 2
- 238000004062 sedimentation Methods 0.000 claims 2
- 229910052697 platinum Inorganic materials 0.000 claims 1
- 238000000926 separation method Methods 0.000 claims 1
- 238000011084 recovery Methods 0.000 abstract description 10
- 239000002699 waste material Substances 0.000 abstract description 5
- 230000032683 aging Effects 0.000 abstract description 2
- 238000002156 mixing Methods 0.000 abstract description 2
- 239000000243 solution Substances 0.000 description 28
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 12
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 8
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 6
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 6
- 238000001704 evaporation Methods 0.000 description 6
- 239000000706 filtrate Substances 0.000 description 6
- 229910052573 porcelain Inorganic materials 0.000 description 6
- 239000010970 precious metal Substances 0.000 description 5
- 238000004523 catalytic cracking Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 238000000746 purification Methods 0.000 description 4
- 238000003756 stirring Methods 0.000 description 4
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000001914 filtration Methods 0.000 description 3
- 229910052746 lanthanum Inorganic materials 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- 229910017604 nitric acid Inorganic materials 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 229910052720 vanadium Inorganic materials 0.000 description 3
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 2
- KGWWEXORQXHJJQ-UHFFFAOYSA-N [Fe].[Co].[Ni] Chemical compound [Fe].[Co].[Ni] KGWWEXORQXHJJQ-UHFFFAOYSA-N 0.000 description 2
- 239000010941 cobalt Substances 0.000 description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 2
- 235000006408 oxalic acid Nutrition 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 238000000638 solvent extraction Methods 0.000 description 2
- 229910052726 zirconium Inorganic materials 0.000 description 2
- ATRRKUHOCOJYRX-UHFFFAOYSA-N Ammonium bicarbonate Chemical compound [NH4+].OC([O-])=O ATRRKUHOCOJYRX-UHFFFAOYSA-N 0.000 description 1
- 229910000013 Ammonium bicarbonate Inorganic materials 0.000 description 1
- 229910052684 Cerium Inorganic materials 0.000 description 1
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- VEQPNABPJHWNSG-UHFFFAOYSA-N Nickel(2+) Chemical compound [Ni+2] VEQPNABPJHWNSG-UHFFFAOYSA-N 0.000 description 1
- 229910052777 Praseodymium Inorganic materials 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- 238000003916 acid precipitation Methods 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 150000008044 alkali metal hydroxides Chemical class 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 235000012538 ammonium bicarbonate Nutrition 0.000 description 1
- 239000001099 ammonium carbonate Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical compound [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 description 1
- 229910000420 cerium oxide Inorganic materials 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 229910001429 cobalt ion Inorganic materials 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 230000002431 foraging effect Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 229910001453 nickel ion Inorganic materials 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- PUDIUYLPXJFUGB-UHFFFAOYSA-N praseodymium atom Chemical compound [Pr] PUDIUYLPXJFUGB-UHFFFAOYSA-N 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 229910001404 rare earth metal oxide Inorganic materials 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 239000002910 solid waste Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Manufacture And Refinement Of Metals (AREA)
- Catalysts (AREA)
Abstract
本发明涉及一种从失效汽车催化剂中回收稀土的方法。其方法包括以下步骤:失效汽车催化剂与浓酸混合进行熟化;水或稀酸浸出其中的稀土元素;加沉淀剂沉淀分散进入溶液的铂族金属,固液分离获得含铂族金属滤渣和含稀土的溶液;溶液加入碱调整溶液的酸碱度,加入沉淀剂沉淀稀土,使稀土以复盐形式沉淀,实现稀土的回收。该发明的技术特点为回收稀土后的溶液经净化后返回稀土浸出,工序工艺设计不产生废液。稀土回收率大于90%。
The invention relates to a method for recovering rare earths from spent automobile catalysts. The method comprises the following steps: aging the exhausted automobile catalyst by mixing it with concentrated acid; leaching rare earth elements therein with water or dilute acid; The solution; the solution is added with alkali to adjust the pH of the solution, and a precipitant is added to precipitate the rare earth, so that the rare earth is precipitated in the form of a double salt, and the recovery of the rare earth is realized. The technical feature of the invention is that the solution after rare earth recovery is purified and returned to rare earth leaching, and the process design does not produce waste liquid. The recovery rate of rare earth is more than 90%.
