Nothing Special   »   [go: up one dir, main page]

CN102773092B - 一种纳米钙钛矿/碳纳米管复合光催化剂及制备方法 - Google Patents

一种纳米钙钛矿/碳纳米管复合光催化剂及制备方法 Download PDF

Info

Publication number
CN102773092B
CN102773092B CN201210236098.1A CN201210236098A CN102773092B CN 102773092 B CN102773092 B CN 102773092B CN 201210236098 A CN201210236098 A CN 201210236098A CN 102773092 B CN102773092 B CN 102773092B
Authority
CN
China
Prior art keywords
nitrate
perovskite
carbon nanotube
carbon nano
nano
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201210236098.1A
Other languages
English (en)
Other versions
CN102773092A (zh
Inventor
胡婕
马嘉华
黄浩
张春祥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangxi Jia Tao inorganic materials Co., Ltd.
Original Assignee
Yanshan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yanshan University filed Critical Yanshan University
Priority to CN201210236098.1A priority Critical patent/CN102773092B/zh
Publication of CN102773092A publication Critical patent/CN102773092A/zh
Application granted granted Critical
Publication of CN102773092B publication Critical patent/CN102773092B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Catalysts (AREA)

Abstract

一种纳米钙钛矿/碳纳米管复合光催化剂,其是粒径为25~35nm的钙钛矿颗粒较均匀的包覆在直径为60nm左右的商用碳纳米管上的复合材料;其制备方法是将碳纳米管加入到无水乙醇中制成碳纳米管悬浮液,将烷基酚聚氧乙烯醚、硝酸盐和柠檬酸加入到碳纳米管悬浮液中,在水浴下70oC陈化至水分蒸发完全,最后经干燥、焙烧得到。本发明工艺简单、成本低,获得钙钛矿纳米粒子尺寸较小,在碳纳米管上分布较均匀,比单纯的钙钛矿材料具有更高的光催化活性。

