CN102711650B - 用于内窥镜手术的基于图像整合的配准和导航 - Google Patents
用于内窥镜手术的基于图像整合的配准和导航 Download PDFInfo
- Publication number
- CN102711650B CN102711650B CN201080061265.2A CN201080061265A CN102711650B CN 102711650 B CN102711650 B CN 102711650B CN 201080061265 A CN201080061265 A CN 201080061265A CN 102711650 B CN102711650 B CN 102711650B
- Authority
- CN
- China
- Prior art keywords
- matrix
- image
- integration
- endoscopic images
- images
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/00002—Operational features of endoscopes
- A61B1/00043—Operational features of endoscopes provided with output arrangements
- A61B1/00045—Display arrangement
- A61B1/0005—Display arrangement combining images e.g. side-by-side, superimposed or tiled
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/20—Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/70—Determining position or orientation of objects or cameras
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/04—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
- A61B1/042—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances characterised by a proximal camera, e.g. a CCD camera
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/10—Computer-aided planning, simulation or modelling of surgical operations
- A61B2034/101—Computer-aided simulation of surgical operations
- A61B2034/105—Modelling of the patient, e.g. for ligaments or bones
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/20—Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
- A61B2034/2046—Tracking techniques
- A61B2034/2065—Tracking using image or pattern recognition
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/36—Image-producing devices or illumination devices not otherwise provided for
- A61B2090/364—Correlation of different images or relation of image positions in respect to the body
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/36—Image-producing devices or illumination devices not otherwise provided for
- A61B90/37—Surgical systems with images on a monitor during operation
- A61B2090/376—Surgical systems with images on a monitor during operation using X-rays, e.g. fluoroscopy
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/36—Image-producing devices or illumination devices not otherwise provided for
- A61B90/361—Image-producing devices, e.g. surgical cameras
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Surgery (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Physics & Mathematics (AREA)
- General Health & Medical Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Animal Behavior & Ethology (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Pathology (AREA)
- Radiology & Medical Imaging (AREA)
- Optics & Photonics (AREA)
- Biophysics (AREA)
- Computer Vision & Pattern Recognition (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Robotics (AREA)
- Apparatus For Radiation Diagnosis (AREA)
- Endoscopes (AREA)
- Measuring And Recording Apparatus For Diagnosis (AREA)
- Magnetic Resonance Imaging Apparatus (AREA)
Abstract
一种相对于手术前手术规划和手术中图像对手术工具实施的实时跟踪涉及基于图像的配准和工具跟踪配准。所述基于图像的配准实施对身体的解剖区域的多幅图像的整合,所述多幅图像包括手术前扫描图像(31)(例如,3D CT/MRI图像)、手术中荧光透视图像(42)(例如,2D X射线图像)和手术中内窥镜图像(23)(例如,2D关节内窥镜图像)。所述工具跟踪配准实施在手术中内窥镜图像(23)内对一个或多个手术工具的跟踪在手术前扫描图像(31)和/或手术中荧光透视图像(42)内的表示。
Description
本发明总体涉及相对于手术前规划和手术中图像对身体的解剖区域内的手术工具进行实时跟踪。本发明尤其涉及手术前扫描图像、手术中荧光透视图像和手术中内窥镜图像的整合,以实现对手术工具的实时跟踪和定位。
微创内窥镜手术是一种手术流程,在该流程中,通过自然孔口或皮肤上的小切口(即,端口)将刚性或柔性内窥镜引入到患者的身体内。将额外的手术工具通过类似的端口引入到患者的身体内,其中,采用内窥镜就手术部位向手术工具的外科医生提供视觉反馈。
例如,图1图示了膝盖10的前十字韧带(“ACL”)关节内窥镜手术的示意性表示,如图所示,膝盖具有ACL 11、软骨12和膝盖骨13。关节内窥镜手术涉及手术前阶段和手术中阶段。
手术前阶段涉及对膝盖10的三维(“3D”)扫描成像(例如,CT图像、MRI图像、超声图像、X射线图像等),从而对膝盖10进行诊断性评估,以及对膝盖10的ACL关节内窥镜手术进行规划。
手术中阶段涉及通过膝盖10的前面区域中的端口引入关节内窥镜20(即,针对关节的内窥镜),由此可以使关节内窥镜20发生移动和/或枢轴转动,以采集膝盖10的各个区域的实时图像,尤其是ACL 11以及软骨12的损伤区的实时图像。此外,通过膝盖10的后面区域中的端口引入冲洗仪器22,并通过膝盖10的前面区域中的端口以垂直于关节内窥镜20的视角的角度引入如修整仪器21的各种手术仪器,以便于对损伤软骨12的手术部位的可视化。
在本发明之前,存在两种主要对手术工具20-22的位置和取向进行跟踪的方案。
第一种方案是无导航的徒手技术,因此外科医生通过三种(3)不同的模态来观察手术区域。例如,如图2中所示,出于诊断和手术规划的目的,采用CT扫描器30采集手术前CT扫描图像31。采用X射线装置40采集一幅或多幅手术中二维(“2D”)荧光透视图像,诸如示范性图像41,以观察一个或多个手术工具20-22相对于膝盖10的位置和取向。并且,采用关节内窥镜20连续采集手术中关节内窥镜图像,诸如示范性图像23,以观察膝盖10的手术部位。
外科医生可以观察不同显示屏上的或同一显示屏上的图像。在任一种情况下,这种方案都无法建立各图像之间的关系,而这种关系便于对一个或多个手术工具20-22相对于膝盖10的位置和取向,特别是相对于膝盖10的手术部位的位置和取向进行跟踪。
第二种方案是基于导航的手术,其利用外部位置跟踪系统解决了对手术工具20-22中的一个或多个相对于膝盖10的位置和取向进行跟踪的问题。例如,图3图示了一种光学跟踪系统50,其用于在系统50的跟踪摄像机的坐标系内跟踪修整仪器21的位置和取向,从而必须执行患者配准流程,以便将修整仪器21呈现为扫描图像和(一幅或多幅)荧光透视图像中的叠加(overlay),诸如处于扫描图像31和荧光透视图像42的相应坐标系中的示范性叠加32和43。所述配准可以采用附着到患者的皮肤或骨骼上的并利用修整仪器21触碰的基准标记,该基准标记在荧光透视图像42上可见。或者,可以执行涉及CT扫描图像31和荧光透视图像42的无标记配准。
图3所示的第二种方案为外科医生提供了修整仪器21相对于膝盖10和手术前规划的位置和取向的实时反馈。然而,采用光学跟踪系统50或者备选的外部跟踪系统(例如,电磁跟踪系统)因患者配准而延长了手术流程的时间,不能跟踪所有的工具20-22,并且还可能给外科医生增加身体活动限制(例如,必须总是保持系统50与修整仪器21之间的视线)。
本发明提供了对手术工具的相对于手术前手术规划和手术中图像的实时跟踪,其涉及基于图像的配准和工具跟踪。基于图像的配准实施对身体解剖区域的多幅图像的整合,所述图像包括手术前扫描图像(例如,3DCT/MRI图像)、手术中荧光透视图像(例如,2D X射线图像)和手术中内窥镜图像(例如,2D关节内窥镜图像)。所述工具跟踪通过手术中内窥镜图像实施对一个或多个手术工具的跟踪在手术前扫描图像和/或手术中荧光透视图像内的呈现。
本发明的一种形式是用于整合身体的解剖区域的多幅图像的手术导航系统,所述多幅图像包括手术前扫描图像(例如,3D CT/MRI图像)、手术中荧光透视图像(例如,2D X射线图像)和手术中内窥镜图像(例如,2D关节内窥镜图像)。所述手术导航系统包括图像整合器和工具跟踪器。在工作过程中,图像整合器生成整合图像矩阵,所述整合图像矩阵包括荧光透视图像矩阵与内窥镜图像矩阵的整合(例如,矩阵乘法),其中,荧光透视图像矩阵包括手术中荧光透视图像与手术前扫描图像之间的变换,并且其中,内窥镜图像矩阵包括手术前扫描图像与手术中内窥镜图像之间的变换。继而,工具跟踪器生成整合跟踪矩阵,其中,所述整合跟踪矩阵包括整合图像矩阵和内窥镜跟踪矩阵的整合(例如,矩阵乘法),并且其中,所述内窥镜跟踪矩阵表示在手术中内窥镜图像内对手术工具的跟踪。
所述工具跟踪器可以进一步生成或备选地生成扫描跟踪矩阵,其中,所述扫描跟踪矩阵包括内窥镜图像矩阵和内窥镜跟踪矩阵的整合(例如,矩阵乘法)。
就本发明的目的而言,可以将本文采用的“生成”一词广义地定义为包括当前已知的或者以后已知的用于创建、提供、配备、获得、产生、形成、开发、演化、修改、变换、改变或制作可用信息(例如,数据、文本、图像、语音和视频),以实现计算机处理目的和存储器存储/检索目的的任何技术,特别是对图像数据集和视频帧而言,将本文采用的“配准”一词广义地定义为包括本领域当前已知或者以后已知的用于将不同的图像数据集变换到一个坐标系内的技术。
此外,将本文采用的“手术前”一词广义地定义为描述在内窥镜应用之前的时期或准备过程(例如,针对内窥镜的路径规划)中发生的或者与之相关的活动,并且将本文采用的“手术中”一词广义地定义为描述在内窥镜应用(例如,根据规划的路径操作内窥镜)的过程中发生、执行或者遇到的活动。内窥镜应用的例子包括,但不限于,关节内窥镜检查、支气管镜检查、结肠镜检查、腹腔镜检查、脑部内窥镜检查和内窥镜心脏手术。内窥镜心脏手术的范例包括,但不限于,内窥镜冠状动脉旁路术、内窥镜二尖瓣和主动脉瓣修补和置换。
在大多数情况下,手术前活动和手术中活动将发生在截然不同的分立时间段期间。然而,本发明也包括涉及手术前和手术中时间段发生任何程度的重叠的情况。
此外,本文将“内窥镜”一词广义地定义为由具有从身体内部成像的能力的任何类型的内窥镜采集的图像的特征表述,并且本文将“荧光透视”一词广义地定义为由具有提供身体内部结构的实时图像的能力的任何类型的荧光透视仪采集的图像的特征表述。用于本发明的目的的内窥镜的范例包括,但不限于,任何类型的检查镜,柔性或刚性的(例如,内窥镜、关节内窥镜、支气管镜、胆管镜、结肠镜、膀胱镜、十二指肠镜、胃窥器、宫腔镜、腹窥镜、喉镜、神经镜、耳镜、推进肠镜、鼻喉镜、乙状结肠镜、窦窥镜、胸腔镜等)以及与检查镜类似的配备有成像系统的任何装置(例如,具有成像功能的嵌套插管)。所述成像是局部的,可以利用光纤、透镜或微型(例如,基于CCD的)成像系统获得表面图像。用于本发明的目的的荧光透视仪的范例包括,但不限于,X射线成像系统。
通过下文结合附图对本发明的各实施例的详细描述,本发明的上述形式及其他形式以及本发明的各种特征和优点将变得更加明显。所述详细描述和附图仅用于对本发明进行举例说明而非对其构成限制,本发明的范围由权利要求及其等同要件界定。
图1图示了本领域已知的ACL关节内窥镜手术的示意性表示。
图2图示了本领域已知的无手术导航的示范性ACL关节内窥镜手术。
图3图示了本领域已知的具有手术导航的示范性ACL关节内窥镜手术。
图4图示了根据本发明的手术导航系统的示范性实施例的具有手术导航的示范性ACL关节内窥镜手术。
图5图示了表示根据本发明的图像整合方法的示范性实施例的流程图。
图6图示了表示根据本发明的工具跟踪方法的示范性实施例的流程图。
图7图示了根据本发明的手术导航方法的示范性实施例的流程图。
参考图4,其示出了本发明的手术导航系统60,其用于相对于手术规划和手术中图像对手术工具进行实时跟踪,该过程涉及基于图像的配准和工具跟踪。为此,系统60包括图像整合器61、工具跟踪器62以及用于图示图像23、31、43的显示装置。本文将图像整合器61广义地定义为在结构上被构造成实施基于图像的配准的任何装置,所述配准涉及身体的解剖区域的多幅图像的整合,所述多幅图像包括手术前扫描图像(例如,3DCT/MRI图像)、手术中荧光透视图像(例如,2D X射线图像)以及手术中内窥镜图像(例如,2D关节内窥镜图像)。本文将工具跟踪器62广义地定义为在结构上被构造成实施工具跟踪的任何装置,所述跟踪涉及手术工具在手术前扫描图像和/或手术中荧光透视图像内的叠加,其表示在手术中内窥镜图像内对手术工具的跟踪。本文将显示装置广义地定义为在结构上被构造为根据任何适当的技术显示图像和受到跟踪的手术工具的任何装置,例如,所述技术可以是对图像和受到跟踪的手术工具的增强虚拟可视化。