Description
技术领域 technical field
本发明涉及一种从失效汽车催化剂中提取稀土的方法,属于稀贵金属二次资源循环利用领域。The invention relates to a method for extracting rare earths from spent automobile catalysts, and belongs to the field of secondary resource recycling of rare and precious metals.
背景技术 Background technique
稀土具有优异的光、电、磁、超导、催化等物理性能,能与其他材料组成性能各异、品种繁多的新型材料,目前包括稀土永磁体、贮氢合金材料、发光荧光材料、净化催化剂等在内的新材料是稀土最大的、也是增长最快的消费领域。Rare earths have excellent optical, electrical, magnetic, superconducting, catalytic and other physical properties, and can be combined with other materials to form a variety of new materials with different properties, including rare earth permanent magnets, hydrogen storage alloy materials, luminescent fluorescent materials, and purification catalysts. New materials, including rare earths, are the largest and fastest growing consumption area of rare earths.
目前汽车尾气净化催化剂是控制汽车尾气排放、减少污染的最有效手段,含稀土的汽车尾气净化催化剂价格低、热稳定性好、活性较高、具有较好的抗中毒能力,使用寿命长,目前已得到广泛使用。随着环境保护呼声的日益增强和矿产资源的日益枯竭,对于有价金属资源的回收再生利用势在必行。而失效汽车催化剂中含有1000 ~2000g/t的铂族金属,2~5%的稀土元素,因此对于失效汽车催化剂的回收处理极具研究开发价值。At present, automobile exhaust purification catalysts are the most effective means to control automobile exhaust emissions and reduce pollution. Automobile exhaust purification catalysts containing rare earths have low price, good thermal stability, high activity, good anti-poisoning ability, and long service life. At present, has been widely used. With the growing calls for environmental protection and the depletion of mineral resources, it is imperative to recycle valuable metal resources. The spent auto catalyst contains 1000~2000g/t of platinum group metals and 2~5% of rare earth elements, so it is of great research and development value for the recovery and treatment of spent auto catalysts.
从催化剂中回收稀土的方法如下:The method of recovering rare earths from the catalyst is as follows:
CN102453805A公开了从含有稀土元素的废催化裂化催化剂中回收稀土元素的方法,该方法采用1-10%(wt.)的盐酸溶液在25-80℃的条件下浸渍废催化裂化催化剂,浸出液与含有碱金属氢氧化物的水溶液接触,得到含有稀土的液相产物。浸出液中稀土元素的回收率大于60%(wt.)。CN102453805A discloses a method for recovering rare earth elements from spent catalytic cracking catalysts containing rare earth elements. The method uses 1-10% (wt.) hydrochloric acid solution to impregnate spent catalytic cracking catalysts at 25-80°C. Aqueous solutions of alkali metal hydroxides are contacted to obtain liquid phase products containing rare earths. The recovery rate of rare earth elements in the leaching solution is greater than 60% (wt.).
CN102453800A公开了从含有稀土元素的废催化裂化催化剂中回收稀土元素的方法,该方法采用1-10%(wt.)的盐酸和/或硝酸的溶液浸渍废催化裂化催化剂,浸出液的PH值调节为0.5-4,用有机萃取剂进行萃取,用盐酸和/或硝酸的溶液进行反萃,得到稀土含量和非稀土离子含量达到GB/T4148-2003的富氯化稀土和/或硝酸的溶液。CN102453800A discloses a method for reclaiming rare earth elements from spent catalytic cracking catalysts containing rare earth elements. The method uses 1-10% (wt.) solution of hydrochloric acid and/or nitric acid to impregnate spent catalytic cracking catalysts, and the pH value of the leaching solution is adjusted to 0.5-4, extract with an organic extractant, and back-extract with a solution of hydrochloric acid and/or nitric acid to obtain a solution rich in rare earth chloride and/or nitric acid whose rare earth content and non-rare earth ion content reach GB/T4148-2003.