Description

一种纳米钙钛矿/碳纳米管复合光催化剂及制备方法
技术领域
本发明涉及一种光催化材料。
背景技术
染料废水是目前最难降解的工业废水之一,由于其成分复杂,传统上所采用的絮凝、吸附及生物氧化等方法往往不能达到满意的效果。光催化在环境治理和开发绿色能源方面发挥了重要作用,光催化研究的关键是开发高效的光催化剂,目前广泛使用的光催化剂是TiO2。当前TiO2作为光催化剂存在两个主要的缺点:一是只能吸收380nm以下的紫外光,从而不能够充分的利用太阳光;二是由于光生电子-空穴对容易在TiO2体内或表面复合,因此量子效率较低。对于其他光催化剂来说,除了量子效率,不少半导体还存在光化学稳定性不佳等问题。因此,如何扩展已有光催化剂对太阳光的吸收范围、提高光催化量子效率等问题,已经成为当前光催化领域的研究焦点。钙钛矿型复合氧化物(ABO3)作为光催化剂已被广泛研究,该类材料在热稳定性、化学稳定性和结构稳定性方面具有一定的优越性,其能带间隙通常小于3.0eV,在可见光范围内表现出良好的光催化活性。但是由于它的量子产率较低(约4 %)、难负载等技术难题,阻碍了其在工业上广泛的应用。
发明内容
本发明的目的在于提供一种工艺简单、能使钙钛矿纳米粒子在碳纳米管上均匀分布,并具有良好的光催化性能的纳米钙钛矿/碳纳米管复合光催化剂及制备方法。
    本发明的纳米钙钛矿/碳纳米管复合光催化剂是一种粒径为25~35nm的钙钛矿颗粒较均匀的包覆在直径为60nm左右的商用多壁碳纳米管上的复合材料。
上述复合光催化剂的制备方法如下:
1.     碳纳米管的预处理
按每mL的混合酸中加入多壁碳纳米管0.81~0.97mg的比例关系,将直径为60nm左右的商用多壁碳纳米管放入混合酸中,在室温的条件下超声10min,再将混合液体在80℃搅拌50min,将上述反应后的混合液体过滤,用离子水进行洗涤至pH为7,然后干燥;上述混合酸是体积比为3:1的硫酸与硝酸的混合液。
2.     碳纳米管/钙钛矿前驱体溶液的制备
按100ml无水乙醇加入48.4~96.8mg碳纳米管材料的比例关系,将上述经过处理的碳纳米管材料加入到无水乙醇中,经超声分散60min后稀释成碳纳米管悬浮液,再依次将烷基酚聚氧乙烯醚(OP-10)、甲组硝酸盐、乙组硝酸盐和柠檬酸加入到上述碳纳米管悬浮液中,其中,甲组硝酸盐与乙组硝酸盐的摩尔比为1:1,甲组硝酸盐包括硝酸镧、硝酸锶,乙组硝酸盐包括硝酸锰、硝酸铁和硝酸镍;上述硝酸盐与碳纳米管的质量比为20.76~34.6:1~2;柠檬酸与硝酸盐的质量比为2:1;烷基酚聚氧乙烯醚(OP-10)与硝酸盐的质量比为3:20;待柠檬酸完全溶解后,向溶液中滴加氨水调节其pH值为8~9,得到所需的碳纳米管/钙钛矿前驱体溶液。
3、纳米钙钛矿/碳纳米管复合光催化剂的制备
将上述前驱体溶液在水浴下50oC~70oC陈化至水分完全蒸发后,在80oC干燥箱中烘干至干凝胶装入坩埚,先在空气中350oC煅烧3h,使柠檬酸盐充分分解,并随炉冷却至室温。然后将煅烧后的粉体放入真空炉中,以1oC/min的升温速度升到550~650oC煅烧2~5h,随炉冷却至室温,即得到纳米钙钛矿/碳纳米管复合光催化剂。
碳纳米管具有良好的机械性能和导电性、高化学稳定性、大表面积以及独特的一维结构,与半导体光催化剂结合能够增强催化剂的吸附能力、提高光催化效率、扩展光响应范围,而且有利于回收催化剂,极大地提高了半导体光催化剂的综合性能。
本发明于现有技术相比具有如下优点:
1、工艺简单,成本低。
2、本发明获得的纳米钙钛矿/碳纳米管复合光催化剂,钙钛矿纳米粒子尺寸较小,在纳米管上分布较均匀。
3、本发明获得的纳米钙钛矿/碳纳米管复合光催化剂比单独钙钛矿材料具有更高的化学活性,对多种有机染料进行光催化降解,其效率是单纯钙钛矿材料的2~3倍。
附图说明
图1本发明实施例1获得的纳米锰酸镧/碳纳米管复合材料的透射电镜图;
图2本发明实施例2获得的纳米铁酸镧/碳纳米管复合材料的扫描电镜图。
具体实施方式
实施例1
将直径为60nm左右的商用多壁碳纳米管65mg放入80ml的混合酸中,在室温的条件下超声10min,再将混合的液体在80℃搅拌50min,将上述反应后的混合液体过滤,用离子水进行洗涤至pH为7,然后干燥。上述混合酸为60ml硫酸和20ml硝酸的混合液。
取上述碳纳米管48.4mg,加入100ml无水乙醇中,超声60min,稀释成碳纳米管悬浮液,再依次加入烷基酚聚氧乙烯醚(OP-10)0.205g,硝酸镧0.866g,硝酸锰0.5g和柠檬酸2.732g,待柠檬酸完全溶解后,向溶液中滴加氨水调节其pH值为8,得到所需的锰酸镧/碳纳米管前驱体溶液。将该前驱体溶液在水浴下50oC陈化至水分蒸发完全后,在80oC干燥箱中烘干至干凝胶装入坩埚,先在空气中350oC煅烧3h,使柠檬酸盐充分分解,并随炉冷却至室温,然后将煅烧后的粉体放入真空炉中,以1oC/min的升温速度升到650oC煅烧2h,随炉冷却至室温,即得到纳米锰酸镧/碳纳米管复合材料。
如图1所示,制备出的钙钛矿颗粒大小约为25~35nm,粒子均匀的包覆在直径为60nm左右的商用多壁碳纳米管上。
实施例2
将直径为60nm左右的商用多壁碳纳米管90mg放入100ml的混合酸中,在室温的条件下超声10min,再将混合的液体在80℃搅拌50min,将上述反应后的混合液体过滤,用离子水进行洗涤至pH为7,然后干燥。上述混合酸为75ml硫酸和25ml硝酸的混合液。
取上述碳纳米管72.6mg,加入100ml无水乙醇中,超声60min,稀释成碳纳米管悬浮液,再依次加入烷基酚聚氧乙烯醚(OP-10)0.251g,硝酸镧0.866g,硝酸铁0.808g和柠檬酸3.348g,待柠檬酸完全溶解后,向溶液中滴加氨水调节其pH值为8.5,得到所需的铁酸镧/碳纳米管前驱体溶液。将该前驱体溶液在水浴下60oC陈化至水分蒸发完全后,在80oC干燥箱中烘干至干凝胶装入坩埚,先在空气中350oC煅烧3h,使柠檬酸盐充分分解,并随炉冷却至室温,然后将煅烧后的粉体放入真空炉中,以1oC/min的升温速度升到600oC煅烧3h,随炉冷却至室温,即得到纳米铁酸镧/碳纳米管复合材料。
如图2所示,制备出的钙钛矿颗粒大小约为25~35nm,粒子均匀的包覆在直径为60nm左右的商用多壁碳纳米管上。
实施例3
将直径为60nm左右的商用多壁碳纳米管115mg放入120ml的混合酸中,在室温的条件下超声10min,再将混合的液体在80℃搅拌50min,将上述反应后的混合液体过滤,用离子水进行洗涤至pH为7,然后干燥。上述混合酸为90ml硫酸和30ml硝酸的混合液。
取上述碳纳米管96.8mg,加入100ml无水乙醇中,超声60min,稀释成碳纳米管悬浮液,再依次加入烷基酚聚氧乙烯醚(OP-10)0.151g,硝酸锶0.423g,硝酸镍0.582g和柠檬酸2.01g,待柠檬酸完全溶解后,向溶液中滴加氨水调节其pH值为9,得到所需的镍酸锶/碳纳米管前驱体溶液。将该前驱体溶液在水浴下70oC陈化至水分蒸发完全后,在80oC干燥箱中烘干至干凝胶装入坩埚,先在空气中350oC煅烧3h,使柠檬酸盐充分分解,并随炉冷却至室温,然后将煅烧后的粉体放入真空炉中,以1oC/min的升温速度升到550oC煅烧5h,随炉冷却至室温,即得到纳米镍酸锶/碳纳米管复合材料。

