Nothing Special   »   [go: up one dir, main page]

CN103107791B - Gain linear variable gain amplifier with constant bandwidth - Google Patents

Gain linear variable gain amplifier with constant bandwidth Download PDF

Info

Publication number
CN103107791B
CN103107791B CN201210590866.3A CN201210590866A CN103107791B CN 103107791 B CN103107791 B CN 103107791B CN 201210590866 A CN201210590866 A CN 201210590866A CN 103107791 B CN103107791 B CN 103107791B
Authority
CN
China
Prior art keywords
switch
current source
mos transistor
type mos
source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201210590866.3A
Other languages
Chinese (zh)
Other versions
CN103107791A (en
Inventor
吴建辉
尹海峰
李红
陈超
白春风
刘智林
徐哲
杨仲盼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast University Wuxi Branch
Original Assignee
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast University filed Critical Southeast University
Priority to CN201210590866.3A priority Critical patent/CN103107791B/en
Publication of CN103107791A publication Critical patent/CN103107791A/en
Application granted granted Critical
Publication of CN103107791B publication Critical patent/CN103107791B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Amplifiers (AREA)

Abstract

本发明公开了一种带宽恒定的增益线性可变增益放大器,该可变增益放大器包含共源级放大器和增益调节网络;共源级放大器包括第一N型金属氧化物晶体管、第五N型金属氧化物晶体管、第一P型金属氧化物晶体管、第二P型金属氧化物晶体管和第一电流源;增益调节网络包括第二至第八N型金属氧化物晶体管、第二至第十电流源和第一至第十五开关。该结构的放大器具有带宽恒定的特点,同时通过不同的控制字,能够使增益达到精确的线性效果。

The invention discloses a gain linear variable gain amplifier with constant bandwidth. The variable gain amplifier includes a common-source stage amplifier and a gain adjustment network; the common-source stage amplifier includes a first N-type metal oxide transistor, a fifth N-type metal An oxide transistor, a first P-type metal oxide transistor, a second P-type metal oxide transistor, and a first current source; the gain adjustment network includes second to eighth N-type metal oxide transistors, second to tenth current sources and the first to fifteenth switches. The amplifier with this structure has the characteristic of constant bandwidth, and at the same time, through different control words, the gain can achieve a precise linear effect.

Description

带宽恒定的增益线性可变增益放大器Constant Bandwidth Gain Linear Variable Gain Amplifier

技术领域technical field

本发明涉及一种放大器,具体来说,涉及一种带宽恒定的增益线性可变增益放大器。The invention relates to an amplifier, in particular to a gain linear variable gain amplifier with constant bandwidth.

背景技术Background technique

在射频信号接收链路中,可变增益放大器的作用是在输入信号变化的范围内保证输出信号的恒定。从整个接收链路考虑,放大器应具有较高的线性度。此外,可变增益放大器作为中频模块的主要部分之一,应具有良好的带宽来保证信号的稳定传输和更有效的抑制非频带信号。In the radio frequency signal receiving chain, the role of the variable gain amplifier is to ensure the constant output signal within the range of input signal variation. Considering the entire receiving chain, the amplifier should have high linearity. In addition, as one of the main parts of the intermediate frequency module, the variable gain amplifier should have a good bandwidth to ensure stable transmission of signals and more effective suppression of non-band signals.

可变增益放大器根据控制信号的不同可分为模拟信号控制可变增益放大器和数字信号控制可变增益放大器。模拟控制可变增益放大器需要单独构造指数电压产生电路,CMOS实现下较为困难。数字控制可变增益放大器通过控制数字编码方式实现增益的dB线性。相比于模拟信号控制可变增益放大器,数字信号控制可变增益放大器不需要单独构造指数电压产生电路,并且可以在离散点优化增益值,提高增益精度,同时也有利于低功耗。因此,数字可变增益放大器已越来越多的成为射频接收链路中的主流方式。Variable gain amplifiers can be divided into analog signal control variable gain amplifiers and digital signal control variable gain amplifiers according to different control signals. The analog control variable gain amplifier requires a separate construction of an exponential voltage generation circuit, which is difficult to implement in CMOS. The digital control variable gain amplifier realizes the dB linearity of the gain by controlling the digital encoding method. Compared with the analog signal control variable gain amplifier, the digital signal control variable gain amplifier does not need to construct an exponential voltage generation circuit separately, and can optimize the gain value at discrete points, improve the gain accuracy, and is also conducive to low power consumption. Therefore, the digital variable gain amplifier has increasingly become the mainstream method in the radio frequency receiving chain.

数字可变增益放大器主要分为开环结构和闭环结构。这两者都是通过数字信号控制开关实现增益与数字信号的dB线性关系。闭环结构通过改变反馈网络从而改变反馈因子来实现增益可变,其增益精度高,但是存在带宽较小、功耗较大等缺点;开环结构主要通过改变等效跨导或者输出阻抗来实现增益可变,一般其增益控制范围较大,带宽较宽,功耗较低,但增益精度较差。常见的开环结构有很多,基于可编程负载的可变增益放大器,虽然能够实现增益dB线性变化,但放大器的带宽会随着增益的增大而减小。基于二极管负载差分对的可变增益放大器,通过改变输入管和负载管的跨导来改变放大器的增益,同样面临着带宽变化的问题。Digital variable gain amplifiers are mainly divided into open-loop and closed-loop structures. Both of them realize the dB linear relationship between the gain and the digital signal through the digital signal control switch. The closed-loop structure achieves variable gain by changing the feedback network to change the feedback factor. Its gain accuracy is high, but it has disadvantages such as small bandwidth and high power consumption; the open-loop structure mainly achieves gain by changing the equivalent transconductance or output impedance. Variable, generally the gain control range is larger, the bandwidth is wider, the power consumption is lower, but the gain accuracy is poor. There are many common open-loop structures. A variable-gain amplifier based on a programmable load can realize a linear change in gain in dB, but the bandwidth of the amplifier will decrease as the gain increases. The variable gain amplifier based on the diode load differential pair changes the gain of the amplifier by changing the transconductance of the input tube and the load tube, and also faces the problem of bandwidth change.

同时,一般的基于可编程跨导的可变增益放大器通过简单的改变输入管的尺寸或者改变偏置电流来改变输入管的跨导,在单一的改变尺寸或电流时,输入管的过驱动电压发生变化,使得作为偏置电流源的晶体管漏源电压变化,从而使得以电流镜方式产生的电流源误差变化较大。At the same time, the general variable gain amplifier based on programmable transconductance changes the transconductance of the input tube by simply changing the size of the input tube or changing the bias current. When a single change in size or current occurs, the overdrive voltage of the input tube Changes will cause the drain-source voltage of the transistor as the bias current source to change, so that the error of the current source generated by the current mirror will change greatly.

发明内容Contents of the invention

发明目的:针对上述现有技术存在的问题和不足,本发明的目的是提供一种带宽恒定的增益线性可变增益放大器,该结构的放大器具有带宽恒定的特点,同时通过控制字控制开关的导通与断开,能够使增益达到精确的线性关系。Purpose of the invention: For the problems and deficiencies in the above-mentioned prior art, the purpose of the invention is to provide a gain linear variable gain amplifier with constant bandwidth. The amplifier of this structure has the characteristics of constant bandwidth. On and off can make the gain achieve a precise linear relationship.