CN102586606A公开了从含钒镍的废FCC/ROC触媒中回收稀土、钒、镍的方法,该方法采用1-5mol的硫酸在90-95℃的条件下浸渍废催化剂中的稀土元素,之后以复盐沉淀方式沉淀浸出液中的稀土,经碱转换后,以盐酸酸溶,再草酸、碳酸氢铵沉淀获得稀土产品。CN102586606A discloses a method for recovering rare earths, vanadium and nickel from spent FCC/ROC catalysts containing vanadium and nickel. The method uses 1-5mol of sulfuric acid to impregnate rare earth elements in spent catalysts at 90-95°C, and then The rare earth in the leaching solution is precipitated by salt precipitation, and after alkali conversion, it is acid-dissolved with hydrochloric acid, and then precipitated with oxalic acid and ammonium bicarbonate to obtain rare earth products.
CN102242270A公开了一种从催化剂废渣中回收稀土的方法,所说的催化剂废渣为FCC催化剂生产过程产生的固体废物或FCC催化剂使用后的废催化剂,将催化剂废渣与浓度大于0.5mol/l酸反应,采用溶剂萃取或草酸沉淀分离稀土。CN102242270A discloses a method for recovering rare earth from catalyst waste residue, said catalyst waste residue is the solid waste produced in the FCC catalyst production process or the spent catalyst after FCC catalyst is used, and the catalyst waste residue is reacted with acid with a concentration greater than 0.5mol/l, Rare earths were separated by solvent extraction or oxalic acid precipitation.
CN103031438A公开了一种汽车尾气净化催化剂中稀土和贵金属的回收工艺。该方法采用将失效汽车催化剂研磨与氢氧化钠混合,在300℃~500℃之间焙烧,热水洗涤铝、钼、钒、锆等元素,滤渣酸溶稀土元素以及钴镍铁等金属元素,滤后得到的含有稀土以及铁钴镍离子的溶液,先调节溶液pH值至3.5~4.5之间,然后在20~40℃条件下加入硫化物或者通入硫化氢沉淀钴镍铁,滤去钴镍沉淀物的滤液为含有稀土的溶液,用P507萃取分离铈、镨、镧、钇等稀土,然后制备稀土氧化物。CN103031438A discloses a recovery process of rare earths and precious metals in automobile exhaust gas purification catalysts. The method adopts grinding the exhausted automobile catalyst and mixing it with sodium hydroxide, roasting it between 300°C and 500°C, washing aluminum, molybdenum, vanadium, zirconium and other elements with hot water, filtering the acid-soluble rare earth elements and metal elements such as cobalt nickel iron, etc. After filtering the solution containing rare earth and iron, cobalt and nickel ions, first adjust the pH value of the solution to 3.5-4.5, then add sulfide or hydrogen sulfide to precipitate cobalt-nickel-iron at 20-40°C, and filter out cobalt The filtrate of the nickel precipitate is a solution containing rare earths, and P507 is used to extract and separate rare earths such as cerium, praseodymium, lanthanum, and yttrium, and then prepare rare earth oxides.
从公开了的催化剂回收稀土的方法来看,主要集中在石化催化剂方面,其中稀土的提取主要采用稀酸浸渍废催化剂中的稀土元素,再从浸出液中回收稀土元素。从失效汽车催化剂中回收稀土元素采用氢氧化钠焙烧,水浸出锆等元素,稀酸浸出稀土,溶剂萃取分离回收稀土。Judging from the disclosed methods for recovering rare earths from catalysts, they mainly focus on petrochemical catalysts. The extraction of rare earths mainly uses dilute acid to impregnate the rare earth elements in the spent catalyst, and then recovers the rare earth elements from the leachate. Sodium hydroxide roasting is used to recover rare earth elements from exhausted automobile catalysts, zirconium and other elements are leached with water, rare earths are leached with dilute acid, and rare earths are separated and recovered by solvent extraction.