Claims (1)

1.一种纳米钙钛矿/碳纳米管复合光催化剂的制备方法,所述的纳米钙钛矿/碳纳米管复合光催化剂是粒径为25~35nm的钙钛矿颗粒较均匀的包覆在直径为60nm左右的商用多壁碳纳米管上的复合材料,其特征在于:
(1)按每mL的混合酸中加入多壁碳纳米管0.81~0.97mg的比例关系,将直径为60nm左右的商用多壁碳纳米管放入混合酸中,在室温的条件下超声10min,再将混合的液体在80℃搅拌50min,将上述反应后的混合液体过滤,用离子水进行洗涤至pH为7,然后干燥,上述混合酸是体积比为3:1的硫酸与硝酸的混合液;
(2)按100mL无水乙醇加入48.4~96.8mg碳纳米管材料的比例关系,将上述经过处理的碳纳米管材料加入到无水乙醇中,经超声分散60min后稀释成碳纳米管悬浮液,再依次将烷基酚聚氧乙烯醚OP-10、甲组硝酸盐、乙组硝酸盐和柠檬酸加入到上述碳纳米管悬浮液中,其中,甲组硝酸盐与乙组硝酸盐的摩尔比为1:1,甲组硝酸盐包括硝酸镧、硝酸锶,乙组硝酸盐包括硝酸锰、硝酸铁和硝酸镍,上述硝酸盐与碳纳米管的质量比为20.76~34.6:1~2;柠檬酸与硝酸盐的质量比为2:1;烷基酚聚氧乙烯醚OP-10与硝酸盐的质量比为3:20;待柠檬酸完全溶解后,向溶液中滴加氨水调节其pH值为8~9,得到所需的碳纳米管/钙钛矿前驱体溶液;
(3)将上述前驱体溶液在水浴下50oC~70oC陈化至水分完全蒸发后,在80oC干燥箱中烘干至干凝胶装入坩埚,先在空气中350oC煅烧3h,使柠檬酸盐充分分解,并随炉冷却至室温,然后将煅烧后的粉体放入真空炉中,以1oC/min的升温速度升到550~650oC煅烧2~5h,随炉冷却至室温。
CN201210236098.1A 2012-07-10 2012-07-10 一种纳米钙钛矿/碳纳米管复合光催化剂及制备方法 Active CN102773092B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210236098.1A CN102773092B (zh) 2012-07-10 2012-07-10 一种纳米钙钛矿/碳纳米管复合光催化剂及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210236098.1A CN102773092B (zh) 2012-07-10 2012-07-10 一种纳米钙钛矿/碳纳米管复合光催化剂及制备方法