图5图示了表示由图像整合器61执行的图像整合方法的流程图70。参考图5,流程图70具有荧光透视路径和内窥镜路径,两条路径都引向图像整合阶段S74。所述荧光透视路径包括流程图70的阶段S71,其包括手术中荧光透视图像(例如,图4中的图像41)与手术前扫描图像(例如,图4的图像31)的荧光透视图像配准。在阶段S71的一个实施例中,荧光透视图像配准涉及将2D手术中荧光透视图像刚性空间变换为目标图像,从而使之与作为参考图像的3D手术前扫描图像对准,由此生成荧光透视图像矩阵TX-CT(TCT-X=T-1 X-CT),其中,-1表示本领域已知的矩阵求逆),其中,所述刚性空间变换是本领域已知的。或者,所述荧光透视图像配准可以涉及将3D手术前扫描图像刚性空间变换为目标图像,从而使之与作为参考图像的2D手术中荧光透视图像对准,由此生成荧光透视图像矩阵(TCT-X),其中,所述刚性空间变换是本领域已知的。
阶段S71是由图像整合器60在通过荧光透视仪(例如,图4的X射线系统40)生成每个新的图像帧时执行的,其以手术流程期间由外科医生决定的需求为基础。
内窥镜路径包括流程图70的阶段S72和阶段S73。阶段S72包括手术中内窥镜图像(例如,图4的图像23)内的对象的表面重建。在阶段S72的针对立体内窥镜(例如,具有两个照相机的同时拍摄两幅图像的关节内窥镜)的示范性实施例中,可以采用本领域已知的任何立体3D重建方法。
在阶段S72的针对单筒内窥镜(例如,拍摄图像的单照相机关节内窥镜)的示范性实施例中,可以采用本领域已知的任何摄影测量重建技术。例如,在给定单筒内窥镜的速度的情况下,可以从光流提取深度图。具体而言,光流是表示图像内的每个点或特征在图像时间序列内的运动的矢量场,其中,将光流上的在连续片层内不发生移动的点称为扩展焦点(“FOE”)。使内窥镜的光轴与其移动对准,由此使FOE与内窥镜的移动对准。可以通过了解每个点或特征距FOE的距离(D)、每个点内的光流的幅度(V)以及内窥镜的速度(v)而根据Z=v*D/V提取深度信息(Z)。可以从固有的照相机参数(例如,焦点等)计算内窥镜的X和Y位置。
本领域技术人员应当认识到,在不采用光学线索(cue)的情况下使内窥镜进行枢轴转动,以实现表面重建目的,而备选地,在采用光学线索的情况下不必使内窥镜进行枢轴运动来实现表面重建目的。
阶段S73包括手术前扫描图像(例如,图4中的图像31)的内窥镜图像配准以及手术中内窥镜图像内的表面重建(例如,图4的图像23)。在阶段S73的一个示范性实施例中,内窥镜图像配准涉及将手术中内窥镜图像内的表面重建刚性空间变换成目标图像,从而使之与作为参考图像的3D手术前扫描图像对准,由此生成内窥镜图像矩阵TCT-E(TE-CT=T-1 CT-E),其中,所述刚性空间变换是本领域已知的。具体而言,可以按照所定义的特征性亨氏(Hounsfield)单位(例如,175HU)利用图像阈值化对手术前扫描图像中所示的骨骼表面进行分割,并且可以执行迭代最近点(ICP)算法,从而对所述图像进行变换。或者,所述内窥镜图像配准涉及将3D手术前扫描图像刚性空间变换成目标图像,从而使之与作为参考图像的手术中内窥镜图像内的表面重建对准,由此生成内窥镜图像矩阵TE-CT,其中,所述刚性空间变换是本领域已知的。
由图像整合器60在通过(一个或多个)内窥镜装置(例如,图4的关节内窥镜40)生成每个新的图像帧时执行阶段S73,其在手术过程中采取连续的方式。
阶段S74包括阶段S71的荧光透视图像矩阵TX-CT和阶段S73的内窥镜图像矩阵TCT-E的图像整合。在阶段S74的一个示范性实施例中,图像整合包括对荧光透视图像矩阵TX-CT和内窥镜图像矩阵TCT-E实施本领域已知的矩阵乘法,由此得到整合图像矩阵TX-E(TE-X=T-1 X-E)。
流程图70仍然处于手术流程期间的一个循环内,这时通过与阶段71的最当前的荧光透视图像配准发生了整合的内窥镜路径S72和S73对阶段S74持续不断地更新。
图6图示了表示由工具跟踪器62(图4)执行的工具跟踪方法的流程图80。参考图6,流程图80的阶段S81包括在手术中内窥镜图像(例如,图4的图像23)内跟踪手术工具,以及生成表示手术工具(T)在手术中内窥镜图像(E)中的位置的内窥镜图像矩阵TT-E(例如,所述内窥镜图像矩阵TT-E可以是通过平移分量示出工具尖端,通过旋转分量示出工具取向的变换矩阵)。在阶段S81的一个示范性实施例中,工具跟踪器61执行本领域已知的摄影测量跟踪技术。具体而言,与内窥镜图像的背景(例如,骨骼)相比,手术工具在内窥镜图像内通常具有高对比度。因而,有可能利用三(3)种颜色通道上的阈值化来对图像进行分割,由此检测手术工具在内窥镜图像内的位置。或者,可以向手术工具的尖端涂上一种在人体内极少观察到的截然不同的颜色(例如,绿色),由此将得到通过绿色通道实施的分割。在任一种情况下,一旦通过内窥镜图像的分割检测到了手术工具,那么可以采用先前本文描述的深度估算技术估算工具相对于内窥镜框架(endoscopic frame)的深度。
流程图80的阶段82包括通过内窥镜跟踪矩阵TT-E(TE-T=T-1 T-E)与整合图像矩阵TX-E的整合在手术中荧光透视图像内跟踪手术工具。在阶段S82的一个示范性实施例中,所述整合包括对内窥镜跟踪矩阵TT-E和所述整合图像矩阵TX-E的逆矩阵实施本领域已知的矩阵乘法,从而得到荧光透视跟踪矩阵TT-X(TX-T=T-1 T-X)。
流程图80的阶段S83包括通过内窥镜跟踪矩阵TT-E与内窥镜图像矩阵TCT-E的整合在手术前扫描图像内跟踪手术工具。在阶段S83的一个示范性实施例中,所述整合包括对内窥镜跟踪矩阵TT-E和内窥镜图像矩阵TCT-E的逆矩阵实施本领域已知的矩阵乘法,由此得到扫描跟踪矩阵TT-CT(TCT-T=T-1 T-CT)。
阶段S82和S83的结果是在手术前扫描图像和手术中荧光透视图像中对手术工具的实时跟踪的显示,例如,图4所示的手术前扫描图像31的跟踪叠加32和图4所示的手术中荧光透视图像42的跟踪叠加43。不需要外部成像系统(但是可以采用外部成像系统对内窥镜装置进行补充)和患者配准就可以达到这一目的。
图7图示了表示在ACL关节内窥镜手术的背景下表示流程图70(图5)和流程图80(图6)的手术导航方法的流程图90。
具体而言,流程图90的阶段S91包括采集手术前扫描图像(例如,3DCT图像、3D MRI图像、3D X射线图像、3D荧光透视图像等)。流程图90的阶段S92包括对患者进行准备以实施ALC关节内窥镜手术。例如,患者准备可以包括对膝盖的肌腱描画格栅以及对膝盖固定,以实施手术。流程图90的阶段S93包括采集手术中荧光透视图像(例如,2D X射线图像)以及执行阶段S71的荧光透视配准(图5)。
第一次通过流程图90涉及阶段S93并由其进行至阶段S95-S98。阶段95包括在膝盖内部署关节内窥镜(例如,图4的关节内窥镜20)。阶段S96包括在膝盖内部署额外的手术工具(例如,图4的修整仪器21和冲洗仪器22)。阶段S97包括采集手术中内窥镜图像和执行阶段S72的表面重建(图5),还包括阶段S73的内窥镜配准(图5)以及阶段S74的图像整合(图5)。并且,阶段S98包括根据流程图80对手术工具进行跟踪(图6)。
判决阶段S99-S101允许在手术流程阶段S102和工具跟踪阶段S98之间形成连续的循环,直到发生下述情况为止:(1)外科医生移动了关节内窥镜,从而迫使流程返回至阶段S97,(2)外科医生在膝盖内引入了新的要跟踪的手术工具,其迫使流程返回至阶段S96,或者(3)外科医生确定需要新的荧光透视图像,其迫使流程返回至阶段S93。如果关节内窥镜和受到跟踪的手术工具仍然部署着,那么任何一次返回至阶段S93都将经由判决阶段S94进行至阶段S97。
在实践中,本领域技术人员应当认识到如何针对其他内窥镜应用实施流程图90。
尽管已经对本发明的各种实施例给出了图示和描述,但是本领域技术人员应当认识到,本文描述的方法和系统仅仅是示范性的,在不背离本发明的实际范围的情况下,可以做出各种变化和修改,并且可以采用等价要素替代其要素。此外,在不背离本发明的核心范围的情况下,可以做出很多修改,使之适应本发明的教导。因此,其目的是说,本发明不受作为为了实施本发明而构思的最佳模式而公开的具体实施例的限制,相反本发明包括所有落在权利要求的范围内的实施例。
Claims (15)
1.一种用于整合身体的解剖区域的多幅图像的手术导航系统(60),所述多幅图像包括手术前扫描图像(31)、手术中荧光透视图像(42)和手术中内窥镜图像(23),所述手术导航系统(60)包括:
图像整合器(61),其用于生成整合图像矩阵(TX-E),所述整合图像矩阵包括荧光透视图像矩阵(TX-CT)与内窥镜图像矩阵(TCT-E)的整合,
其中,所述荧光透视图像矩阵(TX-CT)包括所述手术中荧光透视图像(42)与所述手术前扫描图像(31)之间的变换,并且
其中,所述内窥镜图像矩阵(TCT-E)包括所述手术前扫描图像(31)与所述手术中内窥镜图像(23)之间的变换,以及
工具跟踪器(62),其用于生成整合跟踪矩阵(TT-X)和扫描跟踪矩阵(TT-CT),
其中,所述整合跟踪矩阵(TT-X)包括所述整合图像矩阵(TX-E)与内窥镜跟踪矩阵(TT-E)的整合,
其中,所述扫描跟踪矩阵(TT-CT)包括所述内窥镜图像矩阵(TCT-E)与所述内窥镜跟踪矩阵(TT-E)的整合,并且
其中,所述内窥镜跟踪矩阵(TT-E)表示在所述手术中内窥镜图像(23)内对手术工具(21)的跟踪。
2.根据权利要求1所述的手术导航系统(60),其中,所述图像整合器(61)还用于执行所述手术中内窥镜图像(23)内的对象的表面的摄影测量重建,从而以其作为所述手术前扫描图像(31)与所述手术中内窥镜图像(23)之间的所述变换的基础。
3.根据权利要求1所述的手术导航系统(60),其中,所述荧光透视图像矩阵(TX-CT)与所述内窥镜图像矩阵(TCT-E)的所述整合包括执行涉及所述荧光透视图像矩阵(TX-CT)与所述内窥镜图像矩阵(TCT-E)的矩阵乘法。
4.根据权利要求1所述的手术导航系统(60),其中,所述整合图像矩阵(TX-E)与内窥镜跟踪矩阵(TT-E)的所述整合包括执行涉及所述整合图像矩阵(TX-E)与所述内窥镜跟踪矩阵(TT-E)的矩阵乘法。
5.根据权利要求1所述的手术导航系统(60),其中,所述内窥镜图像矩阵(TCT-E)与所述内窥镜跟踪矩阵(TT-E)的所述整合包括执行涉及所述内窥镜图像矩阵(TCT-E)与所述内窥镜跟踪矩阵(TT-E)的矩阵乘法。
6.根据权利要求1所述的手术导航系统(60),还包括:
用于显示所述手术中荧光透视图像(42)的显示装置,所述手术中荧光透视图像具有作为所述整合跟踪矩阵(TT-X)的函数的手术工具(21)的叠加(43)。
7.根据权利要求1所述的手术导航系统(60),还包括:
用于显示所述手术前扫描图像(31)的显示装置,所述手术前扫描图像具有作为所述扫描跟踪矩阵(TT-CT)的函数的手术工具(21)的叠加(43)。
8.根据权利要求1所述的手术导航系统(60),其中,所述工具跟踪器(62)还用于执行在所述手术中内窥镜图像(23)内对所述手术工具(21)的摄影测量跟踪。
9.根据权利要求1所述的手术导航系统(60),其中,所述手术前扫描图像(31)选自包括计算机断层摄影图像、磁共振图像、超声图像和X射线图像的组。
10.一种用于整合身体的解剖区域的多幅图像的手术导航系统(60),所述多幅图像包括手术前扫描图像(31)、手术中荧光透视图像(42)和手术中内窥镜图像(23),所述手术导航系统(60)包括:
图像整合器(61),其用于生成整合图像矩阵(TX-E),所述整合图像矩阵包括荧光透视图像矩阵(TX-CT)与内窥镜图像矩阵(TCT-E)的整合,
其中,所述荧光透视图像矩阵(TX-CT)包括所述手术中荧光透视图像(42)与所述手术前扫描图像(31)之间的变换,并且
其中,所述内窥镜图像矩阵(TCT-E)包括所述手术前扫描图像(31)与所述手术中内窥镜图像(23)之间的变换,以及
工具跟踪器(62),其用于生成整合跟踪矩阵(TT-X),
其中,所述整合跟踪矩阵(TT-X)包括所述整合图像矩阵(TX-E)与内窥镜跟踪矩阵(TT-E)的整合,并且
其中,所述内窥镜跟踪矩阵(TT-E)表示在所述手术中内窥镜图像(23)内对手术工具(21)的跟踪。
11.根据权利要求10所述的手术导航系统(60),所述图像整合器(61)还用于重建所述手术中内窥镜图像(23)内的对象的表面,从而以其作为所述手术前扫描图像(31)与所述手术中内窥镜图像(23)之间的所述变换的基础。
12.根据权利要求10所述的手术导航系统(60),其中,所述荧光透视图像矩阵(TX-CT)与所述内窥镜图像矩阵(TCT-E)的所述整合包括执行涉及所述荧光透视图像矩阵(TX-CT)与所述内窥镜图像矩阵(TCT-E)的矩阵乘法。
13.根据权利要求10所述的手术导航系统(60),其中,所述整合图像矩阵(TX-E)与内窥镜跟踪矩阵(TT-E)的所述整合包括执行涉及所述整合图像矩阵(TX-E)与所述内窥镜跟踪矩阵(TT-E)的矩阵乘法。
14.根据权利要求10所述的手术导航系统(60),还包括:
用于显示所述手术中荧光透视图像(42)的显示装置,所述手术中荧光透视图像具有作为所述整合跟踪矩阵(TT-X)的函数的手术工具(21)的叠加(43)。
15.根据权利要求10所述的手术导航系统(60),其中,所述工具跟踪器(62)还用于执行在所述手术中内窥镜图像(23)内对所述手术工具(21)的摄影测量跟踪。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US29450210P | 2010-01-13 | 2010-01-13 | |
US61/294,502 | 2010-01-13 | ||
PCT/IB2010/055606 WO2011086431A1 (en) | 2010-01-13 | 2010-12-06 | Image integration based registration and navigation for endoscopic surgery |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102711650A CN102711650A (zh) | 2012-10-03 |
CN102711650B true CN102711650B (zh) | 2015-04-01 |
Family
ID=43734066
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201080061265.2A Expired - Fee Related CN102711650B (zh) | 2010-01-13 | 2010-12-06 | 用于内窥镜手术的基于图像整合的配准和导航 |
Country Status (7)
Country | Link |
---|---|
US (1) | US9095252B2 (zh) |
EP (1) | EP2523621B1 (zh) |
JP (1) | JP5795599B2 (zh) |
CN (1) | CN102711650B (zh) |
BR (1) | BR112012016973A2 (zh) |
RU (1) | RU2556593C2 (zh) |
WO (1) | WO2011086431A1 (zh) |
Families Citing this family (258)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8219178B2 (en) | 2007-02-16 | 2012-07-10 | Catholic Healthcare West | Method and system for performing invasive medical procedures using a surgical robot |