技术方案:为实现上述发明目的,本发明采用的技术方案为一种带宽恒定的增益线性可变增益放大器,该可变增益放大器包含共源级放大器和增益调节网络;其中:Technical solution: In order to achieve the purpose of the above invention, the technical solution adopted in the present invention is a gain linear variable gain amplifier with constant bandwidth, and the variable gain amplifier includes a common source stage amplifier and a gain adjustment network; wherein:

共源级放大器包括第一N型金属氧化物晶体管、第五N型金属氧化物晶体管、第一P型金属氧化物晶体管、第二P型金属氧化物晶体管和第一电流源;The common source stage amplifier includes a first N-type metal oxide transistor, a fifth N-type metal oxide transistor, a first P-type metal oxide transistor, a second P-type metal oxide transistor and a first current source;

增益调节网络包括第二N型金属氧化物晶体管、第三N型金属氧化物晶体管、第四N型金属氧化物晶体管、第六N型金属氧化物晶体管、第七N型金属氧化物晶体管、第八N型金属氧化物晶体管、第二电流源、第三电流源、第四电流源、第五电流源、第六电流源、第七电流源、第八电流源、第九电流源、第十电流源、第一开关、第二开关、第三开关、第四开关、第五开关、第六开关、第七开关、第八开关、第九开关、第十开关、第十一开关、第十二开关、第十三开关、第十四开关和第十五开关;The gain adjustment network includes a second NMOS transistor, a third NMOS transistor, a fourth NMOS transistor, a sixth NMOS transistor, a seventh NMOS transistor, a Eight N-type metal oxide transistors, second current source, third current source, fourth current source, fifth current source, sixth current source, seventh current source, eighth current source, ninth current source, tenth current source Current source, first switch, second switch, third switch, fourth switch, fifth switch, sixth switch, seventh switch, eighth switch, ninth switch, tenth switch, eleventh switch, tenth switch The second switch, the thirteenth switch, the fourteenth switch and the fifteenth switch;

输入信号正端与第一N型金属氧化物晶体管、第二N型金属氧化物晶体管、第三N型金属氧化物晶体管和第四N型金属氧化物晶体管的栅极连接;第一N型金属氧化物晶体管的漏极和第一P型金属氧化物晶体管的漏极连接,第一P型金属氧化物晶体管的漏极与栅极连接,第一P型金属氧化物晶体管的源极接电源电压;第一N型金属氧化物晶体管的源极与第二N型金属氧化物晶体管的源极、第三N型金属氧化物晶体管的源极、第四N型金属氧化物晶体管的源极、第五N型金属氧化物晶体管的源极、第六N型金属氧化物晶体管的源极、第七N型金属氧化物晶体管的源极和第八N型金属氧化物晶体管的源极连接,同时与第一电流源、第一开关、第二开关和第三开关的一端连接;第一开关的另一端与第二电流源的一端连接,第二开关的另一端与第三电流源的一端连接,第三开关的另一端与第四电流源的一端连接;第一电流源、第二电流源、第三电流源和第四电流源的另一端接地;第四开关的一端与第二N型金属氧化物晶体管的漏极连接,第五开关的一端与第三N型金属氧化物晶体管的漏极连接,第六开关的一端与第四N型金属氧化物晶体管的漏极连接;第四开关、第五开关和第六开关的另一端与第一N型金属氧化物晶体管的漏极连接,同时与第十开关、第十一开关和第十二开关的一端连接,作为放大器输出信号的正端;第十开关的另一端与第七电流源的一端连接,第十一开关的另一端与第六电流源的一端连接,第十二开关的另一端与第五电流源的一端连接;第五电流源、第六电流源和第七电流源的另一端接电源电压;输入信号负端与第五N型金属氧化物晶体管、第六N型金属氧化物晶体管、第七N型金属氧化物晶体管和第八N型金属氧化物晶体管的栅极连接;第五N型金属氧化物晶体管的漏极和第二P型金属氧化物晶体管的漏极连接,第二P型金属氧化物晶体管的漏极与栅极连接,第二P型金属氧化物晶体管的源极接电源电压;第七开关的一端与第六N型金属氧化物晶体管的漏极连接,第八开关的一端与第七N型金属氧化物晶体管的漏极连接,第九开关的一端与第八N型金属氧化物晶体管的漏极连接;第七开关、第八开关和第九开关的另一端与第五N型金属氧化物晶体管的漏极连接,同时与第十三开关、第十四开关和第十五开关的一端连接,作为放大器输出信号的负端;第十三开关的另一端与第八电流源的一端连接,第十四开关的另一端与第九电流源的一端连接,第十五开关的另一端与第十电流源的一端连接;第八电流源、第九电流源和第十电流源的另一端接电源电压。The positive end of the input signal is connected to the gates of the first N-type metal oxide transistor, the second N-type metal oxide transistor, the third N-type metal oxide transistor and the fourth N-type metal oxide transistor; the first N-type metal oxide transistor The drain of the oxide transistor is connected to the drain of the first P-type metal oxide transistor, the drain of the first P-type metal oxide transistor is connected to the gate, and the source of the first P-type metal oxide transistor is connected to the power supply voltage ; The source of the first N-type metal oxide transistor and the source of the second N-type metal oxide transistor, the source of the third N-type metal oxide transistor, the source of the fourth N-type metal oxide transistor, the first The source of the five N-type metal oxide transistors, the source of the sixth N-type metal oxide transistor, the source of the seventh N-type metal oxide transistor, and the source of the eighth N-type metal oxide transistor are connected to each other simultaneously. One end of the first current source, the first switch, the second switch and the third switch are connected; the other end of the first switch is connected with one end of the second current source, and the other end of the second switch is connected with one end of the third current source, The other end of the third switch is connected to one end of the fourth current source; the other end of the first current source, the second current source, the third current source and the fourth current source are grounded; one end of the fourth switch is connected to the second N-type metal The drain of the oxide transistor is connected, one end of the fifth switch is connected to the drain of the third N-type metal oxide transistor, one end of the sixth switch is connected to the drain of the fourth N-type metal oxide transistor; the fourth switch, The other ends of the fifth switch and the sixth switch are connected to the drain of the first N-type metal oxide transistor, and at the same time connected to one end of the tenth switch, the eleventh switch and the twelfth switch, as the positive end of the output signal of the amplifier The other end of the tenth switch is connected with one end of the seventh current source, the other end of the eleventh switch is connected with one end of the sixth current source, and the other end of the twelfth switch is connected with one end of the fifth current source; the fifth The other terminals of the current source, the sixth current source and the seventh current source are connected to the power supply voltage; the negative terminal of the input signal is connected to the fifth N-type metal oxide transistor, the sixth N-type metal oxide transistor, and the seventh N-type metal oxide transistor It is connected to the gate of the eighth N-type metal oxide transistor; the drain of the fifth N-type metal oxide transistor is connected to the drain of the second P-type metal oxide transistor, and the drain of the second P-type metal oxide transistor Connected to the gate, the source of the second P-type metal oxide transistor is connected to the power supply voltage; one end of the seventh switch is connected to the drain of the sixth N-type metal oxide transistor, and one end of the eighth switch is connected to the seventh N-type metal oxide transistor. The drain of the oxide transistor is connected, one end of the ninth switch is connected to the drain of the eighth N-type metal oxide transistor; the other end of the seventh switch, the eighth switch, and the ninth switch is connected to the fifth N-type metal oxide transistor connected to the drain of the thirteenth switch, the fourteenth switch and one end of the fifteenth switch at the same time as the negative end of the output signal of the amplifier; the other end of the thirteenth switch is connected to one end of the eighth current source, and the The other end of the fourteenth switch is connected to one end of the ninth current source, and the other end of the fifteenth switch is connected to one end of the tenth current source; the eighth current source, the ninth current source and The other end of the tenth current source is connected to the power supply voltage.

