Nothing Special   »   [go: up one dir, main page]

CN102346817B - 一种借助支持向量机建立过敏原家族特征肽的过敏原的预测方法 - Google Patents

一种借助支持向量机建立过敏原家族特征肽的过敏原的预测方法 Download PDF

Info

Publication number
CN102346817B
CN102346817B CN201110302532.7A CN201110302532A CN102346817B CN 102346817 B CN102346817 B CN 102346817B CN 201110302532 A CN201110302532 A CN 201110302532A CN 102346817 B CN102346817 B CN 102346817B
Authority
CN
China
Prior art keywords
anaphylactogen
allergen
family
peptide
sequence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201110302532.7A
Other languages
English (en)
Other versions
CN102346817A (zh
Inventor
陶爱林
张利达
邹泽红
黄于艺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangzhou wood to wood Health Biotechnology Co.,Ltd.
Original Assignee
Second Affiliated Hospital of Guangzhou Medical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Second Affiliated Hospital of Guangzhou Medical University filed Critical Second Affiliated Hospital of Guangzhou Medical University
Priority to CN201110302532.7A priority Critical patent/CN102346817B/zh
Publication of CN102346817A publication Critical patent/CN102346817A/zh
Application granted granted Critical
Publication of CN102346817B publication Critical patent/CN102346817B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)

Abstract

本发明属于生物信息学技术领域,更确切的是涉及一种借助支持向量机建立过敏原家族特征肽的过敏原的预测方法。该预测方法包括建立过敏原数据库;形成过敏原聚类与家族;提取过敏原家族代表肽;建立支持向量机模型;模型性能参数的优化训练及大规模过敏原数据的测试。本发明优点是:建立在优先淘选过敏原家族特征肽基础上,该特征肽不仅对过敏原的典型特征作了精细描述,而且将过敏原与非过敏原做了严格区分,避免了过敏原判别过程中假阳性和假阴性的产生,从而在过敏原判别的准确性与灵敏度上取得了高水平的平衡而具有明显优势。在蛋白序列过敏原性的生物信息学分析方面具有广阔的应用前景。