US10653497B2 (en) | 2006-02-16 | 2020-05-19 | Globus Medical, Inc. | Surgical tool systems and methods |
US10893912B2 (en) | 2006-02-16 | 2021-01-19 | Globus Medical Inc. | Surgical tool systems and methods |
US10357184B2 (en) | 2012-06-21 | 2019-07-23 | Globus Medical, Inc. | Surgical tool systems and method |
US9629571B2 (en) | 2007-03-08 | 2017-04-25 | Sync-Rx, Ltd. | Co-use of endoluminal data and extraluminal imaging |
US9375164B2 (en) | 2007-03-08 | 2016-06-28 | Sync-Rx, Ltd. | Co-use of endoluminal data and extraluminal imaging |
US9968256B2 (en) | 2007-03-08 | 2018-05-15 | Sync-Rx Ltd. | Automatic identification of a tool |
US10716528B2 (en) | 2007-03-08 | 2020-07-21 | Sync-Rx, Ltd. | Automatic display of previously-acquired endoluminal images |
EP2129284A4 (en) | 2007-03-08 | 2012-11-28 | Sync Rx Ltd | IMAGING AND TOOLS FOR USE WITH MOBILE ORGANS |
US11197651B2 (en) | 2007-03-08 | 2021-12-14 | Sync-Rx, Ltd. | Identification and presentation of device-to-vessel relative motion |
US11064964B2 (en) | 2007-03-08 | 2021-07-20 | Sync-Rx, Ltd | Determining a characteristic of a lumen by measuring velocity of a contrast agent |
US8781193B2 (en) | 2007-03-08 | 2014-07-15 | Sync-Rx, Ltd. | Automatic quantitative vessel analysis |
EP2194836B1 (en) * | 2007-09-25 | 2015-11-04 | Perception Raisonnement Action En Medecine | Apparatus for assisting cartilage diagnostic and therapeutic procedures |
JP5388472B2 (ja) * | 2008-04-14 | 2014-01-15 | キヤノン株式会社 | 制御装置、x線撮影システム、制御方法、及び当該制御方法をコンピュータに実行させるためのプログラム。 |
US9095313B2 (en) | 2008-11-18 | 2015-08-04 | Sync-Rx, Ltd. | Accounting for non-uniform longitudinal motion during movement of an endoluminal imaging probe |
US10362962B2 (en) | 2008-11-18 | 2019-07-30 | Synx-Rx, Ltd. | Accounting for skipped imaging locations during movement of an endoluminal imaging probe |
US8855744B2 (en) | 2008-11-18 | 2014-10-07 | Sync-Rx, Ltd. | Displaying a device within an endoluminal image stack |
US9144394B2 (en) | 2008-11-18 | 2015-09-29 | Sync-Rx, Ltd. | Apparatus and methods for determining a plurality of local calibration factors for an image |
US9101286B2 (en) | 2008-11-18 | 2015-08-11 | Sync-Rx, Ltd. | Apparatus and methods for determining a dimension of a portion of a stack of endoluminal data points |
US9974509B2 (en) | 2008-11-18 | 2018-05-22 | Sync-Rx Ltd. | Image super enhancement |
US11064903B2 (en) | 2008-11-18 | 2021-07-20 | Sync-Rx, Ltd | Apparatus and methods for mapping a sequence of images to a roadmap image |
EP2523621B1 (en) * | 2010-01-13 | 2016-09-28 | Koninklijke Philips N.V. | Image integration based registration and navigation for endoscopic surgery |
WO2012131660A1 (en) | 2011-04-01 | 2012-10-04 | Ecole Polytechnique Federale De Lausanne (Epfl) | Robotic system for spinal and other surgeries |
US9265468B2 (en) * | 2011-05-11 | 2016-02-23 | Broncus Medical, Inc. | Fluoroscopy-based surgical device tracking method |
JP6099640B2 (ja) | 2011-06-23 | 2017-03-22 | シンク−アールエックス,リミティド | 管腔の背景の鮮明化 |
DE102011082444A1 (de) * | 2011-09-09 | 2012-12-20 | Siemens Aktiengesellschaft | Verfahren und Vorrichtung zur bildunterstützten Navigation eines endoskopischen Instruments |
US11864745B2 (en) | 2012-06-21 | 2024-01-09 | Globus Medical, Inc. | Surgical robotic system with retractor |
US11395706B2 (en) | 2012-06-21 | 2022-07-26 | Globus Medical Inc. | Surgical robot platform |
US10350013B2 (en) | 2012-06-21 | 2019-07-16 | Globus Medical, Inc. | Surgical tool systems and methods |
US11399900B2 (en) | 2012-06-21 | 2022-08-02 | Globus Medical, Inc. | Robotic systems providing co-registration using natural fiducials and related methods |
US11896446B2 (en) | 2012-06-21 | 2024-02-13 | Globus Medical, Inc | Surgical robotic automation with tracking markers |
US10758315B2 (en) | 2012-06-21 | 2020-09-01 | Globus Medical Inc. | Method and system for improving 2D-3D registration convergence |
US11786324B2 (en) | 2012-06-21 | 2023-10-17 | Globus Medical, Inc. | Surgical robotic automation with tracking markers |
US10799298B2 (en) | 2012-06-21 | 2020-10-13 | Globus Medical Inc. | Robotic fluoroscopic navigation |
US10842461B2 (en) | 2012-06-21 | 2020-11-24 | Globus Medical, Inc. | Systems and methods of checking registrations for surgical systems |
US10646280B2 (en) | 2012-06-21 | 2020-05-12 | Globus Medical, Inc. | System and method for surgical tool insertion using multiaxis force and moment feedback |
US10231791B2 (en) | 2012-06-21 | 2019-03-19 | Globus Medical, Inc. | Infrared signal based position recognition system for use with a robot-assisted surgery |
US11298196B2 (en) | 2012-06-21 | 2022-04-12 | Globus Medical Inc. | Surgical robotic automation with tracking markers and controlled tool advancement |
US11864839B2 (en) | 2012-06-21 | 2024-01-09 | Globus Medical Inc. | Methods of adjusting a virtual implant and related surgical navigation systems |
US11607149B2 (en) | 2012-06-21 | 2023-03-21 | Globus Medical Inc. | Surgical tool systems and method |
US11857149B2 (en) | 2012-06-21 | 2024-01-02 | Globus Medical, Inc. | Surgical robotic systems with target trajectory deviation monitoring and related methods |
US11253327B2 (en) | 2012-06-21 | 2022-02-22 | Globus Medical, Inc. | Systems and methods for automatically changing an end-effector on a surgical robot |
US11963755B2 (en) | 2012-06-21 | 2024-04-23 | Globus Medical Inc. | Apparatus for recording probe movement |
US12004905B2 (en) | 2012-06-21 | 2024-06-11 | Globus Medical, Inc. | Medical imaging systems using robotic actuators and related methods |
US11589771B2 (en) | 2012-06-21 | 2023-02-28 | Globus Medical Inc. | Method for recording probe movement and determining an extent of matter removed |
US10624710B2 (en) | 2012-06-21 | 2020-04-21 | Globus Medical, Inc. | System and method for measuring depth of instrumentation |
JP2015528713A (ja) | 2012-06-21 | 2015-10-01 | グローバス メディカル インコーポレイティッド | 手術ロボットプラットフォーム |
US11974822B2 (en) | 2012-06-21 | 2024-05-07 | Globus Medical Inc. | Method for a surveillance marker in robotic-assisted surgery |
US11793570B2 (en) | 2012-06-21 | 2023-10-24 | Globus Medical Inc. | Surgical robotic automation with tracking markers |
US11045267B2 (en) | 2012-06-21 | 2021-06-29 | Globus Medical, Inc. | Surgical robotic automation with tracking markers |
US11317971B2 (en) | 2012-06-21 | 2022-05-03 | Globus Medical, Inc. | Systems and methods related to robotic guidance in surgery |
US11857266B2 (en) | 2012-06-21 | 2024-01-02 | Globus Medical, Inc. | System for a surveillance marker in robotic-assisted surgery |
US10874466B2 (en) | 2012-06-21 | 2020-12-29 | Globus Medical, Inc. | System and method for surgical tool insertion using multiaxis force and moment feedback |
US10136954B2 (en) | 2012-06-21 | 2018-11-27 | Globus Medical, Inc. | Surgical tool systems and method |
US11116576B2 (en) | 2012-06-21 | 2021-09-14 | Globus Medical Inc. | Dynamic reference arrays and methods of use |