有益效果:与现有技术相比,本发明具有以下有益效果:Beneficial effects: compared with the prior art, the present invention has the following beneficial effects:

1.带宽恒定。本发明的可变增益放大器处于接收机系统模拟信号链路的最后一级,放大器的输入信号工作在低频状态。本发明的可变增益放大器,带宽受到增益变化的影响很小,基本上保持不变,这样可以更好的滤除带宽以外的信号。本发明的带宽恒定的可变增益放大器使第一P型金属氧化物晶体管和第二P型金属氧化物晶体管以二极管方式连接并作为差分两路的负载,通过开关控制字控制并联的电流源使得流过第一P型金属氧化物晶体管和第二P型金属氧化物晶体管的电流不来保证其阻抗不变。第一P型金属氧化物晶体管和第二P型金属氧化物晶体管的阻抗较小,则放大器的输出阻抗主要由这两个晶体管的阻抗决定,同时这两个晶体管输出栅源电容较大,而输出节点上其他晶体管的栅漏电容非常小,输出电容大小主要也由这两个晶体管决定,从而保证带宽变化很小,基本上保持恒定。1. Constant bandwidth. The variable gain amplifier of the present invention is in the last stage of the analog signal chain of the receiver system, and the input signal of the amplifier works in a low frequency state. In the variable gain amplifier of the present invention, the bandwidth is slightly affected by the change of the gain and basically remains unchanged, so that signals outside the bandwidth can be better filtered out. The variable gain amplifier with constant bandwidth of the present invention connects the first P-type metal oxide transistor and the second P-type metal oxide transistor in a diode manner and acts as a differential two-way load, and controls the parallel current source through the switch control word so that The current flowing through the first PMOS transistor and the second PMOS transistor does not ensure that the impedance thereof remains unchanged. The impedance of the first PMOS transistor and the second PMOS transistor is small, and the output impedance of the amplifier is mainly determined by the impedance of these two transistors, and the output gate-source capacitance of these two transistors is relatively large, while The gate-to-drain capacitance of other transistors on the output node is very small, and the output capacitance is mainly determined by these two transistors, so as to ensure that the bandwidth changes little and remains basically constant.

2.增益线性关系精确。在整个接收机系统中,可变增益放大器处于后段,因此,放大器的线性度高低直接影响到整个接收机的性能。本发明的可变增益放大器实现了数字控制字与增益精确的线性关系。本发明的可变增益放大器通过开关控制字在控制共源放大器中第一N型金属氧化物晶体管和第五N型金属氧化物晶体管的宽长比的同时,改变对应的偏置电流大小,使得放大器输入管的跨导与控制字成线性关系。同时保证输入管的过驱动电压不变,使得电流镜产生的电流源晶体管漏源电压不变,从而使电流源的误差较小。由于输出阻抗基本上保持不变,通过设置不同的控制字大小,使得增益的大小与控制字成线性关系,同时增益的步长固定,提高了增益精度和线性度。2. Accurate linear relationship of gain. In the whole receiver system, the variable gain amplifier is in the back stage, so the linearity of the amplifier directly affects the performance of the whole receiver. The variable gain amplifier of the invention realizes the precise linear relationship between the digital control word and the gain. The variable gain amplifier of the present invention changes the corresponding bias current while controlling the width-to-length ratio of the first N-type metal oxide transistor and the fifth N-type metal oxide transistor in the common source amplifier through the switch control word, so that The transconductance of the amplifier input tube has a linear relationship with the control word. At the same time, it is ensured that the overdrive voltage of the input transistor remains unchanged, so that the drain-source voltage of the current source transistor generated by the current mirror remains unchanged, so that the error of the current source is small. Since the output impedance remains basically unchanged, by setting different control word sizes, the size of the gain is linearly related to the control word, and the gain step size is fixed, which improves the gain accuracy and linearity.

附图说明Description of drawings

图1为本发明的电路图;Fig. 1 is a circuit diagram of the present invention;

图2为本发明的幅频特性波形图;Fig. 2 is the waveform diagram of the amplitude-frequency characteristic of the present invention;

图3为本发明与传统结构的增益对比图。Fig. 3 is a gain comparison graph between the present invention and the traditional structure.

具体实施方式Detailed ways

下面结合附图和具体实施例,进一步阐明本发明,应理解这些实施例仅用于说明本发明而不用于限制本发明的范围,在阅读了本发明之后,本领域技术人员对本发明的各种等价形式的修改均落于本申请所附权利要求所限定的范围。Below in conjunction with accompanying drawing and specific embodiment, further illustrate the present invention, should be understood that these embodiments are only for illustrating the present invention and are not intended to limit the scope of the present invention, after having read the present invention, those skilled in the art will understand various aspects of the present invention Modifications in equivalent forms all fall within the scope defined by the appended claims of this application.

如图1所示,本发明的一种带宽恒定的增益线性可变增益放大器,包含共源级放大器和增益调节网络;其中,共源级放大器包括第一N型金属氧化物晶体管N1、第五N型金属氧化物晶体管N5、第一P型金属氧化物晶体管P1、第二P型金属氧化物晶体管P2和第一电流源I1;增益调节网络包括第二N型金属氧化物晶体管N2、第三N型金属氧化物晶体管N3、第四N型金属氧化物晶体管N4、第六N型金属氧化物晶体管N6、第七N型金属氧化物晶体管N7、第八N型金属氧化物晶体管N8、第二电流源I2、第三电流源I3、第四电流源I4、第五电流源I5、第六电流源I6、第七电流源I7、第八电流源I8、第九电流源I9、第十电流源I10、第一开关S1、第二开关S2、第三开关S3、第四开关S4、第五开关S5、第六开关S6、第七开关S7、第八开关S8、第九开关S9、第十开关S10、第十一开关S11、第十二开关S12、第十三开关S13、第十四开关S14和第十五开关S15。As shown in Figure 1, a gain linear variable gain amplifier with constant bandwidth of the present invention includes a common-source stage amplifier and a gain adjustment network; wherein, the common-source stage amplifier includes a first N-type metal oxide transistor N1, a fifth The N-type metal oxide transistor N5, the first P-type metal oxide transistor P1, the second P-type metal oxide transistor P2 and the first current source I1; the gain adjustment network includes the second N-type metal oxide transistor N2, the third NMOS transistor N3, fourth NMOS transistor N4, sixth NMOS transistor N6, seventh NMOS transistor N7, eighth NMOS transistor N8, second Current source I2, third current source I3, fourth current source I4, fifth current source I5, sixth current source I6, seventh current source I7, eighth current source I8, ninth current source I9, tenth current source I10, first switch S1, second switch S2, third switch S3, fourth switch S4, fifth switch S5, sixth switch S6, seventh switch S7, eighth switch S8, ninth switch S9, tenth switch S10, the eleventh switch S11, the twelfth switch S12, the thirteenth switch S13, the fourteenth switch S14, and the fifteenth switch S15.