发明内容 Contents of the invention
本发明的发明人在研究中发现,采用稀酸(盐酸溶液或硫酸溶液)直接浸渍失效汽车催化剂中的稀土元素其效果并不理想,提高盐酸浓度到3mol/L或者硫酸浓度到4mol/L在85℃的条件下搅拌浸出6小时,其稀土的浸出率约50%。其原因是失效汽车催化剂含有氧化锆,而氧化锆不溶于稀酸,氧化锆对稀土元素形成包裹,阻碍了稀土元素的溶解。为消除上述不利影响,本发明的发明人提出采用浓硫酸与失效汽车催化剂破碎粉末混合均匀,进行熟化后浸出稀土元素,技术原理是失效汽车催化剂中的氧化锆和稀土元素铈(CeO2)只溶于浓硫酸。采用该技术方案稀土元素的浸出率大于90%,取得满意效果。The inventors of the present invention have found in research that the effect of directly impregnating the rare earth elements in the exhausted automobile catalyst with dilute acid (hydrochloric acid solution or sulfuric acid solution) is not ideal, and the concentration of hydrochloric acid is increased to 3mol/L or the concentration of sulfuric acid is increased to 4mol/L. Stirring and leaching at 85°C for 6 hours, the leaching rate of rare earth is about 50%. The reason is that the expired auto catalyst contains zirconia, and zirconia is insoluble in dilute acid, and zirconia wraps rare earth elements, hindering the dissolution of rare earth elements. In order to eliminate the above-mentioned adverse effects, the inventor of the present invention proposes to use concentrated sulfuric acid to mix evenly with the crushed powder of the exhausted automobile catalyst, and to leach rare earth elements after aging. Soluble in concentrated sulfuric acid. Using this technical solution, the leaching rate of rare earth elements is greater than 90%, and satisfactory results have been achieved.
为实现上述目的,从失效汽车催化剂中回收稀土的方法,本发明的技术方案如下:In order to achieve the above object, the method for reclaiming rare earths from spent auto catalysts, the technical scheme of the present invention is as follows:
包括以下步骤:Include the following steps:
步骤1:失效汽车催化剂与浓酸混合进行熟化;Step 1: The spent auto catalyst is mixed with concentrated acid for aging;
步骤2:水或稀酸浸出稀土元素;Step 2: leaching rare earth elements with water or dilute acid;
步骤3:加沉淀剂沉淀分散进入溶液的铂族金属, 固液分离获得含铂族金属滤渣和含稀土的滤液;Step 3: add a precipitating agent to precipitate and disperse the platinum group metals in the solution, and separate the solid and liquid to obtain the filtrate containing platinum group metals and rare earths;
步骤4:溶液加入碱调整溶液的酸碱度,加入沉淀剂沉淀稀土,过滤得到稀土复盐。Step 4: adding alkali to the solution to adjust the pH of the solution, adding a precipitating agent to precipitate the rare earth, and filtering to obtain the rare earth double salt.
在上述方案的基础上,本发明还可以做如下改进:On the basis of above-mentioned scheme, the present invention can also be improved as follows:
进一步,所述步骤1酸为浓硫酸,用量为失效汽车催化剂的20~200%(wt.重量);所述失效汽车催化剂为经过破碎、制粉,粉末粒度为大于200目。熟化的工艺条件为:温度室温~300℃,时间1~24小时。Further, the acid in step 1 is concentrated sulfuric acid, and the dosage is 20-200% (wt. weight) of the spent auto catalyst; the spent auto catalyst is crushed and powdered, and the particle size of the powder is greater than 200 mesh. The technical conditions of curing are: temperature from room temperature to 300° C., and time from 1 to 24 hours.
进一步,所述步骤2的稀酸为硫酸,酸度为0-1mol/L,反应温度为室温~90℃,反应时间20~360分钟, S:L=1:4~12。Further, the dilute acid in the step 2 is sulfuric acid, the acidity is 0-1mol/L, the reaction temperature is room temperature-90°C, the reaction time is 20-360 minutes, S:L=1:4-12.