JP6134789B2 (ja) | 2012-06-26 | 2017-05-24 | シンク−アールエックス,リミティド | 管腔器官における流れに関連する画像処理 |
RU2689767C2 (ru) * | 2012-06-28 | 2019-05-28 | Конинклейке Филипс Н.В. | Улучшенная визуализация кровеносных сосудов с использованием управляемого роботом эндоскопа |
WO2014001948A2 (en) | 2012-06-28 | 2014-01-03 | Koninklijke Philips N.V. | C-arm trajectory planning for optimal image acquisition in endoscopic surgery |
CN102727312A (zh) * | 2012-07-03 | 2012-10-17 | 张春霖 | 基于体外标志物的手术机器人骨骼基准确定方法 |
EP3679881A1 (en) | 2012-08-14 | 2020-07-15 | Intuitive Surgical Operations, Inc. | Systems and methods for registration of multiple vision systems |
KR20140083856A (ko) * | 2012-12-26 | 2014-07-04 | 가톨릭대학교 산학협력단 | 복합 실제 3차원 영상 제작방법 및 이를 위한 시스템 |
CN104000655B (zh) * | 2013-02-25 | 2018-02-16 | 西门子公司 | 用于腹腔镜外科手术的组合的表面重构和配准 |
US9129422B2 (en) * | 2013-02-25 | 2015-09-08 | Siemens Aktiengesellschaft | Combined surface reconstruction and registration for laparoscopic surgery |
CN103371870B (zh) * | 2013-07-16 | 2015-07-29 | 深圳先进技术研究院 | 一种基于多模影像的外科手术导航系统 |
US9875544B2 (en) | 2013-08-09 | 2018-01-23 | Broncus Medical Inc. | Registration of fluoroscopic images of the chest and corresponding 3D image data based on the ribs and spine |
US9283048B2 (en) | 2013-10-04 | 2016-03-15 | KB Medical SA | Apparatus and systems for precise guidance of surgical tools |
EP3086734B1 (en) * | 2013-12-19 | 2018-02-21 | Koninklijke Philips N.V. | Object tracking device |
EP3094272B1 (en) | 2014-01-15 | 2021-04-21 | KB Medical SA | Notched apparatus for guidance of an insertable instrument along an axis during spinal surgery |
JP6334714B2 (ja) * | 2014-01-24 | 2018-05-30 | コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. | ロボット手術のための連続画像統合を行う制御ユニット又はロボットガイドシステム |
WO2015121311A1 (en) | 2014-02-11 | 2015-08-20 | KB Medical SA | Sterile handle for controlling a robotic surgical system from a sterile field |
CN106535806B (zh) | 2014-03-28 | 2019-06-18 | 直观外科手术操作公司 | 来自多端口视角的手术场景的定量三维成像 |
EP3122232B1 (en) * | 2014-03-28 | 2020-10-21 | Intuitive Surgical Operations Inc. | Alignment of q3d models with 3d images |
WO2015149041A1 (en) | 2014-03-28 | 2015-10-01 | Dorin Panescu | Quantitative three-dimensional visualization of instruments in a field of view |
JP2017517355A (ja) | 2014-03-28 | 2017-06-29 | インテュイティブ サージカル オペレーションズ, インコーポレイテッド | 定量的3次元イメージング及び手術用インプラントのプリント |
CN106456252B (zh) | 2014-03-28 | 2020-05-08 | 直观外科手术操作公司 | 手术场景的定量三维成像 |
JP6938369B2 (ja) | 2014-03-28 | 2021-09-22 | インテュイティブ サージカル オペレーションズ, インコーポレイテッド | 定量的な3次元イメージングに基づく触覚フィードバックを用いる手術システム |
EP3134022B1 (en) | 2014-04-24 | 2018-01-10 | KB Medical SA | Surgical instrument holder for use with a robotic surgical system |
WO2015193479A1 (en) | 2014-06-19 | 2015-12-23 | KB Medical SA | Systems and methods for performing minimally invasive surgery |
US10765438B2 (en) | 2014-07-14 | 2020-09-08 | KB Medical SA | Anti-skid surgical instrument for use in preparing holes in bone tissue |
US10357257B2 (en) | 2014-07-14 | 2019-07-23 | KB Medical SA | Anti-skid surgical instrument for use in preparing holes in bone tissue |
EP3169264A1 (en) * | 2014-07-15 | 2017-05-24 | Koninklijke Philips N.V. | Image integration and robotic endoscope control in x-ray suite |
US9974525B2 (en) | 2014-10-31 | 2018-05-22 | Covidien Lp | Computed tomography enhanced fluoroscopic system, device, and method of utilizing the same |
EP3226781B1 (en) | 2014-12-02 | 2018-08-01 | KB Medical SA | Robot assisted volume removal during surgery |
CN104616296A (zh) * | 2015-01-23 | 2015-05-13 | 上海联影医疗科技有限公司 | 提高放射治疗影像质量的方法及装置、放射治疗系统 |
US10013808B2 (en) | 2015-02-03 | 2018-07-03 | Globus Medical, Inc. | Surgeon head-mounted display apparatuses |
EP3236854B1 (en) * | 2015-02-13 | 2019-11-06 | St. Jude Medical International Holding S.à r.l. | Tracking-based 3d model enhancement |
US10555782B2 (en) | 2015-02-18 | 2020-02-11 | Globus Medical, Inc. | Systems and methods for performing minimally invasive spinal surgery with a robotic surgical system using a percutaneous technique |
CN106344152B (zh) * | 2015-07-13 | 2020-04-28 | 中国科学院深圳先进技术研究院 | 腹部外科手术导航配准方法及系统 |
US10058394B2 (en) | 2015-07-31 | 2018-08-28 | Globus Medical, Inc. | Robot arm and methods of use |
US10646298B2 (en) | 2015-07-31 | 2020-05-12 | Globus Medical, Inc. | Robot arm and methods of use |
US10716525B2 (en) | 2015-08-06 | 2020-07-21 | Covidien Lp | System and method for navigating to target and performing procedure on target utilizing fluoroscopic-based local three dimensional volume reconstruction |
US10674982B2 (en) | 2015-08-06 | 2020-06-09 | Covidien Lp | System and method for local three dimensional volume reconstruction using a standard fluoroscope |
US10702226B2 (en) | 2015-08-06 | 2020-07-07 | Covidien Lp | System and method for local three dimensional volume reconstruction using a standard fluoroscope |
US10080615B2 (en) | 2015-08-12 | 2018-09-25 | Globus Medical, Inc. | Devices and methods for temporary mounting of parts to bone |
WO2017037127A1 (en) | 2015-08-31 | 2017-03-09 | KB Medical SA | Robotic surgical systems and methods |
US10092361B2 (en) | 2015-09-11 | 2018-10-09 | AOD Holdings, LLC | Intraoperative systems and methods for determining and providing for display a virtual image overlaid onto a visual image of a bone |
US10034716B2 (en) | 2015-09-14 | 2018-07-31 | Globus Medical, Inc. | Surgical robotic systems and methods thereof |
US20170084036A1 (en) * | 2015-09-21 | 2017-03-23 | Siemens Aktiengesellschaft | Registration of video camera with medical imaging |
US9771092B2 (en) | 2015-10-13 | 2017-09-26 | Globus Medical, Inc. | Stabilizer wheel assembly and methods of use |
US11172895B2 (en) | 2015-12-07 | 2021-11-16 | Covidien Lp | Visualization, navigation, and planning with electromagnetic navigation bronchoscopy and cone beam computed tomography integrated |
WO2017114855A1 (en) | 2015-12-29 | 2017-07-06 | Koninklijke Philips N.V. | System, control unit and method for control of a surgical robot |
CN108472095B (zh) | 2015-12-29 | 2021-11-02 | 皇家飞利浦有限公司 | 用于机器人外科手术的使用虚拟现实设备的系统、控制器和方法 |
US20200261155A1 (en) | 2015-12-30 | 2020-08-20 | Koninklijke Philips N.V. | Image based robot guidance |
US10842453B2 (en) | 2016-02-03 | 2020-11-24 | Globus Medical, Inc. | Portable medical imaging system |
US10448910B2 (en) | 2016-02-03 | 2019-10-22 | Globus Medical, Inc. | Portable medical imaging system |
US11883217B2 (en) | 2016-02-03 | 2024-01-30 | Globus Medical, Inc. | Portable medical imaging system and method |
US11058378B2 (en) | 2016-02-03 | 2021-07-13 | Globus Medical, Inc. | Portable medical imaging system |
US10117632B2 (en) | 2016-02-03 | 2018-11-06 | Globus Medical, Inc. | Portable medical imaging system with beam scanning collimator |
EP4349294A3 (en) | 2016-02-12 | 2024-06-19 | Intuitive Surgical Operations, Inc. | System and computer-readable medium storing instructions for registering fluoroscopic images in image-guided surgery |