输入信号正端VIN+与第一N型金属氧化物晶体管N1、第二N型金属氧化物晶体管N2、第三N型金属氧化物晶体管N3和第四N型金属氧化物晶体管N4的栅极连接;第一N型金属氧化物晶体管N1的漏极和第一P型金属氧化物晶体管P1的漏极连接,第一P型金属氧化物晶体管P1的漏极与栅极连接,第一P型金属氧化物晶体管P1的源极接电源电压;第一N型金属氧化物晶体管N1的源极与第二N型金属氧化物晶体管N2的源极、第三N型金属氧化物晶体管N3的源极、第四N型金属氧化物晶体管N4的源极、第五N型金属氧化物晶体管N5的源极、第六N型金属氧化物晶体管N6的源极、第七N型金属氧化物晶体管N7的源极和第八N型金属氧化物晶体管N8的源极连接,同时与第一电流源I1、第一开关S1、第二开关S2和第三开关S3的一端连接;第一开关S1的另一端与第二电流源I2的一端连接,第二开关S2的另一端与第三电流源I3的一端连接,第三开关S3的另一端与第四电流源I4的一端连接;第一电流源I1、第二电流源I2、第三电流源I3和第四电流源I4的另一端接地;第四开关S4的一端与第二N型金属氧化物晶体管N2的漏极连接,第五开关S5的一端与第三N型金属氧化物晶体管N3的漏极连接,第六开关S6的一端与第四N型金属氧化物晶体管N4的漏极连接;第四开关S4、第五开关S5和第六开关S6的另一端与第一N型金属氧化物晶体管N1的漏极连接,同时与第十开关S10、第十一开关S11和第十二开关S12的一端连接,作为放大器输出信号的正端VOUT+;第十开关S10的另一端与第七电流源I7的一端连接,第十一开关S11的另一端与第六电流源I6的一端连接,第十二开关S12的另一端与第五电流源I5的一端连接;第五电流源I5、第六电流源I6和第七电流源I7的另一端接电源电压;输入信号负端VIN-与第五N型金属氧化物晶体管N5、第六N型金属氧化物晶体管N6、第七N型金属氧化物晶体管N7和第八N型金属氧化物晶体管N8的栅极连接;第五N型金属氧化物晶体管N5的漏极和第二P型金属氧化物晶体管P2的漏极连接,第二P型金属氧化物晶体管P2的漏极与栅极连接,第二P型金属氧化物晶体管P2的源极接电源电压;第七开关S7的一端与第六N型金属氧化物晶体管N6的漏极连接,第八开关S8的一端与第七N型金属氧化物晶体管N7的漏极连接,第九开关S9的一端与第八N型金属氧化物晶体管N8的漏极连接;第七开关S7、第八开关S8和第九开关S9的另一端与第五N型金属氧化物晶体管N5的漏极连接,同时与第十三开关S13、第十四开关S14和第十五开关S15的一端连接,作为放大器输出信号的负端VOUT-;第十三开关S13的另一端与第八电流源I8的一端连接,第十四开关S14的另一端与第九电流源I9的一端连接,第十五开关S15的另一端与第十电流源I10的一端连接;第八电流源I8、第九电流源I9和第十电流源I10的另一端接电源电压。The input signal positive terminal VIN+ is connected to the gates of the first NMOS transistor N1, the second NMOS transistor N2, the third NMOS transistor N3 and the fourth NMOS transistor N4; The drain of the first N-type metal oxide transistor N1 is connected to the drain of the first P-type metal oxide transistor P1, the drain of the first P-type metal oxide transistor P1 is connected to the gate, and the first P-type metal oxide transistor P1 is connected to the gate. The source of the transistor P1 is connected to the power supply voltage; the source of the first NMOS transistor N1 is connected to the source of the second NMOS transistor N2, the source of the third NMOS transistor N3, and the source of the NMOS transistor N3. The source of the fourth NMOS transistor N4, the source of the fifth NMOS transistor N5, the source of the sixth NMOS transistor N6, the source of the seventh NMOS transistor N7 It is connected to the source of the eighth N-type metal oxide transistor N8, and at the same time connected to one end of the first current source I1, the first switch S1, the second switch S2 and the third switch S3; the other end of the first switch S1 is connected to the first One end of the second current source I2 is connected, the other end of the second switch S2 is connected with one end of the third current source I3, and the other end of the third switch S3 is connected with one end of the fourth current source I4; the first current source I1, the second The other ends of the current source I2, the third current source I3 and the fourth current source I4 are grounded; one end of the fourth switch S4 is connected to the drain of the second N-type metal oxide transistor N2, and one end of the fifth switch S5 is connected to the third The drain of the N-type metal oxide transistor N3 is connected, and one end of the sixth switch S6 is connected to the drain of the fourth N-type metal oxide transistor N4; the other ends of the fourth switch S4, the fifth switch S5 and the sixth switch S6 Connected to the drain of the first N-type metal oxide transistor N1, and connected to one end of the tenth switch S10, the eleventh switch S11, and the twelfth switch S12, as the positive terminal VOUT+ of the amplifier output signal; the tenth switch S10 The other end of the switch S11 is connected to one end of the seventh current source I7, the other end of the eleventh switch S11 is connected to one end of the sixth current source I6, and the other end of the twelfth switch S12 is connected to one end of the fifth current source I5; The other terminals of the fifth current source I5, the sixth current source I6 and the seventh current source I7 are connected to the power supply voltage; the input signal negative terminal VIN- is connected to the fifth N-type metal oxide transistor N5, the sixth N-type metal oxide transistor N6, The gate of the seventh NMOS transistor N7 is connected to the gate of the eighth NMOS transistor N8; the drain of the fifth NMOS transistor N5 is connected to the drain of the second PMOS transistor P2 , the drain of the second P-type metal oxide transistor P2 is connected to the gate, the source of the second P-type metal oxide transistor P2 is connected to the power supply voltage; one end of the seventh switch S7 is connected to the sixth N-type metal oxide transistor N6 The drain of the eighth switch S8 is connected to the drain of the seventh N-type metal oxide transistor N7, and one end of the ninth switch S9 is connected to the drain of the eighth N-type metal oxide transistor N8; The other ends of the seventh switch S7, the eighth switch S8 and the ninth switch S9 are connected to the drain of the fifth N-type metal oxide transistor N5, and are simultaneously connected to the thirteenth switch S13, the fourteenth switch S14 and the fifteenth switch One end of S15 is connected as the negative terminal VOUT- of the amplifier output signal; the other end of the thirteenth switch S13 is connected to one end of the eighth current source I8, and the other end of the fourteenth switch S14 is connected to one end of the ninth current source I9 , the other end of the fifteenth switch S15 is connected to one end of the tenth current source I10; the other ends of the eighth current source I8, the ninth current source I9 and the tenth current source I10 are connected to the power supply voltage.