Description

一种借助支持向量机建立过敏原家族特征肽的过敏原的预测方法
技术领域
本发明属于生物信息学技术领域,更确切的是涉及一种借助支持向量机建立过敏原家族特征肽的过敏原的预测方法。
背景技术
近年来,随着一些农艺性状得到遗传改良的食物增多及基因工程药物的应用增加,一些对人类具有潜在过敏的蛋白可能引入这些食品和药品中,由此将导致过敏性体质人群的生活压力和整个社会的生活成本增加。在这些新蛋白基因遗传转化之前及与人体的产生接触之前,先期进行过敏原性评价,显得十分迫切。而应用软件对蛋白的过敏原性进行精确预测是过敏原性评价的最经济有效的首选方案。过敏原性的精确评估,既可避免高过敏原性蛋白基因的应用所带来的前期巨额投入,又可避免这类蛋白对人体的伤害,使风险成本得到降低。
目前,国内尚没有一款可以评价过敏原的软件,而国际上,过敏原性预测软件可以概括为如下几类方法进行过敏原检测,包话:(1)通常的序列比对;(2)基于滑动肽窗口原理的过敏原IgE表位和基序的检测;(3)以支持向量机(Support Vector Machine,SVM)为支持算法的分类器来区分过敏原和非过敏原;(4)基于过敏原代表肽段(Allergen Representative Peptides,ARPs)或经过长度调整后的过敏原肽段构建的描述器(Detection based on Filtered Length-adjustedAllergen Peptides,DFLAPs)。当待查询序列或其片段与已知过敏原完全相同、或者同源、或者具有匹配的基序时,这些软件就非常有效,而对于那些跟已知过敏原相似性低的新型蛋白质,这些软件的预测准确性就不佳了。因此,为了从随机的序列数据、特别是从那些农艺性状优良而尚未开发的外源基因里甄别过敏原,以避免将从未被人类作为食物的外源基因通过遗传工程等方法引入食品中,需要在准确性、特异性和敏感性等方面对过敏原预测软件进行大幅度的改良提高。
发明内容
本发明要解决的技术问题是克服现有技术的不足而提供一种能提高过敏原预测的敏感性、特异性和精确性的基于支持向量机的过敏原的预测方法。
为解决上述技术问题,本发明的技术方案是:一种借助支持向量机建立过敏原家族特征肽的过敏原的预测方法,包括以下步骤:
步骤1:数据库的建立,
从各过敏原数据库经过筛选得到的过敏原序列和非过敏原序列作为数据库;
步骤2:过敏原家族特征肽的提取,
针对过敏原序列进行聚类分析,在形成的每一过敏原家族中,过敏原序列按照每相隔1-10个碱基用滑动窗口分成6-32个碱基长度的肽段,然后用所得肽段和非过敏原序列进行使用序列基本对齐本地搜索工具BLAST(Basic Local AlignmentSearch Tool)进行对比后,剔除那些与非过敏原相同或相似的片段,而那些和非过敏原序列没配对的肽段,并且E值低于10-7~10-1时,即是过敏原特征肽(AllergenFeatured Peptides,AFP),而落在同一过敏原上且相邻的过敏原特征肽拼接后形成由2-30个小的特征肽构成的过敏原家族特征肽(Allergen Family Featured Peptides,AFFP);
步骤3:建立支持向量机模型,
对于一个查询蛋白X建立特征向量FX=fx1,fx2,…,fxn,n代表过敏原家族特征肽库的片段数量,fxi为蛋白X和第i个AFFP进行BLAST(Basic Local AlignmentSearch Tool,序列基本对齐本地搜索工具)后E值均一化的值作为矢量,并转换为径向基函数(Radial Basis Function,RBF);
步骤4:支持向量机模型的性能测定,
采用交叉验证方法进行测定,即将训练集随机均分成n个互不相交的子集,利用n-1个训练子集,对给定的一组参数建立模型,利用剩下一个子集做测试评估参数性能,即为n倍的内在交叉效度。
进一步的,上述方案中步骤3所述对BLAST(Basic Local Alignment SearchTool,序列基本对齐本地搜索工具)比对所得的E值x进行均一化,均一化的公式如下:
其中C为通过实验获得的0~20的常数。
进一步的,上述方案中步骤3所述支持向量机是基于结构风险最小化原则的统计,其使用核函数将输进去的矢量投射到高维特征空间,在空间形成一个超平面,使过敏原和非过敏原得以在超平面两边分开,支持向量机的核函数首先经过标准化,以使每个向量在特征空间拥有长度单位1,核函数标准化的公式如下:
y ( X , Y ) = X · Y ( X · X ) ( Y · Y ) ;
其中X为是指蛋白X,Y是指蛋白Y。
更进一步的,所述核函数y(X,Y)转换为径向基函数(RBF),以使形成的平面通过原点,由核函数转换为径向基函数的公式如下:
y . . ( X , Y ) = e - y ( X , X ) - 2 * y ( X , Y ) + y ( Y , Y ) 2 σ 2 + 1
其中,σ是特征空间里阳性的训练矢量到阴性矢量的欧几里德距离中值。
优选的,上述方案中步骤4所述支持向量机模型的性能测定采用十倍的内在的交叉效度方法进行测定,计算模型的敏感性(Sensitivity,SE),特异性(Specificity,SP),精确度(Accuracy,ACC),Matthews相关系数(MatthewsCorrelation Coefficients,MCC),而这四个参数的计算公式如下:
SE = TP TP + FN
SP = TN TN + FP
ACC = TP + TN TP + TN + FP + FN
MCC = ( TP × TN ) - ( FN × FP ) ( TN + FN ) × ( TP + FN ) × ( TN + FP ) × ( TP + FP )
其中,真阳性TP代表确定的过敏群体中过敏原的数目;真阴性TN代表确定的非过敏群体中非过敏原的数目;假阴性FN代表确定的过敏群体中非过敏原的数目;假阳性FP确定的非过敏群体中过敏原的数目。