US10866119B2 (en) | 2016-03-14 | 2020-12-15 | Globus Medical, Inc. | Metal detector for detecting insertion of a surgical device into a hollow tube |
EP3429496A1 (en) | 2016-03-17 | 2019-01-23 | Koninklijke Philips N.V. | Control unit, system and method for controlling hybrid robot having rigid proximal portion and flexible distal portion |
EP3241518B1 (en) | 2016-04-11 | 2024-10-23 | Globus Medical, Inc | Surgical tool systems |
US20190290247A1 (en) | 2016-05-31 | 2019-09-26 | Koninklijke Philips N.V. | Image-based fusion of endoscopic image and ultrasound images |
WO2018027793A1 (zh) * | 2016-08-11 | 2018-02-15 | 中国科学院深圳先进技术研究院 | 一种开颅手术中可视化脑功能结构定位方法及系统 |
US11051886B2 (en) | 2016-09-27 | 2021-07-06 | Covidien Lp | Systems and methods for performing a surgical navigation procedure |
US11039893B2 (en) | 2016-10-21 | 2021-06-22 | Globus Medical, Inc. | Robotic surgical systems |
RU2656562C1 (ru) * | 2016-12-01 | 2018-06-05 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Астраханский государственный медицинский университет" Министерства здравоохранения Российской Федерации (ФГБОУ ВО Астраханский ГМУ Минздрава России) | Способ диагностики внутренних структур коленного сустава при магнитно-резонансной томографии |
RU2640789C1 (ru) * | 2016-12-12 | 2018-01-11 | федеральное государственное бюджетное образовательное учреждение высшего образования "Первый Санкт-Петербургский государственный медицинский университет имени академика И.П. Павлова" Министерства здравоохранения Российской Федерации | Способ проведения эндоскопической хирургической операции на гортани |
JP2018114280A (ja) | 2017-01-18 | 2018-07-26 | ケービー メディカル エスアー | ロボット外科用システムのための汎用器具ガイド、外科用器具システム、及びそれらの使用方法 |
EP3351202B1 (en) | 2017-01-18 | 2021-09-08 | KB Medical SA | Universal instrument guide for robotic surgical systems |
JP7233841B2 (ja) | 2017-01-18 | 2023-03-07 | ケービー メディカル エスアー | ロボット外科手術システムのロボットナビゲーション |
US11071594B2 (en) | 2017-03-16 | 2021-07-27 | KB Medical SA | Robotic navigation of robotic surgical systems |
US20180289432A1 (en) | 2017-04-05 | 2018-10-11 | Kb Medical, Sa | Robotic surgical systems for preparing holes in bone tissue and methods of their use |
CN107496029B (zh) * | 2017-06-16 | 2020-07-31 | 青岛大学附属医院 | 智能微创手术系统 |
US10699448B2 (en) | 2017-06-29 | 2020-06-30 | Covidien Lp | System and method for identifying, marking and navigating to a target using real time two dimensional fluoroscopic data |
US10675094B2 (en) | 2017-07-21 | 2020-06-09 | Globus Medical Inc. | Robot surgical platform |
CN107689045B (zh) * | 2017-09-06 | 2021-06-29 | 艾瑞迈迪医疗科技(北京)有限公司 | 内窥镜微创手术导航的图像显示方法、装置及系统 |
WO2019075074A1 (en) | 2017-10-10 | 2019-04-18 | Covidien Lp | SYSTEM AND METHOD FOR IDENTIFICATION AND MARKING OF A TARGET IN A THREE-DIMENSIONAL FLUOROSCOPIC RECONSTRUCTION |
US11382666B2 (en) | 2017-11-09 | 2022-07-12 | Globus Medical Inc. | Methods providing bend plans for surgical rods and related controllers and computer program products |
US10898252B2 (en) | 2017-11-09 | 2021-01-26 | Globus Medical, Inc. | Surgical robotic systems for bending surgical rods, and related methods and devices |
US11794338B2 (en) | 2017-11-09 | 2023-10-24 | Globus Medical Inc. | Robotic rod benders and related mechanical and motor housings |
US11134862B2 (en) | 2017-11-10 | 2021-10-05 | Globus Medical, Inc. | Methods of selecting surgical implants and related devices |
JP2021502186A (ja) | 2017-11-13 | 2021-01-28 | コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. | 超音波プローブを誘導するためのシステムおよび方法 |
CN111601536B (zh) | 2017-12-27 | 2023-12-15 | 爱惜康有限责任公司 | 缺光环境中的超光谱成像 |
JP7181298B2 (ja) | 2018-01-03 | 2022-11-30 | コーニンクレッカ フィリップス エヌ ヴェ | 血管特徴を使用して異常な組織を検出するためのシステム及び方法 |
US10905498B2 (en) | 2018-02-08 | 2021-02-02 | Covidien Lp | System and method for catheter detection in fluoroscopic images and updating displayed position of catheter |
US11123139B2 (en) * | 2018-02-14 | 2021-09-21 | Epica International, Inc. | Method for determination of surgical procedure access |
US20190254753A1 (en) | 2018-02-19 | 2019-08-22 | Globus Medical, Inc. | Augmented reality navigation systems for use with robotic surgical systems and methods of their use |
US10573023B2 (en) | 2018-04-09 | 2020-02-25 | Globus Medical, Inc. | Predictive visualization of medical imaging scanner component movement |
WO2019199125A1 (ko) * | 2018-04-12 | 2019-10-17 | 주식회사 이지엔도서지컬 | 자율 주행 내시경 시스템 및 그 제어 방법 |
US10984539B2 (en) * | 2018-07-03 | 2021-04-20 | Eys3D Microelectronics, Co. | Image device for generating velocity maps |
EP3824621A4 (en) | 2018-07-19 | 2022-04-27 | Activ Surgical, Inc. | SYSTEMS AND METHODS FOR MULTIMODAL DETECTION OF DEPTH IN VISION SYSTEMS FOR AUTOMATED SURGICAL ROBOTS |
CN109223177A (zh) * | 2018-07-30 | 2019-01-18 | 艾瑞迈迪医疗科技(北京)有限公司 | 图像显示方法、装置、计算机设备和存储介质 |
US11337742B2 (en) | 2018-11-05 | 2022-05-24 | Globus Medical Inc | Compliant orthopedic driver |
US11278360B2 (en) | 2018-11-16 | 2022-03-22 | Globus Medical, Inc. | End-effectors for surgical robotic systems having sealed optical components |
US11744655B2 (en) | 2018-12-04 | 2023-09-05 | Globus Medical, Inc. | Drill guide fixtures, cranial insertion fixtures, and related methods and robotic systems |
US11602402B2 (en) | 2018-12-04 | 2023-03-14 | Globus Medical, Inc. | Drill guide fixtures, cranial insertion fixtures, and related methods and robotic systems |
US11877806B2 (en) | 2018-12-06 | 2024-01-23 | Covidien Lp | Deformable registration of computer-generated airway models to airway trees |
US11304623B2 (en) * | 2018-12-25 | 2022-04-19 | Biosense Webster (Israel) Ltd. | Integration of medical imaging and location tracking |
JP7128135B2 (ja) * | 2019-03-08 | 2022-08-30 | 富士フイルム株式会社 | 内視鏡画像学習装置、方法及びプログラム、内視鏡画像認識装置 |
US11918313B2 (en) | 2019-03-15 | 2024-03-05 | Globus Medical Inc. | Active end effectors for surgical robots |
US20200297357A1 (en) | 2019-03-22 | 2020-09-24 | Globus Medical, Inc. | System for neuronavigation registration and robotic trajectory guidance, robotic surgery, and related methods and devices |
US11571265B2 (en) | 2019-03-22 | 2023-02-07 | Globus Medical Inc. | System for neuronavigation registration and robotic trajectory guidance, robotic surgery, and related methods and devices |
US11317978B2 (en) | 2019-03-22 | 2022-05-03 | Globus Medical, Inc. | System for neuronavigation registration and robotic trajectory guidance, robotic surgery, and related methods and devices |
US11806084B2 (en) | 2019-03-22 | 2023-11-07 | Globus Medical, Inc. | System for neuronavigation registration and robotic trajectory guidance, and related methods and devices |
US11382549B2 (en) | 2019-03-22 | 2022-07-12 | Globus Medical, Inc. | System for neuronavigation registration and robotic trajectory guidance, and related methods and devices |
US11419616B2 (en) | 2019-03-22 | 2022-08-23 | Globus Medical, Inc. | System for neuronavigation registration and robotic trajectory guidance, robotic surgery, and related methods and devices |