上述带宽恒定的增益线性可变增益放大器,通过开关控制并联的电流源使得流过第一P型金属氧化物晶体管P1和第二P型金属氧化物晶体管P2的电流不变来保证其阻抗不变。第一P型金属氧化物晶体管P1和第二P型金属氧化物晶体管P2的阻抗较小,放大器的输出阻抗主要由这两个晶体管阻抗决定,同时这两个晶体管输出栅源电容较大,而输出节点上其他晶体管的栅漏电容非常小,输出电容大小主要也由这两个晶体管决定,从而保证带宽变化很小,基本上保持恒定。本发明的增益控制网络通过开关控制字在控制共源放大器中第一N型金属氧化物晶体管和第五N型金属氧化物晶体管的宽长比的同时,改变对应的偏置电流大小,使得放大器输入管的跨导与控制字成线性关系。由于输出阻抗基本上保持不变,通过设置不同的控制字大小,使得增益的大小与控制字成线性关系,同时增益的步长固定。The gain linear variable gain amplifier with a constant bandwidth is controlled by a switch to control the parallel current source so that the current flowing through the first PMOS transistor P1 and the second PMOS transistor P2 is constant to ensure that its impedance remains constant . The impedance of the first PMOS transistor P1 and the second PMOS transistor P2 is small, the output impedance of the amplifier is mainly determined by the impedance of these two transistors, and the output gate-source capacitance of these two transistors is relatively large, while The gate-to-drain capacitance of other transistors on the output node is very small, and the output capacitance is mainly determined by these two transistors, so as to ensure that the bandwidth changes little and remains basically constant. The gain control network of the present invention changes the corresponding bias current while controlling the width-to-length ratio of the first N-type metal oxide transistor and the fifth N-type metal oxide transistor in the common source amplifier through the switch control word, so that the amplifier The transconductance of the input tube has a linear relationship with the control word. Since the output impedance remains basically unchanged, by setting different control word sizes, the size of the gain is linearly related to the control word, and the step size of the gain is fixed.

第一开关S1、第四开关S4、第七开关S7、第十开关S10和第十三开关S13均由一位控制字A1控制,第二开关S2、第五开关S5、第八开关S8、第十一开关S11和第十四开关S14由一位控制字A2控制,第三开关S3、第六开关S6、第九开关S9、第十二开关S12和第十五开关S15由一位控制字A3控制,控制字信号A3A2A1由整个自动增益控制环路中的数字模块提供。第一电流源I1、第二电流源I2、第六电流源I6和第九电流源I9电流相等,第七电流源I7和第八电流源I8电流大小相等并等于第一电流源I1电流的一半,第三电流源I3、第五电流源I5和第十电流源I10电流大小相等并等于第一电流源I1电流的两倍,第四电流源I4电流大小等于第一电流源I1电流的四倍。第一N型金属氧化物晶体管N1和第五N型金属氧化物晶体管N5的宽长比相等,第二N型金属氧化物晶体管N2和第六N型金属氧化物晶体管N6的宽长比相等并等于第一N型金属氧化物晶体管N1的宽长比,第三N型金属氧化物晶体管N3和第七N型金属氧化物晶体管N7的宽长比相等并等于第一N型金属氧化物晶体管N1宽长比的两倍,第四N型金属氧化物晶体管N4和第八N型金属氧化物晶体管N8的宽长比相等并等于第一N型金属氧化物晶体管N1宽长比的四倍。低频差分信号分别加在正端VIN+和负端VIN-,当第一至第十五开关S1-S15全部断开时,电压小信号分别通过第一N型金属氧化物晶体管N1和第五N型金属氧化物晶体管N5转换成电流小信号,第一电流源I1为共源放大器提供电流偏置,第一P型金属氧化物晶体管P1和第二P型金属氧化物晶体管P2分别都以二极管方式进行连接,作为差分支路的负载。第一N型金属氧化物晶体管N1和第五N型金属氧化物晶体管N5的漏极分别作为放大器的正输出端VOUT+和负输出端VOUT-。当控制字A3A2A1为01时,即第一开关S1、第四开关S4、第七开关S7、第十开关S10和第十三开关S13闭合,第二电流源I2的电流由第七电流源I7和第八电流源I8分流,流过第一P型金属氧化物晶体管P1和第二P型金属氧化物晶体管P2的电流保持不变,该两个晶体管阻抗等效于跨导的倒数,故阻抗不变且较小。同时,第七电流源I7的电流全流过第二N型金属氧化物晶体管N2,第八电流源I8的电流全流过第六N型金属氧化物晶体管N6。从输出端看进去的阻抗主要由第一P型金属氧化物晶体管P1和第二P型金属氧化物晶体管P2的等效阻抗决定,即输出阻抗基本上保持不变。输出节点处,第一P型金属氧化物晶体管P1和第二P型金属氧化物晶体管P2的寄生电容主要是栅源电容且较大,而引入的其他晶体管起作用的是栅漏电容,工作在饱和区的晶体管栅漏电容很小,几乎没有,故输出节点处等效电容由第一P型金属氧化物晶体管P1和第二P型金属氧化物晶体管P2决定且不变,故带宽不发生变化,保持恒定。第二电流源I2电流只流过第二N型金属氧化物晶体管N2和第六N型金属氧化物晶体管N6,为其提供电流偏置,第一开关S1、第四开关S4和第七开关S7同时闭合,使得第二N型金属氧化物晶体管N2的宽长比和偏置电流相对第一N型金属氧化物晶体管N1分别变化相同的倍数,则第二N型金属氧化物晶体管N2的跨导是第一N型金属氧化物晶体管N1跨导的相同倍数。同时,第六N型金属氧化物晶体管N6的宽长比和偏置电流相对第五N型金属氧化物晶体管N5分别变化相同的倍数,则第六N型金属氧化物晶体管N6的跨导是第五N型金属氧化物晶体管N5跨导的相同倍数。在保证第一N型金属氧化物晶体管N1和第五N型金属氧化物晶体管N5的跨导相同且不变时,整个共源放大器等效输入跨导取决于倍数的大小,由于输出阻抗大小不变,放大器增益取决于倍数的大小。The first switch S1, the fourth switch S4, the seventh switch S7, the tenth switch S10 and the thirteenth switch S13 are all controlled by a one-bit control word A1, the second switch S2, the fifth switch S5, the eighth switch S8, the The eleventh switch S11 and the fourteenth switch S14 are controlled by a one-bit control word A2, the third switch S3, the sixth switch S6, the ninth switch S9, the twelfth switch S12 and the fifteenth switch S15 are controlled by a one-bit control word A3 Control, the control word signal A3A2A1 is provided by the digital module in the whole automatic gain control loop. The currents of the first current source I1, the second current source I2, the sixth current source I6 and the ninth current source I9 are equal, the currents of the seventh current source I7 and the eighth current source I8 are equal and equal to half of the current of the first current source I1 , the currents of the third current source I3, the fifth current source I5 and the tenth current source I10 are equal and equal to twice the current of the first current source I1, and the current of the fourth current source I4 is equal to four times of the current of the first current source I1 . The width-to-length ratios of the first N-type metal oxide transistor N1 and the fifth N-type metal-oxide transistor N5 are equal, and the width-to-length ratios of the second N-type metal-oxide transistor N2 and the sixth N-type metal-oxide transistor N6 are equal and Equal to the aspect ratio of the first NMOS transistor N1, the aspect ratios of the third NMOS transistor N3 and the seventh NMOS transistor N7 are equal and equal to the first NMOS transistor N1 Twice the width-to-length ratio, the width-to-length ratio of the fourth NMOS transistor N4 and the eighth NMOS transistor N8 are equal and equal to four times the width-to-length ratio of the first NMOS transistor N1. The low-frequency differential signals are respectively applied to the positive terminal VIN+ and the negative terminal VIN-. When the first to fifteenth switches S1-S15 are all turned off, the small voltage signals pass through the first N-type metal oxide transistor N1 and the fifth N-type transistor N1 respectively. The metal oxide transistor N5 converts the current into a small signal, the first current source I1 provides current bias for the common source amplifier, and the first P-type metal oxide transistor P1 and the second P-type metal oxide transistor P2 are respectively implemented in a diode mode connected, as a load for the differential branch. The drains of the first NMOS transistor N1 and the fifth NMOS transistor N5 serve as the positive output terminal VOUT+ and the negative output terminal VOUT− of the amplifier respectively. When the control word A3A2A1 is 01, that is, the first switch S1, the fourth switch S4, the seventh switch S7, the tenth switch S10 and the thirteenth switch S13 are closed, the current of the second current source I2 is controlled by the seventh current source I7 and The eighth current source I8 divides the current, and the current flowing through the first PMOS transistor P1 and the second PMOS transistor P2 remains unchanged. The impedance of the two transistors is equivalent to the reciprocal of the transconductance, so the impedance does not change. variable and smaller. At the same time, all the current of the seventh current source I7 flows through the second NMOS transistor N2, and all the current of the eighth current source I8 flows through the sixth NMOS transistor N6. The impedance seen from the output end is mainly determined by the equivalent impedance of the first PMOS transistor P1 and the second PMOS transistor P2, that is, the output impedance remains basically unchanged. At the output node, the parasitic capacitance of the first P-type metal oxide transistor P1 and the second P-type metal oxide transistor P2 is mainly the gate-source capacitance and is relatively large, while the other transistors introduced are the gate-drain capacitance and work at The gate-to-drain capacitance of the transistor in the saturation region is very small and almost non-existent, so the equivalent capacitance at the output node is determined by the first PMOS transistor P1 and the second PMOS transistor P2 and remains unchanged, so the bandwidth does not change ,keep constant. The current of the second current source I2 only flows through the second NMOS transistor N2 and the sixth NMOS transistor N6 to provide current bias for them, the first switch S1, the fourth switch S4 and the seventh switch S7 At the same time, it is closed, so that the width-to-length ratio and bias current of the second NMOS transistor N2 change by the same multiples relative to the first NMOS transistor N1, then the transconductance of the second NMOS transistor N2 is the same multiple of the transconductance of the first NMOS transistor N1. At the same time, the aspect ratio and bias current of the sixth NMOS transistor N6 are respectively changed by the same multiples relative to the fifth NMOS transistor N5, so the transconductance of the sixth NMOS transistor N6 is the first Five NMOS transistors of the same multiple of the transconductance of N5. When ensuring that the transconductances of the first NMOS transistor N1 and the fifth NMOS transistor N5 are the same and unchanged, the equivalent input transconductance of the entire common source amplifier depends on the size of the multiple, because the output impedance is different , the amplifier gain depends on the size of the multiple.