进一步,所述步骤3的沉淀剂为T,用量为失效汽车催化剂的1~5%(wt. 重量),沉淀温度为室温~90℃,沉淀时间20~240分钟。Further, the precipitating agent in step 3 is T, the dosage is 1-5% (wt. weight) of the exhausted automobile catalyst, the precipitation temperature is room temperature-90°C, and the precipitation time is 20-240 minutes.
进一步,所述步骤4的滤液加入碱调整溶液的酸碱度,pH为1-5.5,碱为镁砂、氢氧化钠中的一种,加入的沉淀剂为硫酸钠,用量为溶液中稀土的1~10倍(重量wt.),沉淀温度为室温~100℃,沉淀时间20~240分钟。Further, the filtrate in step 4 is added with alkali to adjust the pH of the solution, the pH is 1-5.5, the alkali is one of magnesia and sodium hydroxide, the added precipitant is sodium sulfate, and the dosage is 1-5.5 of the rare earth in the solution. 10 times (weight wt.), precipitation temperature ranges from room temperature to 100°C, and precipitation time ranges from 20 to 240 minutes.
本发明与现有技术相比,具有以下优点及有益效果:Compared with the prior art, the present invention has the following advantages and beneficial effects:
1、利用氧化锆和氧化铈易溶于浓硫酸的机理,采用浓硫酸与失效汽车催化剂中的稀土元素反应,高效地浸出失效汽车催化剂中的稀土元素,提高了稀土回收率。1. Utilizing the mechanism that zirconia and cerium oxide are easily soluble in concentrated sulfuric acid, the concentrated sulfuric acid is used to react with the rare earth elements in the exhausted automobile catalyst, and the rare earth elements in the exhausted automobile catalyst are efficiently leached, and the recovery rate of rare earths is improved.
2、提取稀土后溶液经净化后返回浸出稀土,方案设计不产生废液,工艺绿色环保。2. After the rare earth is extracted, the solution is purified and returned to leach the rare earth. The design of the scheme does not produce waste liquid, and the process is green and environmentally friendly.
3、本发明与本发明的发明人另外两项授权专利(ZL200910094317.5;ZL200910094112.7)结合,可以实现从失效汽车催化剂中同时回收稀土及铂族金属。3. Combining the present invention with the inventor's other two authorized patents (ZL200910094317.5; ZL200910094112.7), it is possible to simultaneously recover rare earths and platinum group metals from spent auto catalysts.
附图说明 Description of drawings
图1为本发明实施实例的工艺流程图。Fig. 1 is the process flow diagram of the embodiment of the present invention.
具体实施方式 Detailed ways
以下结合附图和具体实施方式对本发明进行进一步说明The present invention will be further described below in conjunction with accompanying drawing and specific embodiment
实施例1 参见附图1,称取≥200目50克失效汽车催化剂(含Ce2.451%、La0.3945%),放入瓷蒸发皿中,加入16ml浓硫酸,混匀,升温至300℃,恒温5小时。取出放入500ml烧杯中,加入1mol/L硫酸溶液200ml,固液比S:L=1:4,置于水浴锅内,加入pH1的硫酸溶液400ml,升温至85℃,恒温搅拌6小时,加入沉淀剂T(T为固体Zn),反应2小时,过滤,滤液中贵金属含量均<0.0005 g/L、 滤渣34.88克放入瓷蒸发皿中,加入12.6ml浓硫酸,重复焙烧浸出一次,稀土浸出率Ce93.78%、La 94.05%。将稀土浸出液加入硫酸钠至浓度达到5%(重量wt), 加热至90℃反应2h,放置1h,过滤,获得稀土复盐,稀土沉淀率分别为Ce96.66%、La97.71%。从失效汽车催化剂到稀土复盐稀土回收率分别为Ce90.65%、La91.90%。Example 1 See attached drawing 1, weigh 50 grams of spent automobile catalyst (containing Ce2.451%, La0.3945%) of ≥200 mesh, put it into a porcelain evaporating dish, add 16ml of concentrated sulfuric acid, mix well, and heat up to 300°C , constant temperature for 5 hours. Take it out and put it into a 500ml beaker, add 200ml of 1mol/L sulfuric acid solution, solid-to-liquid ratio S:L=1:4, put it in a water bath, add 400ml of sulfuric acid solution with pH 1, heat up to 85°C, stir at constant temperature for 6 hours, add Precipitant T (T is solid Zn), react for 2 hours, filter, the content of precious metals in the filtrate is <0.0005 g/L, put 34.88 grams of filter residue into a porcelain evaporating dish, add 12.6ml of concentrated sulfuric acid, repeat roasting and leaching once, rare earth leaching Rate Ce93.78%, La94.05%. Add sodium sulfate to the rare earth leaching solution until the concentration reaches 5% (wt), heat to 90°C for 2 hours, place for 1 hour, and filter to obtain rare earth double salts. The rare earth precipitation rates are Ce96.66% and La97.71%, respectively. The rare earth recoveries from spent auto catalysts to rare earth double salts are Ce90.65% and La91.90%, respectively.