US11045179B2 (en) | 2019-05-20 | 2021-06-29 | Global Medical Inc | Robot-mounted retractor system |
CN110215284B (zh) * | 2019-06-06 | 2021-04-02 | 上海木木聚枞机器人科技有限公司 | 一种可视化系统和方法 |
US11134832B2 (en) | 2019-06-20 | 2021-10-05 | Cilag Gmbh International | Image rotation in an endoscopic hyperspectral, fluorescence, and laser mapping imaging system |
US10841504B1 (en) | 2019-06-20 | 2020-11-17 | Ethicon Llc | Fluorescence imaging with minimal area monolithic image sensor |
US11012599B2 (en) | 2019-06-20 | 2021-05-18 | Ethicon Llc | Hyperspectral imaging in a light deficient environment |
US11793399B2 (en) | 2019-06-20 | 2023-10-24 | Cilag Gmbh International | Super resolution and color motion artifact correction in a pulsed hyperspectral imaging system |
US11986160B2 (en) | 2019-06-20 | 2024-05-21 | Cllag GmbH International | Image synchronization without input clock and data transmission clock in a pulsed hyperspectral imaging system |
US11550057B2 (en) | 2019-06-20 | 2023-01-10 | Cilag Gmbh International | Offset illumination of a scene using multiple emitters in a fluorescence imaging system |
US11937784B2 (en) | 2019-06-20 | 2024-03-26 | Cilag Gmbh International | Fluorescence imaging in a light deficient environment |
US11284783B2 (en) | 2019-06-20 | 2022-03-29 | Cilag Gmbh International | Controlling integral energy of a laser pulse in a hyperspectral imaging system |
US11412920B2 (en) | 2019-06-20 | 2022-08-16 | Cilag Gmbh International | Speckle removal in a pulsed fluorescence imaging system |
US11624830B2 (en) | 2019-06-20 | 2023-04-11 | Cilag Gmbh International | Wide dynamic range using a monochrome image sensor for laser mapping imaging |
US11276148B2 (en) | 2019-06-20 | 2022-03-15 | Cilag Gmbh International | Super resolution and color motion artifact correction in a pulsed fluorescence imaging system |
US11172811B2 (en) | 2019-06-20 | 2021-11-16 | Cilag Gmbh International | Image rotation in an endoscopic fluorescence imaging system |
US11412152B2 (en) | 2019-06-20 | 2022-08-09 | Cilag Gmbh International | Speckle removal in a pulsed hyperspectral imaging system |
US11122968B2 (en) | 2019-06-20 | 2021-09-21 | Cilag Gmbh International | Optical fiber waveguide in an endoscopic system for hyperspectral imaging |
US11360028B2 (en) | 2019-06-20 | 2022-06-14 | Cilag Gmbh International | Super resolution and color motion artifact correction in a pulsed hyperspectral, fluorescence, and laser mapping imaging system |
US11671691B2 (en) | 2019-06-20 | 2023-06-06 | Cilag Gmbh International | Image rotation in an endoscopic laser mapping imaging system |
US11265491B2 (en) | 2019-06-20 | 2022-03-01 | Cilag Gmbh International | Fluorescence imaging with fixed pattern noise cancellation |
US11432706B2 (en) | 2019-06-20 | 2022-09-06 | Cilag Gmbh International | Hyperspectral imaging with minimal area monolithic image sensor |
US11531112B2 (en) | 2019-06-20 | 2022-12-20 | Cilag Gmbh International | Offset illumination of a scene using multiple emitters in a hyperspectral, fluorescence, and laser mapping imaging system |
US11892403B2 (en) | 2019-06-20 | 2024-02-06 | Cilag Gmbh International | Image synchronization without input clock and data transmission clock in a pulsed fluorescence imaging system |
US11294062B2 (en) | 2019-06-20 | 2022-04-05 | Cilag Gmbh International | Dynamic range using a monochrome image sensor for hyperspectral and fluorescence imaging and topology laser mapping |
US20200397277A1 (en) | 2019-06-20 | 2020-12-24 | Ethicon Llc | Videostroboscopy of vocal cords with a hyperspectral, fluorescence, and laser mapping imaging system |
US11457154B2 (en) | 2019-06-20 | 2022-09-27 | Cilag Gmbh International | Speckle removal in a pulsed hyperspectral, fluorescence, and laser mapping imaging system |
US11237270B2 (en) | 2019-06-20 | 2022-02-01 | Cilag Gmbh International | Hyperspectral, fluorescence, and laser mapping imaging with fixed pattern noise cancellation |
US10979646B2 (en) | 2019-06-20 | 2021-04-13 | Ethicon Llc | Fluorescence imaging with minimal area monolithic image sensor |
US11903563B2 (en) | 2019-06-20 | 2024-02-20 | Cilag Gmbh International | Offset illumination of a scene using multiple emitters in a fluorescence imaging system |
US11622094B2 (en) | 2019-06-20 | 2023-04-04 | Cilag Gmbh International | Wide dynamic range using a monochrome image sensor for fluorescence imaging |
US12013496B2 (en) | 2019-06-20 | 2024-06-18 | Cilag Gmbh International | Noise aware edge enhancement in a pulsed laser mapping imaging system |
US11633089B2 (en) | 2019-06-20 | 2023-04-25 | Cilag Gmbh International | Fluorescence imaging with minimal area monolithic image sensor |
US11898909B2 (en) | 2019-06-20 | 2024-02-13 | Cilag Gmbh International | Noise aware edge enhancement in a pulsed fluorescence imaging system |
US11700995B2 (en) | 2019-06-20 | 2023-07-18 | Cilag Gmbh International | Speckle removal in a pulsed fluorescence imaging system |
US11716543B2 (en) | 2019-06-20 | 2023-08-01 | Cilag Gmbh International | Wide dynamic range using a monochrome image sensor for fluorescence imaging |
US11758256B2 (en) | 2019-06-20 | 2023-09-12 | Cilag Gmbh International | Fluorescence imaging in a light deficient environment |
US11083366B2 (en) | 2019-06-20 | 2021-08-10 | Cilag Gmbh International | Driving light emissions according to a jitter specification in a fluorescence imaging system |
US11218645B2 (en) | 2019-06-20 | 2022-01-04 | Cilag Gmbh International | Wide dynamic range using a monochrome image sensor for fluorescence imaging |
US11516388B2 (en) | 2019-06-20 | 2022-11-29 | Cilag Gmbh International | Pulsed illumination in a fluorescence imaging system |
US20200397246A1 (en) | 2019-06-20 | 2020-12-24 | Ethicon Llc | Minimizing image sensor input/output in a pulsed hyperspectral, fluorescence, and laser mapping imaging system |
US11674848B2 (en) | 2019-06-20 | 2023-06-13 | Cilag Gmbh International | Wide dynamic range using a monochrome image sensor for hyperspectral imaging |
US11398011B2 (en) | 2019-06-20 | 2022-07-26 | Cilag Gmbh International | Super resolution and color motion artifact correction in a pulsed laser mapping imaging system |
US11516387B2 (en) | 2019-06-20 | 2022-11-29 | Cilag Gmbh International | Image synchronization without input clock and data transmission clock in a pulsed hyperspectral, fluorescence, and laser mapping imaging system |
US11221414B2 (en) | 2019-06-20 | 2022-01-11 | Cilag Gmbh International | Laser mapping imaging with fixed pattern noise cancellation |
US11187657B2 (en) | 2019-06-20 | 2021-11-30 | Cilag Gmbh International | Hyperspectral imaging with fixed pattern noise cancellation |
US11895397B2 (en) | 2019-06-20 | 2024-02-06 | Cilag Gmbh International | Image synchronization without input clock and data transmission clock in a pulsed fluorescence imaging system |