Publications (2)

Publication Number Publication Date
CN102773092A CN102773092A (zh) 2012-11-14
CN102773092B true CN102773092B (zh) 2014-09-10

Family

ID=47118335

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210236098.1A Active CN102773092B (zh) 2012-07-10 2012-07-10 一种纳米钙钛矿/碳纳米管复合光催化剂及制备方法

Country Status (1)

Country Link
CN (1) CN102773092B (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103700508B (zh) * 2013-11-28 2017-01-25 中国科学院等离子体物理研究所 染料敏化太阳电池用钙钛矿氧化物对电极材料
CN106186079B (zh) * 2016-06-28 2017-06-06 郑州轻工业学院 钙钛矿型镧复合氧化物纳米管的制备方法
CN106299393B (zh) * 2016-09-14 2018-12-07 燕山大学 一种钙钛矿/金刚石复合材料及制备方法
CN107626318A (zh) * 2017-08-31 2018-01-26 河南师范大学 一种碳纤维复合铁酸镧光催化剂的制备方法
CN111621286A (zh) * 2019-02-28 2020-09-04 Tcl集团股份有限公司 一种复合材料及其制备方法
CN113403512A (zh) * 2021-06-03 2021-09-17 辽宁银捷装备科技股份有限公司 一种耐热铸造铝合金及其制备方法
CN116196933A (zh) * 2023-01-09 2023-06-02 江西嘉陶无机材料有限公司 一种多孔钙钛矿型催化剂LaCo0.7Fe0.3O3及其制备方法和应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101318136A (zh) * 2008-05-30 2008-12-10 哈尔滨工业大学 用于微波强化高级氧化工艺的催化剂Fe2O3-La2O3/碳纳米管的制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006062953A (ja) * 2004-07-30 2006-03-09 Daihatsu Motor Co Ltd カーボンナノチューブの製造方法および製造用触媒

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101318136A (zh) * 2008-05-30 2008-12-10 哈尔滨工业大学 用于微波强化高级氧化工艺的催化剂Fe2O3-La2O3/碳纳米管的制备方法

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
G. Shabbir等.Nano-crystalline LaFeO3 powders synthesized by the citrate–gel method.《materials letters》.2006,
JP特开2006-62953A 2006.03.09
Kohei Miyazaki等.Single-step synthesis of nano-sized perovskite-type oxide/carbon nanotube composites and their electrocatalytic oxygen-reduction activities.《Journal of Materials Chemistry》.2010,
Nano-crystalline LaFeO3 powders synthesized by the citrate–gel method;G. Shabbir等;《materials letters》;20060427;第3706-3709页 *
Single-step synthesis of nano-sized perovskite-type oxide/carbon nanotube composites and their electrocatalytic oxygen-reduction activities;Kohei Miyazaki等;《Journal of Materials Chemistry》;20101130;第1913-1917页 *
有机溶剂中溶胶-凝胶法制备纳米钙钛矿型氧化物;郭鹏等;《中国稀土学报》;20061231;第24卷;第49-52页 *
董抒华等.钙钛矿La1-xSrxMnO3纳米晶光催化活性.《中国有色金属》.2008,第18卷(第7期),
郭鹏等.有机溶剂中溶胶-凝胶法制备纳米钙钛矿型氧化物.《中国稀土学报》.2006,第24卷
钙钛矿La1-xSrxMnO3纳米晶光催化活性;董抒华等;《中国有色金属》;20080731;第18卷(第7期);第1353-1357页 *