当控制字A3A2A1为011时,即第一开关S1、第四开关S4、第七开关S7、第十开关S10和第十三开关S13闭合之外,第二开关S2、第五开关S5、第八开关S8、第十一开关S11和第十四开关S14也同时闭合,此时引入的晶体管栅漏电容对原有的第一P型金属氧化物晶体管P1和第二P型金属氧化物晶体管P2的栅源电容影响很小,输出电容保持不变;第三电流源I3的电流由第六电流源I6和第九电流源I9分流,保证第一P型金属氧化物晶体管P1和第二P型金属氧化物晶体管P2电流不变,其对应的等效阻抗也不变。由于引入的其他晶体管漏源电阻很大,输出负载主要由第一P型金属氧化物晶体管P1和第二P型金属氧化物晶体管P2决定,故输出阻抗保持不变,带宽也保持不变。在该控制字下,第六电流源I6的电流全流过第三N型金属氧化物晶体管N3,第九电流源I9的电流全流过第七N型金属氧化物晶体管N7。第三电流源I3电流只流过第三N型金属氧化物晶体管N3和第七N型金属氧化物晶体管N7,为其提供电流偏置,第二开关S2、第五开关S5和第八开关S8同时闭合,使得第三N型金属氧化物晶体管N3的宽长比和偏置电流相对第一N型金属氧化物晶体管N1分别变化相同的倍数,则第三N型金属氧化物晶体管N3的跨导是第一N型金属氧化物晶体管N1跨导的相同倍数。同时,第七N型金属氧化物晶体管N7的宽长比和偏置电流相对第五N型金属氧化物晶体管N5分别变化相同的倍数,则第七N型金属氧化物晶体管N7的跨导是第五N型金属氧化物晶体管N5跨导的相同倍数。在保证第一N型金属氧化物晶体管N1和第五N型金属氧化物晶体管N5的跨导相同且不变时,整个共源放大器等效输入跨导取决于总的倍数和大小。When the control word A3A2A1 is 011, that is, the first switch S1, the fourth switch S4, the seventh switch S7, the tenth switch S10 and the thirteenth switch S13 are closed, the second switch S2, the fifth switch S5, the eighth switch The switch S8, the eleventh switch S11 and the fourteenth switch S14 are also closed at the same time, and the transistor gate-drain capacitance introduced at this time has a negative impact on the original first P-type metal oxide transistor P1 and the second P-type metal oxide transistor P2. The influence of the gate-source capacitance is small, and the output capacitance remains unchanged; the current of the third current source I3 is shunted by the sixth current source I6 and the ninth current source I9, ensuring that the first P-type metal oxide transistor P1 and the second P-type metal oxide transistor P1 The current of the oxide transistor P2 does not change, and its corresponding equivalent impedance also does not change. Since the drain-source resistance of other transistors introduced is very large, the output load is mainly determined by the first PMOS transistor P1 and the second PMOS transistor P2, so the output impedance and bandwidth remain unchanged. Under this control word, all the current of the sixth current source I6 flows through the third NMOS transistor N3, and all the current of the ninth current source I9 flows through the seventh NMOS transistor N7. The current of the third current source I3 only flows through the third NMOS transistor N3 and the seventh NMOS transistor N7 to provide current bias for them, the second switch S2, the fifth switch S5 and the eighth switch S8 At the same time, it is closed, so that the width-to-length ratio and bias current of the third NMOS transistor N3 change by the same multiples relative to the first NMOS transistor N1, then the transconductance of the third NMOS transistor N3 is the same multiple of the transconductance of the first NMOS transistor N1. At the same time, the width-to-length ratio and bias current of the seventh NMOS transistor N7 are respectively changed by the same multiples relative to the fifth NMOS transistor N5, and the transconductance of the seventh NMOS transistor N7 is the first Five NMOS transistors of the same multiple of the transconductance of N5. When ensuring that the transconductances of the first NMOS transistor N1 and the fifth NMOS transistor N5 are the same and unchanged, the equivalent input transconductance of the entire common source amplifier depends on the total multiple and magnitude.