US11172810B2 (en) | 2019-06-20 | 2021-11-16 | Cilag Gmbh International | Speckle removal in a pulsed laser mapping imaging system |
US12126887B2 (en) | 2019-06-20 | 2024-10-22 | Cilag Gmbh International | Hyperspectral and fluorescence imaging with topology laser scanning in a light deficient environment |
US11925328B2 (en) | 2019-06-20 | 2024-03-12 | Cilag Gmbh International | Noise aware edge enhancement in a pulsed hyperspectral imaging system |
US11288772B2 (en) | 2019-06-20 | 2022-03-29 | Cilag Gmbh International | Super resolution and color motion artifact correction in a pulsed fluorescence imaging system |
US11471055B2 (en) | 2019-06-20 | 2022-10-18 | Cilag Gmbh International | Noise aware edge enhancement in a pulsed fluorescence imaging system |
US11931009B2 (en) | 2019-06-20 | 2024-03-19 | Cilag Gmbh International | Offset illumination of a scene using multiple emitters in a hyperspectral imaging system |
US10952619B2 (en) | 2019-06-20 | 2021-03-23 | Ethicon Llc | Hyperspectral and fluorescence imaging and topology laser mapping with minimal area monolithic image sensor |
US11141052B2 (en) | 2019-06-20 | 2021-10-12 | Cilag Gmbh International | Image rotation in an endoscopic fluorescence imaging system |
US11187658B2 (en) | 2019-06-20 | 2021-11-30 | Cilag Gmbh International | Fluorescence imaging with fixed pattern noise cancellation |
US11233960B2 (en) | 2019-06-20 | 2022-01-25 | Cilag Gmbh International | Fluorescence imaging with fixed pattern noise cancellation |
US20200397270A1 (en) | 2019-06-20 | 2020-12-24 | Ethicon Llc | Optical fiber waveguide in an endoscopic system for fluorescence imaging |
US11375886B2 (en) | 2019-06-20 | 2022-07-05 | Cilag Gmbh International | Optical fiber waveguide in an endoscopic system for laser mapping imaging |
US11533417B2 (en) | 2019-06-20 | 2022-12-20 | Cilag Gmbh International | Laser scanning and tool tracking imaging in a light deficient environment |
US11389066B2 (en) | 2019-06-20 | 2022-07-19 | Cilag Gmbh International | Noise aware edge enhancement in a pulsed hyperspectral, fluorescence, and laser mapping imaging system |
US11540696B2 (en) | 2019-06-20 | 2023-01-03 | Cilag Gmbh International | Noise aware edge enhancement in a pulsed fluorescence imaging system |
US11628023B2 (en) | 2019-07-10 | 2023-04-18 | Globus Medical, Inc. | Robotic navigational system for interbody implants |
US11571171B2 (en) | 2019-09-24 | 2023-02-07 | Globus Medical, Inc. | Compound curve cable chain |
US11864857B2 (en) | 2019-09-27 | 2024-01-09 | Globus Medical, Inc. | Surgical robot with passive end effector |
US11890066B2 (en) | 2019-09-30 | 2024-02-06 | Globus Medical, Inc | Surgical robot with passive end effector |
US11426178B2 (en) | 2019-09-27 | 2022-08-30 | Globus Medical Inc. | Systems and methods for navigating a pin guide driver |
US11510684B2 (en) | 2019-10-14 | 2022-11-29 | Globus Medical, Inc. | Rotary motion passive end effector for surgical robots in orthopedic surgeries |
CN112750640B (zh) * | 2019-10-30 | 2022-07-15 | 比亚迪股份有限公司 | 电子设备及其外壳 |
JP2023505164A (ja) * | 2019-12-02 | 2023-02-08 | シンク サージカル, インコーポレイテッド | 医療処置を施行するために道具を軸と整列させるためのシステム及び方法 |
US11992373B2 (en) | 2019-12-10 | 2024-05-28 | Globus Medical, Inc | Augmented reality headset with varied opacity for navigated robotic surgery |
US12064189B2 (en) | 2019-12-13 | 2024-08-20 | Globus Medical, Inc. | Navigated instrument for use in robotic guided surgery |
US11464581B2 (en) | 2020-01-28 | 2022-10-11 | Globus Medical, Inc. | Pose measurement chaining for extended reality surgical navigation in visible and near infrared spectrums |
US11382699B2 (en) | 2020-02-10 | 2022-07-12 | Globus Medical Inc. | Extended reality visualization of optical tool tracking volume for computer assisted navigation in surgery |
US11207150B2 (en) | 2020-02-19 | 2021-12-28 | Globus Medical, Inc. | Displaying a virtual model of a planned instrument attachment to ensure correct selection of physical instrument attachment |
WO2021211986A1 (en) * | 2020-04-17 | 2021-10-21 | Activ Surgical, Inc. | Systems and methods for enhancing medical images |
US11253216B2 (en) | 2020-04-28 | 2022-02-22 | Globus Medical Inc. | Fixtures for fluoroscopic imaging systems and related navigation systems and methods |
US11607277B2 (en) | 2020-04-29 | 2023-03-21 | Globus Medical, Inc. | Registration of surgical tool with reference array tracked by cameras of an extended reality headset for assisted navigation during surgery |
US11510750B2 (en) | 2020-05-08 | 2022-11-29 | Globus Medical, Inc. | Leveraging two-dimensional digital imaging and communication in medicine imagery in three-dimensional extended reality applications |
US11382700B2 (en) | 2020-05-08 | 2022-07-12 | Globus Medical Inc. | Extended reality headset tool tracking and control |
US11153555B1 (en) | 2020-05-08 | 2021-10-19 | Globus Medical Inc. | Extended reality headset camera system for computer assisted navigation in surgery |
US11317973B2 (en) | 2020-06-09 | 2022-05-03 | Globus Medical, Inc. | Camera tracking bar for computer assisted navigation during surgery |
US12070276B2 (en) | 2020-06-09 | 2024-08-27 | Globus Medical Inc. | Surgical object tracking in visible light via fiducial seeding and synthetic image registration |
US11382713B2 (en) | 2020-06-16 | 2022-07-12 | Globus Medical, Inc. | Navigated surgical system with eye to XR headset display calibration |
US11877807B2 (en) | 2020-07-10 | 2024-01-23 | Globus Medical, Inc | Instruments for navigated orthopedic surgeries |
US11793588B2 (en) | 2020-07-23 | 2023-10-24 | Globus Medical, Inc. | Sterile draping of robotic arms |
WO2022039934A1 (en) * | 2020-08-19 | 2022-02-24 | Covidien Lp | System and method for depth estimation in surgical robotic system |
US11737831B2 (en) | 2020-09-02 | 2023-08-29 | Globus Medical Inc. | Surgical object tracking template generation for computer assisted navigation during surgical procedure |
US11944395B2 (en) | 2020-09-08 | 2024-04-02 | Verb Surgical Inc. | 3D visualization enhancement for depth perception and collision avoidance |
US11523785B2 (en) | 2020-09-24 | 2022-12-13 | Globus Medical, Inc. | Increased cone beam computed tomography volume length without requiring stitching or longitudinal C-arm movement |
CN112006776A (zh) * | 2020-09-27 | 2020-12-01 | 安徽埃克索医疗机器人有限公司 | 一种手术导航系统及手术导航系统的配准方法 |
US11911112B2 (en) | 2020-10-27 | 2024-02-27 | Globus Medical, Inc. | Robotic navigational system |
US12076091B2 (en) | 2020-10-27 | 2024-09-03 | Globus Medical, Inc. | Robotic navigational system |
US11941814B2 (en) | 2020-11-04 | 2024-03-26 | Globus Medical Inc. | Auto segmentation using 2-D images taken during 3-D imaging spin |
US11717350B2 (en) | 2020-11-24 | 2023-08-08 | Globus Medical Inc. | Methods for robotic assistance and navigation in spinal surgery and related systems |