优选的,上述方案中步骤1所述数据库的建立中过敏原序列是从各过敏原数据库收集过敏原序列,并移除序列同源性达到80-90%的过敏原后得到的;非过敏原序列是以大米,苹果,胡萝卜等常见食物和人类自身蛋白并经过过敏原筛选后得到的。
与现有技术相比,本发明相对于现有技术的有益效果是:
本发明基于支持向量机的过敏原的预测方法对过敏原预测的敏感性、特异性和精确性高。与国际上最新的过敏原预测软件比较,采用本发明方法进行预测的结果与文献数据一致性最好。
附图说明
下面结合附图和具体实施方式对本发明作进一步详细的说明。
图1是本发明基于支持向量机的过敏原的预测方法具体实现框图。
具体实施方式
图1为本发明基于支持向量机的过敏原的预测方法具体实现框图。本发明公开了一种借助支持向量机建立过敏原家族特征肽的过敏原的预测方法,包括以下步骤:
步骤一:过敏原和非过敏原数据库的建立,从各过敏原数据库收集过敏原序列,并移除序列同源性达到80-90%的过敏原后作为过敏原库。以大米、苹果、胡萝卜等常见食物和人类自身蛋白,并经过过敏原筛选,再被选为非过敏原库。
步骤二:过敏原家族特征肽的提取:所有过敏原序列按照每相隔一定碱基数用滑动窗口分成一定长度的肽段,然后用所得肽段和非过敏原序列进行BLAST(Basic Local Alignment Search Tool,序列基本对齐本地搜索工具),那些和非过敏原序列没配对的肽段,并且E值低于10-7~10-1时,确定是过敏原家族特征肽(Allergen Family Featured Peptides,AFFPs)。然后将邻近的AFFPs合并,并选取每一过敏原序列上最长的AFFPs作为代替相应的过敏原家族特征肽,以代替相应的过敏原家族。
步骤三:建立支持向量机模型:对于一个蛋白X的特征向量FX=fx1,fx2,…,fxn,n代表过敏原家族特征肽库的片段数量,fxi为蛋白X和第i个AFFP进行BLAST(Basic Local Alignment Search Tool,序列基本对齐本地搜索工具)后E值均一化的值作为矢量,并转换为径向基函数(Radial Basis Function,RBF),训练支持向量机。
对BLAST(Basic Local Alignment Search Tool,序列基本对齐本地搜索工具)比对所得的E值x进行均一化,均一化的公式如下:
其中C为通过实验获得的0~20的常数。
支持向量机是基于结构风险最小化原则的统计原理,这个原理可以使用核函数将输进去的矢量投射到高维特征空间,在空间形成一个超平面,使过敏原和非过敏原得以在超平面两边分开。支持向量机的核函数首先经过标准化,以致使每个向量在特征空间拥有长度单位1。标准化的公式如下:
y ( X , Y ) = X · Y ( X · X ) ( Y · Y ) ;
其中X为是指蛋白X,Y是指蛋白Y
然后将这个核函数y(X,Y)转换为径向基函数(RBF),以使形成的平面通过原点。由核函数转换为径向基函数的公式如下:
y . . ( X , Y ) = e - y ( X , X ) - 2 * y ( X , Y ) + y ( Y , Y ) 2 σ 2 + 1
这里的σ是特征空间里阳性的训练矢量到阴性矢量的欧几里德距离中值,核函数常数1的增加是为了转换数据,使超平面通过原点。这个方法可以对由一个待测序列形成的未知矢量进行分类,使其在特征空间落到超平面的一边,进而判断是否过敏原。
步骤四:模型性能采用交叉验证(cross-validation)方法进行测定,即将训练集随机均分成n个互不相交的子集。利用n-1个训练子集,对给定的一组参数建立模型,利用剩下一个子集做测试评估参数性能。采用十倍的内在的交叉效度分析评估向量模型,同时计算了模型的敏感性(Sensitivity,SE),特异性(Specificity,SP),精确度(Accuracy,ACC),Matthews相关系数(MatthewsCorrelation Coefficients,MCC)。
SE = TP TP + FN
SP = TN TN + FP
ACC = TP + TN TP + TN + FP + FN
MCC = ( TP × TN ) - ( FN × FP ) ( TN + FN ) × ( TP + FN ) × ( TN + FP ) × ( TP + FP )
TP(真阳性)代表已知过敏原被预测为过敏原,TN(真阴性)代表非过敏原被预测为非过敏原,FN(假阴性)代表已知过敏原被预测为非过敏原,FP(假阳性)代表非过敏原被预测为过敏原。MCC的范围是从-1到1。MCC的值为1指示预测结果最好,为-1时代表预测的结果最差,MCC为0时代表预测的随意性大。
本发明的应用实例1:与已经发表的过敏原预测软件的比较。
采用500个已经确认的过敏原和500个已经确认的非过敏原作为待测数据,用国际上最近5年来发表的过敏原软件AlgPred,EVALLER,AllerHunter以及国际粮农组织和世界卫生组织联合提议的指南方法及本发明预测方法的软件SORTALLER对这些序列数据进行预测,所得结果见表1。
表1.不同软件和方法的准确性比较.
Methods SE(%) SP(%) ACC(%) MCC
FAO/WHO 99.2 8.8 54.0 0.187
EVALLER 86.6 98.0 92.3 0.870
AlgPred 88.0 88.2 88.1 0.762
AllerHunter 77.4 82.6 80.0 0.827
SORTALLER 98.4 98.4 98.4 0.968
从表1可以看出:采用发明预测方法的软件SORTALLER在较高水平上同时使敏感性和特异性都达到最高水平,因此准确性显著比其他软件高。
本发明的应用实例2:不同软件对13个蛋白分析的结果比较。
针对目前本身比较难进行分类的13个蛋白,但都有文献支持认为:这13个蛋白是过敏原,采用发明预测方法的软件SORTALLER和国际上最新的5个过敏原预测软件进行分析,结果见表2。
表2
从表2中可以看出,本发明预测方法的软件与文献数据一致性最好,都认为这些蛋白是过敏原,而其他软件则预测性能较低因而一致性差,认为有些蛋白是非过敏原。