实施例2 参见附图1, 称取≥200目50克失效汽车催化剂(含Ce2.451%、La0.3945%),放入瓷蒸发皿中,加入16ml浓硫酸,混匀,升温至150℃,恒温5小时。取出放入500ml烧杯中,加入1mol/L硫酸溶液200ml,S:L=1:4,置于水浴锅内,加入pH1的硫酸溶液400ml,升温至85℃,恒温搅拌6小时,加入沉淀剂T(T为固体Zn),反应2小时,过滤,滤液中贵金属含量均<0.0005 g/L、 滤渣37.54克放入瓷蒸发皿中,加入13.5ml浓硫酸,重复焙烧浸出一次,稀土浸出率Ce92.17%、La 92.48%。将稀土浸出液加入硫酸钠至浓度达到5%(wt), 加热至88℃反应2h,放置1h,过滤,获得稀土复盐,稀土沉淀率分别为Ce98.75%、La98.54%。从失效汽车催化剂到稀土复盐稀土回收率分别为Ce91.02%、La91.13%。Example 2 See attached drawing 1, weigh 50 grams of exhausted automobile catalyst (containing Ce2.451% and La0.3945%) of ≥200 mesh, put it into a porcelain evaporating dish, add 16ml of concentrated sulfuric acid, mix well, and heat up to 150°C , constant temperature for 5 hours. Take it out and put it into a 500ml beaker, add 200ml of 1mol/L sulfuric acid solution, S:L=1:4, put it in a water bath, add 400ml of sulfuric acid solution with a pH of 1, raise the temperature to 85°C, stir at constant temperature for 6 hours, add the precipitant T (T is solid Zn), react for 2 hours, filter, the precious metal content in the filtrate is <0.0005 g/L, put 37.54 grams of filter residue into a porcelain evaporating dish, add 13.5ml concentrated sulfuric acid, repeat roasting and leaching once, the rare earth leaching rate is Ce92. 17%, La 92.48%. Add sodium sulfate to the rare earth leaching solution until the concentration reaches 5% (wt), heat to 88°C for 2 hours, stand for 1 hour, and filter to obtain rare earth double salts. The rare earth precipitation rates are Ce98.75% and La98.54%, respectively. The rare earth recovery rates from spent auto catalysts to rare earth double salts are Ce91.02% and La91.13%, respectively.