US20220218431A1 (en) | 2021-01-08 | 2022-07-14 | Globus Medical, Inc. | System and method for ligament balancing with robotic assistance |
US20220354380A1 (en) * | 2021-05-06 | 2022-11-10 | Covidien Lp | Endoscope navigation system with updating anatomy model |
US11857273B2 (en) | 2021-07-06 | 2024-01-02 | Globus Medical, Inc. | Ultrasonic robotic surgical navigation |
US11439444B1 (en) | 2021-07-22 | 2022-09-13 | Globus Medical, Inc. | Screw tower and rod reduction tool |
US11918304B2 (en) | 2021-12-20 | 2024-03-05 | Globus Medical, Inc | Flat panel registration fixture and method of using same |
WO2023162657A1 (ja) * | 2022-02-28 | 2023-08-31 | 富士フイルム株式会社 | 医療支援装置、医療支援装置の作動方法及び作動プログラム |
US12103480B2 (en) | 2022-03-18 | 2024-10-01 | Globus Medical Inc. | Omni-wheel cable pusher |
US12048493B2 (en) | 2022-03-31 | 2024-07-30 | Globus Medical, Inc. | Camera tracking system identifying phantom markers during computer assisted surgery navigation |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6036637A (en) * | 1994-12-13 | 2000-03-14 | Olympus Optical Co., Ltd. | Treating system utilizing an endoscope |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05285102A (ja) * | 1992-04-14 | 1993-11-02 | Olympus Optical Co Ltd | 内視鏡システム |
JPH08131403A (ja) * | 1994-11-09 | 1996-05-28 | Toshiba Medical Eng Co Ltd | 医用画像処理装置 |
US7555331B2 (en) | 2004-08-26 | 2009-06-30 | Stereotaxis, Inc. | Method for surgical navigation utilizing scale-invariant registration between a navigation system and a localization system |
US8073528B2 (en) * | 2007-09-30 | 2011-12-06 | Intuitive Surgical Operations, Inc. | Tool tracking systems, methods and computer products for image guided surgery |
DE102006041055B4 (de) * | 2006-09-01 | 2015-10-15 | Siemens Aktiengesellschaft | Verfahren zur Unterstützung der Durchführung einer endoskopischen medizinischen Maßnahme sowie mit diesem Verfahren betreibbare Einrichtung |
US7824328B2 (en) * | 2006-09-18 | 2010-11-02 | Stryker Corporation | Method and apparatus for tracking a surgical instrument during surgery |
US7945310B2 (en) * | 2006-09-18 | 2011-05-17 | Stryker Corporation | Surgical instrument path computation and display for endoluminal surgery |
US8672836B2 (en) | 2007-01-31 | 2014-03-18 | The Penn State Research Foundation | Method and apparatus for continuous guidance of endoscopy |
WO2008103383A1 (en) * | 2007-02-20 | 2008-08-28 | Gildenberg Philip L | Videotactic and audiotactic assisted surgical methods and procedures |
US20090080737A1 (en) | 2007-09-25 | 2009-03-26 | General Electric Company | System and Method for Use of Fluoroscope and Computed Tomography Registration for Sinuplasty Navigation |
WO2009045827A2 (en) * | 2007-09-30 | 2009-04-09 | Intuitive Surgical, Inc. | Methods and systems for tool locating and tool tracking robotic instruments in robotic surgical systems |
US8571277B2 (en) * | 2007-10-18 | 2013-10-29 | Eigen, Llc | Image interpolation for medical imaging |
RU2365339C1 (ru) * | 2008-05-12 | 2009-08-27 | Федеральное государственное учреждение "Научно-исследовательский институт онкологии имени Н.Н. Петрова Федерального агентства по высокотехнологичной медицинской помощи" | Способ комбинированного эндоскопического контроля эффективности лечения злокачественных опухолей трахеи и/или бронхов |
US20100172559A1 (en) * | 2008-11-11 | 2010-07-08 | Eigen, Inc | System and method for prostate biopsy |
JP5404277B2 (ja) * | 2009-09-24 | 2014-01-29 | 株式会社Aze | 医用画像データ位置合せ装置、方法およびプログラム |
EP2523621B1 (en) * | 2010-01-13 | 2016-09-28 | Koninklijke Philips N.V. | Image integration based registration and navigation for endoscopic surgery |
-
2010
- 2010-12-06 EP EP10803145.1A patent/EP2523621B1/en not_active Not-in-force
- 2010-12-06 JP JP2012548489A patent/JP5795599B2/ja not_active Expired - Fee Related
- 2010-12-06 BR BR112012016973A patent/BR112012016973A2/pt not_active Application Discontinuation
- 2010-12-06 US US13/521,284 patent/US9095252B2/en not_active Expired - Fee Related
- 2010-12-06 CN CN201080061265.2A patent/CN102711650B/zh not_active Expired - Fee Related
- 2010-12-06 RU RU2012134327/14A patent/RU2556593C2/ru not_active IP Right Cessation
- 2010-12-06 WO PCT/IB2010/055606 patent/WO2011086431A1/en active Application Filing
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6036637A (en) * | 1994-12-13 | 2000-03-14 | Olympus Optical Co., Ltd. | Treating system utilizing an endoscope |
Also Published As
Publication number | Publication date |
---|---|
BR112012016973A2 (pt) | 2017-09-26 |
JP5795599B2 (ja) | 2015-10-14 |
WO2011086431A1 (en) | 2011-07-21 |
RU2556593C2 (ru) | 2015-07-10 |
US20120294498A1 (en) | 2012-11-22 |
CN102711650A (zh) | 2012-10-03 |
EP2523621B1 (en) | 2016-09-28 |
JP2013517031A (ja) | 2013-05-16 |
RU2012134327A (ru) | 2014-02-20 |
US9095252B2 (en) | 2015-08-04 |
EP2523621A1 (en) | 2012-11-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102711650B (zh) | 用于内窥镜手术的基于图像整合的配准和导航 | |
JP2013517031A5 (zh) | ||
CN103313675B (zh) | 用于内窥镜手术的术中照相机校准 | |
EP3463032B1 (en) | Image-based fusion of endoscopic image and ultrasound images | |
AU2015204201B2 (en) | Surgical devices and methods of use thereof | |
RU2594813C2 (ru) | Роботизированное управление эндоскопом по изображениям сети кровеносных сосудов | |
CN102413756B (zh) | 从单目内窥镜图像估计实时深度 | |
RU2692206C2 (ru) | Роботизированное управление эндоскопом на основе анатомических признаков | |
CN103315696A (zh) | 使用由真实图像得到的虚拟平面来确定摄像机角度的系统和方法 | |
US20070149846A1 (en) | Anatomical visualization system | |
WO2007115825A1 (en) | Registration-free augmentation device and method | |
CN111588464A (zh) | 一种手术导航方法及系统 | |
WO2008004222A2 (en) | Computer image-aided method and system for guiding instruments through hollow cavities | |
Ma et al. | Knee arthroscopic navigation using virtual-vision rendering and self-positioning technology | |
Soler et al. | Virtual reality and augmented reality applied to laparoscopic and notes procedures | |
Habert et al. | Multi-layer visualization for medical mixed reality | |
Penza et al. | Virtual assistive system for robotic single incision laparoscopic surgery | |
Soler et al. | Virtual reality and augmented reality applied to endoscopic and NOTES procedures | |
Albabawat et al. | IMMERSIVE AUGMENTED REALITY APPLICATIONS IN JAW AND KNEE REPLACEMENT SURGERY: ACCURACY AND PROCESSING TIME RESULTS | |
De Paolis et al. | Augmented Visualization of the Patient's Organs through a SlidingWindow. | |
CN118475309A (zh) | 三维模型重建 | |
CN104105439B (zh) | 血管树图像内不可见的二分叉的检测 | |
Koishi et al. | Forceps insertion supporting system in laparoscopic surgery: image projection onto the abdominal surface | |
CN115461782A (zh) | 用于配准外科手术空间的视觉表示的系统和方法 | |
Barreto et al. | ArthroNav: Computer assisted navigation system for orthopedic surgery using endoscopic images |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20150401 Termination date: 20211206 |
|
CF01 | Termination of patent right due to non-payment of annual fee |