Also Published As

Publication number Publication date
CN102773092A (zh) 2012-11-14

Similar Documents

Publication Publication Date Title
Lin et al. Graphitic carbon nitride quantum dots and nitrogen-doped carbon quantum dots co-decorated with BiVO4 microspheres: a ternary heterostructure photocatalyst for water purification
CN102773092B (zh) 一种纳米钙钛矿/碳纳米管复合光催化剂及制备方法
Wang et al. MOF-derived N-doped ZnO carbon skeleton@ hierarchical Bi2MoO6 S-scheme heterojunction for photodegradation of SMX: Mechanism, pathways and DFT calculation
Zhang et al. Structure regulation of ZnS@ g-C3N4/TiO2 nanospheres for efficient photocatalytic H2 production under visible-light irradiation
Xu et al. Nitrogen-rich graphitic carbon nitride nanotubes for photocatalytic hydrogen evolution with simultaneous contaminant degradation
Cai et al. Graphitic carbon nitride decorated with S, N co-doped graphene quantum dots for enhanced visible-light-driven photocatalysis
Wang et al. Enhanced photocatalytic activity and mechanism of CeO 2 hollow spheres for tetracycline degradation
US11027261B2 (en) Functionalized hybrid nanotube C@MoS2/SnS2 and preparation method and application thereof
Dong et al. The pn-type Bi5O7I-modified porous C3N4 nano-heterojunction for enhanced visible light photocatalysis
Liang et al. Fabrication and characterization of BiOBr: Yb3+, Er3+/g-C3N4 pn junction photocatalysts with enhanced visible-NIR-light-driven photoactivities
Wei et al. Scalable low temperature in air solid phase synthesis of porous flower-like hierarchical nanostructure SnS2 with superior performance in the adsorption and photocatalytic reduction of aqueous Cr (VI)
Tian et al. Microwave-induced crystallization of AC/TiO2 for improving the performance of rhodamine B dye degradation
Jiang et al. Preparation of magnetically retrievable flower-like AgBr/BiOBr/NiFe2O4 direct Z-scheme heterojunction photocatalyst with enhanced visible-light photoactivity
Zhang et al. Facile and green synthesis of novel porous g-C3N4/Ag3PO4 composite with enhanced visible light photocatalysis
Yan et al. Through hydrogen spillover to fabricate novel 3DOM-HxWO3/Pt/CdS Z-scheme heterojunctions for enhanced photocatalytic hydrogen evolution
CN103285861B (zh) 一种具有可见光活性的Ag3VO4/TiO2复合纳米线其制备方法及应用
Wang et al. Visible-light-driven double-shell SnIn4S8/TiO2 heterostructure with enhanced photocatalytic activity for MO removal and Cr (VI) cleanup
CN103007944A (zh) 石墨烯基磁性复合可见光催化材料Fe3O4-G-TiO2的制备方法
CN102160995A (zh) 纳米金属氧化物/石墨烯复合光催化剂的制备方法
Liu et al. Superb photocatalytic activity of 2D/2D Cl doped g-C3N4 nanodisc/Bi2WO6 nanosheet heterojunction: Exploration of photoinduced carrier migration in S-scheme heterojunction
Dang et al. Hydrothermal preparation and characterization of nanostructured CNTs/ZnFe2O4 composites for solar water splitting application
Zheng et al. Preparation and characterization of CuxZn1-xS nanodisks for the efficient visible light photocatalytic activity
CN102941103A (zh) 一种用于光催化领域的铁酸铋-石墨烯复合材料及其制备方法
Liu et al. Enhanced photo-Fenton activity of Sm2O3–NiO heterojunction under visible light irradiation
CN105540640A (zh) 一种花状纳米氧化锌的制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C53 Correction of patent for invention or patent application
CB03 Change of inventor or designer information

Inventor after: Hu Jie

Inventor after: Ma Jiahua

Inventor after: Huang Hao

Inventor after: Zhang Chunxiang

Inventor before: Hu Jie

Inventor before: Ma Jiahua

Inventor before: Huang Hao

COR Change of bibliographic data

Free format text: CORRECT: INVENTOR; FROM: HU JIE MA JIAHUA HUANG HAO TO: HU JIE MA JIAHUA HUANG HAO ZHANG CHUNXIANG

C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20190923

Address after: 332800 Mount Lu City Industrial Park, Jiujiang, Jiangxi

Patentee after: Jiangxi Jia Tao inorganic materials Co., Ltd.

Address before: Hebei Street West Harbor area, 066004 Hebei city of Qinhuangdao province No. 438

Patentee before: Yanshan University