实施例3 参见附图1, 称取≥200目50克失效汽车催化剂(含Ce2.451%、La0.3945%),放入瓷蒸发皿中,加入16ml浓硫酸,混匀,升温至225℃,恒温5小时。取出放入500ml烧杯中,加入2 N硫酸溶液200ml,S:L=1:4,置于水浴锅内,加入pH1的硫酸溶液400ml,升温至85℃,恒温搅拌6小时,加入沉淀剂T,反应2小时,过滤,滤液中贵金属含量均<0.0005 g/L、 滤渣36.91克放入瓷蒸发皿中,加入13.29ml浓硫酸,重复焙烧浸出一次,稀土浸出率Ce92.57%、La 93.38%。将稀土浸出液加入硫酸钠至浓度达到5%(wt), 加热至93℃反应2h,放置1h,过滤,获得稀土复盐,稀土沉淀率分别为Ce97.45%、La97.06%。从失效汽车催化剂到稀土复盐稀土回收率分别为Ce90.21%、La90.63%。Example 3 See attached drawing 1, weigh 50 grams of spent automobile catalyst (containing Ce2.451%, La0.3945%) of ≥200 mesh, put it into a porcelain evaporating dish, add 16ml of concentrated sulfuric acid, mix well, and heat up to 225°C , constant temperature for 5 hours. Take it out and put it into a 500ml beaker, add 200ml of 2 N sulfuric acid solution, S:L=1:4, put it in a water bath, add 400ml of sulfuric acid solution with pH 1, heat up to 85°C, stir at constant temperature for 6 hours, add precipitant T, React for 2 hours, filter, the precious metal content in the filtrate is <0.0005 g/L, put 36.91 g of filter residue into a porcelain evaporating dish, add 13.29 ml of concentrated sulfuric acid, repeat roasting and leaching once, the rare earth leaching rate is Ce92.57%, La 93.38%. Add sodium sulfate to the rare earth leaching solution until the concentration reaches 5% (wt), heat to 93°C for 2 hours, stand for 1 hour, and filter to obtain rare earth double salts. The rare earth precipitation rates are Ce97.45% and La97.06%, respectively. The rare earth recoveries from spent auto catalysts to rare earth double salts are Ce90.21% and La90.63%, respectively.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2013103110988A CN103361499A (en) | 2013-07-23 | 2013-07-23 | Method for recovering rare earth elements from spent automobile catalyst |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2013103110988A CN103361499A (en) | 2013-07-23 | 2013-07-23 | Method for recovering rare earth elements from spent automobile catalyst |
Publications (1)
Publication Number | Publication Date |
---|---|
CN103361499A true CN103361499A (en) | 2013-10-23 |
Family
ID=49363752
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2013103110988A Pending CN103361499A (en) | 2013-07-23 | 2013-07-23 | Method for recovering rare earth elements from spent automobile catalyst |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103361499A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105671304A (en) * | 2016-02-25 | 2016-06-15 | 昆明贵金属研究所 | Method for recycling rare earth and platinum group metal from spent automobile emission purification catalyst |
CN109234548A (en) * | 2017-07-10 | 2019-01-18 | 北京矿冶研究总院 | Method for extracting rare earth from deep sea sediment by sulfuric acid self-heating curing tank |
CN109722541A (en) * | 2019-02-27 | 2019-05-07 | 枣庄职业学院 | A method of recovering rare earth and platinum group metal from failure cleaning catalyst for tail gases of automobiles |
CN110184465A (en) * | 2019-05-31 | 2019-08-30 | 贵研资源(易门)有限公司 | A method of recycling rare precious metal from spent automotive exhaust catalysts |
CN110563014A (en) * | 2019-09-20 | 2019-12-13 | 常熟理工学院 | Process for jointly preparing potassium alum and high-content lanthanum-cerium rare earth composite salt by using FCC (fluid catalytic cracking) waste catalyst |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1143682A (en) * | 1995-08-23 | 1997-02-26 | 中国有色金属工业总公司昆明贵金属研究所 | Method for recovering noble metal and aluminum from waste aluminum-based catalyst and digestion furnace |
CN1667139A (en) * | 2004-03-08 | 2005-09-14 | 中国有色工程设计研究总院 | Mixed rare earth concentrate decomposition method |
CN101705380A (en) * | 2009-11-30 | 2010-05-12 | 北京有色金属研究总院 | Method for recovering rare earth from rare earth-containing aluminum-silicon materials |
CN102864319A (en) * | 2011-10-08 | 2013-01-09 | 中国恩菲工程技术有限公司 | Method for leaching rare earth elements from nickel oxide ore |
-
2013
- 2013-07-23 CN CN2013103110988A patent/CN103361499A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1143682A (en) * | 1995-08-23 | 1997-02-26 | 中国有色金属工业总公司昆明贵金属研究所 | Method for recovering noble metal and aluminum from waste aluminum-based catalyst and digestion furnace |
CN1667139A (en) * | 2004-03-08 | 2005-09-14 | 中国有色工程设计研究总院 | Mixed rare earth concentrate decomposition method |