当控制字A3A2A1为111时,即所有开关同时闭合,此时第一P型金属氧化物晶体管P1和第二P型金属氧化物晶体管P2的栅源电容占主要地位,输出电容基本上保持不变;第四电流源I4的电流由第五电流源I5和第十电流源I10分流,保证第一P型金属氧化物晶体管P1和第二P型金属氧化物晶体管P2电流不变,其对应的等效阻抗也不变。由于引入的其他晶体管漏源电阻很大,输出负载主要由第一P型金属氧化物晶体管P1和第二P型金属氧化物晶体管P2决定,故输出阻抗保持不变,带宽也保持不变。在该控制字下,第五电流源I5的电流全流过第四N型金属氧化物晶体管N4,第十电流源I10的电流全流过第八N型金属氧化物晶体管N8。第四电流源I4电流只流过第四N型金属氧化物晶体管N4和第八N型金属氧化物晶体管N8,为其提供电流偏置,第三开关S3、第六开关S6和第九开关S9同时闭合,使得第四N型金属氧化物晶体管N4的宽长比和偏置电流相对第一N型金属氧化物晶体管N1分别变化相同的倍数,则第四N型金属氧化物晶体管N4的跨导是第一N型金属氧化物晶体管N1跨导的相同倍数。同时,第八N型金属氧化物晶体管N8的宽长比和偏置电流相对第五N型金属氧化物晶体管N5分别变化相同的倍数,则第八N型金属氧化物晶体管N8的跨导是第五N型金属氧化物晶体管N5跨导的相同倍数。在保证第一N型金属氧化物晶体管N1和第五N型金属氧化物晶体管N5的跨导相同且不变时,整个共源放大器输入跨导取决于总的倍数和大小。控制字的变化,直接使得整个放大器输入管等效跨导成倍变化。通过设置固定的电流倍数和输入管尺寸倍数,可以使得放大器增益与控制字成精确的线性关系,增益步长固定。When the control word A3A2A1 is 111, that is, all switches are closed at the same time, at this time the gate-source capacitance of the first PMOS transistor P1 and the second PMOS transistor P2 dominates, and the output capacitance basically remains unchanged ; The current of the fourth current source I4 is shunted by the fifth current source I5 and the tenth current source I10 to ensure that the currents of the first P-type metal oxide transistor P1 and the second P-type metal oxide transistor P2 remain unchanged, and their corresponding equivalents The effective impedance is also unchanged. Since the drain-source resistance of other transistors introduced is very large, the output load is mainly determined by the first PMOS transistor P1 and the second PMOS transistor P2, so the output impedance and bandwidth remain unchanged. Under this control word, all the current of the fifth current source I5 flows through the fourth NMOS transistor N4, and all the current of the tenth current source I10 flows through the eighth NMOS transistor N8. The current of the fourth current source I4 only flows through the fourth NMOS transistor N4 and the eighth NMOS transistor N8 to provide current bias for them, the third switch S3, the sixth switch S6 and the ninth switch S9 At the same time, it is closed, so that the width-to-length ratio and bias current of the fourth N-type metal-oxide transistor N4 change by the same multiples relative to the first N-type metal-oxide transistor N1, and the transconductance of the fourth N-type metal-oxide transistor N4 is the same multiple of the transconductance of the first NMOS transistor N1. At the same time, the width-to-length ratio and bias current of the eighth NMOS transistor N8 are respectively changed by the same multiples relative to the fifth NMOS transistor N5, and the transconductance of the eighth NMOS transistor N8 is the first Five NMOS transistors of the same multiple of the transconductance of N5. When ensuring that the transconductances of the first NMOS transistor N1 and the fifth NMOS transistor N5 are the same and unchanged, the input transconductance of the entire common source amplifier depends on the total multiple and magnitude. The change of the control word directly makes the equivalent transconductance of the input tube of the entire amplifier change exponentially. By setting fixed current multiples and input tube size multiples, the gain of the amplifier can be precisely linearly related to the control word, and the gain step size is fixed.

下面通过仿真对比来说明本发明具有带宽恒定和增益线性的优点。The following illustrates that the present invention has the advantages of constant bandwidth and linear gain through simulation comparison.

采用Virtuoso仿真软件进行可变增益放大器的幅频特性仿真。同时运用该技术对比传统的通过改变跨导达到增益可变的技术。Using Virtuoso simulation software to simulate the amplitude-frequency characteristics of the variable gain amplifier. At the same time, this technology is used to compare with the traditional technology of changing the transconductance to achieve variable gain.

幅频特性结果如图2所示,横坐标表示输入信号的频率,单位Hz,纵坐标表示增益,单位dB。从图2可以看出,本发明的带宽基本恒定在170MHz附近。该技术与传统的通过改变跨导达到增益可变的技术对比结果如图3所示,本发明提出的可变增益放大器具有精确的增益线性关系,增益步长为6dB。The results of amplitude-frequency characteristics are shown in Figure 2. The abscissa indicates the frequency of the input signal in Hz, and the ordinate indicates the gain in dB. It can be seen from Fig. 2 that the bandwidth of the present invention is basically constant around 170MHz. The result of comparing this technology with the traditional technology of changing the transconductance to achieve variable gain is shown in Figure 3. The variable gain amplifier proposed by the present invention has a precise linear gain relationship, and the gain step size is 6dB.

综上,本发明中,以二极管连接方式的晶体管作为负载,使得开关的通断对输出节点的等效阻抗和容抗变化很小,从而保证带宽不变。本发明采用同时改变输入管尺寸和偏置电流,使得输入管的过驱动电压不变,保证电流镜产生的电流源漏源电压不变,因此在普通的数字信号控制开关实现增益的dB线性关系基础上进一步提高了增益精度。To sum up, in the present invention, the diode-connected transistor is used as the load, so that the switching of the switch has little change in the equivalent impedance and capacitive reactance of the output node, thereby ensuring that the bandwidth remains unchanged. In the present invention, the size of the input tube and the bias current are changed at the same time, so that the overdrive voltage of the input tube remains unchanged, and the source-drain-source voltage of the current mirror generated by the current mirror remains unchanged. Therefore, the linear relationship in dB of the gain is realized in an ordinary digital signal control switch On the basis of further improving the gain accuracy.

Claims (1)