CN101705380A (en) * | 2009-11-30 | 2010-05-12 | 北京有色金属研究总院 | Method for recovering rare earth from rare earth-containing aluminum-silicon materials |
CN102864319A (en) * | 2011-10-08 | 2013-01-09 | 中国恩菲工程技术有限公司 | Method for leaching rare earth elements from nickel oxide ore |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105671304A (en) * | 2016-02-25 | 2016-06-15 | 昆明贵金属研究所 | Method for recycling rare earth and platinum group metal from spent automobile emission purification catalyst |
CN109234548A (en) * | 2017-07-10 | 2019-01-18 | 北京矿冶研究总院 | Method for extracting rare earth from deep sea sediment by sulfuric acid self-heating curing tank |
CN109722541A (en) * | 2019-02-27 | 2019-05-07 | 枣庄职业学院 | A method of recovering rare earth and platinum group metal from failure cleaning catalyst for tail gases of automobiles |
CN110184465A (en) * | 2019-05-31 | 2019-08-30 | 贵研资源(易门)有限公司 | A method of recycling rare precious metal from spent automotive exhaust catalysts |
CN110563014A (en) * | 2019-09-20 | 2019-12-13 | 常熟理工学院 | Process for jointly preparing potassium alum and high-content lanthanum-cerium rare earth composite salt by using FCC (fluid catalytic cracking) waste catalyst |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103031438B (en) | Recovery process for rare earth and noble metal in automobile tail gas purification catalyst | |
CN105671304A (en) | Method for recycling rare earth and platinum group metal from spent automobile emission purification catalyst | |
CN104928475B (en) | A kind of recovery method of the aluminium scrap silicon containing rare earth | |
CN107385214B (en) | A method of segmentation acid hydrolyzation recycles valuable metal from spent FCC catalyst | |
CN110055423B (en) | A method for enriching platinum group metals and rare earths in failed automobile exhaust gas purification catalysts | |
CN109554549B (en) | Method for leaching and recovering rare earth in neodymium iron boron waste at high temperature and high pressure | |
CN106319218A (en) | Method for recovering rare earth, aluminum and silicon from rare earth-containing aluminum and silicon wastes | |
CN106399686B (en) | A kind of acidic ion liquid and the method that electrolysis separating-purifying rare earth or rare precious metal are coupled using molten extraction | |
CN106282570B (en) | Method for recovering metal elements from waste catalyst | |
CN103898325B (en) | A kind of method reclaiming valuable metal from abandoned car parts | |
CN102899498B (en) | Method for leaching platinum metals from spent automobile exhaust catalyst | |
CN103361499A (en) | Method for recovering rare earth elements from spent automobile catalyst | |
CN103966446A (en) | Method for separating and recovering copper, nickel and iron from electroplating sludge | |
CN109593977B (en) | Method for removing iron ions in neodymium, praseodymium, dysprosium and iron-containing solution | |
CN103205570A (en) | Method for producing vanadium pentoxide and by-product manganese sulfate from by using coal vanadium ore and pyrolusite together | |
CN104928504A (en) | Recycling method of rare earth in aluminum silicon waste | |
CN104388711A (en) | Method for recovering rare earth by leaching rare earth oxide molten slag | |
CN108220631A (en) | A kind of method using aluminum-extracted pulverized fuel ash process condensing crystallizing mother liquor scandium | |
CN103834808B (en) | The recovery process of rare precious metal in a kind of abandoned car electron device | |
CN103451447A (en) | Method for recovering copper and cobalt from high-iron waste water treatment and residue | |
CN101041453A (en) | Method for preparing cerium dioxide by iron-selection refuse ore | |
CN103173613B (en) | A kind of brown iron type nickel laterite ore hydrochloric acid normal pressure leaching clean preparation method | |
CN106048264B (en) | The method that cerium is recycled from the integral catalyzer of junked-auto exhaust purifier | |
CN114182106B (en) | Method for separating and purifying platinum group metal in iron alloy | |
CN105112693A (en) | Method for pressure leaching of rhenium in rhenium-rich slag |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20131023 |