1. the gain linear variable gain amplifier that bandwidth is constant, is characterized in that: this variable gain amplifier comprises common-source stage amplifier and gain-adjusted network; Wherein:
Common-source stage amplifier comprises the first N-type MOS transistor (N1), the 5th N-type MOS transistor (N5), a P type MOS transistor (P1), the 2nd P type MOS transistor (P2) and the first current source (I1);
Gain-adjusted network comprises the second N-type MOS transistor (N2), 3rd N-type MOS transistor (N3), 4th N-type MOS transistor (N4), 6th N-type MOS transistor (N6), 7th N-type MOS transistor (N7), 8th N-type MOS transistor (N8), second current source (I2), 3rd current source (I3), 4th current source (I4), 5th current source (I5), 6th current source (I6), 7th current source (I7), 8th current source (I8), 9th current source (I9), tenth current source (I10), first switch (S1), second switch (S2), 3rd switch (S3), 4th switch (S4), 5th switch (S5), 6th switch (S6), 7th switch (S7), 8th switch (S8), 9th switch (S9), tenth switch (S10), 11 switch (S11), twelvemo closes (S12), 13 switch (S13), 14 switch (S14) and the 15 switch (S15),
Input signal anode (VIN+) is connected with the grid of the first N-type MOS transistor (N1), the second N-type MOS transistor (N2), the 3rd N-type MOS transistor (N3) and the 4th N-type MOS transistor (N4), the drain electrode of the one P type MOS transistor (P1) is connected with grid, and the source electrode of a P type MOS transistor (P1) connects supply voltage, the source electrode of the first N-type MOS transistor (N1) and the source electrode of the second N-type MOS transistor (N2), the source electrode of the 3rd N-type MOS transistor (N3), the source electrode of the 4th N-type MOS transistor (N4), the source electrode of the 5th N-type MOS transistor (N5), the source electrode of the 6th N-type MOS transistor (N6), the source electrode of the 7th N-type MOS transistor (N7) is connected with the source electrode of the 8th N-type MOS transistor (N8) and forms one article of main line, be divided into four branch roads afterwards, respectively with the first current source (I1), first switch (S1), second switch (S2) is connected with one end of the 3rd switch (S3), the other end of the first switch (S1) is connected with one end of the second current source (I2), the other end of second switch (S2) is connected with one end of the 3rd current source (I3), and the other end of the 3rd switch (S3) is connected with one end of the 4th current source (I4), the other end ground connection of the first current source (I1), the second current source (I2), the 3rd current source (I3) and the 4th current source (I4), one end of 4th switch (S4) is connected with the drain electrode of the second N-type MOS transistor (N2), one end of 5th switch (S5) is connected with the drain electrode of the 3rd N-type MOS transistor (N3), and one end of the 6th switch (S6) is connected with the drain electrode of the 4th N-type MOS transistor (N4), the other end of the 4th switch (S4), the 5th switch (S5) and the 6th switch (S6) is connected with the drain electrode of the first N-type MOS transistor (N1) and forms one article of main line, as the anode (VOUT+) of amplifier output signal, and this main line is divided into four branch roads, the one end of closing (S12) respectively with the drain electrode of a P type MOS transistor (P1), the tenth switch (S10), the 11 switch (S11) and twelvemo is connected, the other end of the tenth switch (S10) is connected with one end of the 7th current source (I7), the other end of the 11 switch (S11) is connected with one end of the 6th current source (I6), and the other end that twelvemo closes (S12) is connected with one end of the 5th current source (I5), another termination supply voltage of 5th current source (I5), the 6th current source (I6) and the 7th current source (I7), input signal negative terminal (VIN-) is connected with the grid of the 5th N-type MOS transistor (N5), the 6th N-type MOS transistor (N6), the 7th N-type MOS transistor (N7) and the 8th N-type MOS transistor (N8), the drain electrode of the 2nd P type MOS transistor (P2) is connected with grid, and the source electrode of the 2nd P type MOS transistor (P2) connects supply voltage, one end of 7th switch (S7) is connected with the drain electrode of the 6th N-type MOS transistor (N6), one end of 8th switch (S8) is connected with the drain electrode of the 7th N-type MOS transistor (N7), and one end of the 9th switch (S9) is connected with the drain electrode of the 8th N-type MOS transistor (N8), the other end of the 7th switch (S7), the 8th switch (S8) and the 9th switch (S9) is connected with the drain electrode of the 5th N-type MOS transistor (N5) and forms one article of main line, as the negative terminal (VOUT-) of amplifier output signal, and this main line is divided into four branch roads, be connected with one end of the drain electrode of the 2nd P type MOS transistor (P2), the 13 switch (S13), the 14 switch (S14) and the 15 switch (S15) respectively, the other end of the 13 switch (S13) is connected with one end of the 8th current source (I8), the other end of the 14 switch (S14) is connected with one end of the 9th current source (I9), and the other end of the 15 switch (S15) is connected with one end of the tenth current source (I10), another termination supply voltage of 8th current source (I8), the 9th current source (I9) and the tenth current source (I10).
CN201210590866.3A 2012-12-31 2012-12-31 Gain linear variable gain amplifier with constant bandwidth Expired - Fee Related CN103107791B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210590866.3A CN103107791B (en) 2012-12-31 2012-12-31 Gain linear variable gain amplifier with constant bandwidth

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210590866.3A CN103107791B (en) 2012-12-31 2012-12-31 Gain linear variable gain amplifier with constant bandwidth

Publications (2)

Publication Number Publication Date
CN103107791A CN103107791A (en) 2013-05-15
CN103107791B true CN103107791B (en) 2015-03-04

Family

ID=48315400

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210590866.3A Expired - Fee Related CN103107791B (en) 2012-12-31 2012-12-31 Gain linear variable gain amplifier with constant bandwidth

Country Status (1)

Country Link
CN (1) CN103107791B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106961255A (en) * 2017-03-16 2017-07-18 天津大学 The operational amplifier of programmable output Slew Rate
CN110971205B (en) 2018-09-30 2022-08-09 华为技术有限公司 High-linearity variable gain amplifier and electronic device
US12040757B2 (en) 2018-10-03 2024-07-16 Richwave Technology Corp. Amplifier circuit
TWI672903B (en) 2018-10-03 2019-09-21 立積電子股份有限公司 Amplifier circuit
CN115885470A (en) * 2020-12-30 2023-03-31 华为技术有限公司 Operational amplifier, driving circuit, interface chip and electronic equipment

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6331803B1 (en) * 2000-05-08 2001-12-18 Marvell International Ltd Constant bandwidth, variable gain amplifier, and method
CN101951236A (en) * 2010-09-20 2011-01-19 东南大学 Digital variable gain amplifier

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6331803B1 (en) * 2000-05-08 2001-12-18 Marvell International Ltd Constant bandwidth, variable gain amplifier, and method
CN101951236A (en) * 2010-09-20 2011-01-19 东南大学 Digital variable gain amplifier

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
A CMOS Low-Distortion Variable Gain Amplifier;Li Yin et al;《IEEE》;20061231;P375-P378 *

Also Published As

Publication number Publication date
CN103107791A (en) 2013-05-15

Similar Documents

Publication Publication Date Title
CN102045035B (en) A low-power, wideband, high-gain, high-slew-rate single-stage operational transconductance amplifier
US9973198B2 (en) Telescopic amplifier with improved common mode settling
CN103873001B (en) A kind of low supply voltage programmable gain amplifier
CN102291103B (en) Dynamic body biasing class-C inverter and application thereof
CN106788434B (en) Source follower buffer circuit
CN103107791B (en) Gain linear variable gain amplifier with constant bandwidth
CN101562432B (en) Variable gain amplifier
CN106886243B (en) A kind of low pressure difference linear voltage regulator with fast response characteristic
CN103354444B (en) Low-power-consumption variable gain amplifier
CN202306379U (en) Current mirroring circuit
CN102545806B (en) Differential amplifier
CN106026975B (en) Auto bias circuit
JP4773258B2 (en) Power amplifier with automatic switching function
CN103916098A (en) Programmable gain amplifier with high gain precision
CN102723920B (en) Transconductance stabilizing circuit of operational amplifiers
CN105391409B (en) A kind of low-ripple switch capacitance common mode feedback circuit
CN103869860A (en) Voltage generator
CN107005246A (en) Load current compensation for simulation input buffer
CN110855274B (en) Low-loss track-to-track dynamic latching comparator
CN111384940B (en) High-linearity wide-swing CMOS voltage follower
US9231540B2 (en) High performance class AB operational amplifier
Zha et al. The design rail-to-rail operational amplifier used in PGA
CN103595352B (en) It is applied to the low distortion level displacement buffering circuit structure of voice amplifier input stage
CN211089632U (en) High-linearity wide-swing CMOS voltage follower
CN107888184B (en) Single-end-to-differential circuit and buffer circuit and sample hold circuit formed by same

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20170215

Address after: 99 No. 214135 Jiangsu province Wuxi city Wuxi District Linghu Avenue

Patentee after: Southeast University Wuxi branch

Address before: 99 No. 214135 Jiangsu province Wuxi city Wuxi District Linghu Avenue

Patentee before: Southeast University

CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20150304

Termination date: 20201231