Claims (3)

1.一种借助支持向量机建立过敏原家族特征肽的过敏原的预测方法,其特征在于:包括以下步骤:
步骤1:数据库的建立,
从各过敏原数据库经过筛选得到的过敏原序列和非过敏原序列作为数据库;
步骤2:过敏原家族特征肽的提取,
针对过敏原序列进行聚类分析,在形成的每一过敏原家族中,过敏原序列按照每相隔1-10个碱基用滑动窗口分成6-32个碱基长度的肽段,然后用所得肽段和非过敏原序列使用序列基本对齐本地搜索工具BLAST进行对比后,剔除那些与非过敏原相同或相似的片段,而那些和非过敏原序列没配对的肽段,并且采用BLAST所得的E值低于10-7~10-1时,即是过敏原特征肽AFP,而落在同一过敏原上且相邻的过敏原特征肽拼接后形成由2-30个小的特征肽构成的过敏原家族特征肽AFFP;
步骤3:建立支持向量机模型,
对于一个查询蛋白X建立特征向量FX=fx1,fx2,…,fxn,n代表过敏原家族特征肽库的片段数量,fxi为蛋白X和第i个AFFP进行BLAST后E值均一化的值,是向量FX中的矢量,i=1、2、…、n,并转换为径向基函数RBF;
其中对E值x均一化的公式如下:
f ( x ) = 1 1 + xe C f ( x ) = 1 1 + e log ( x ) + C , 其中C为通过实验获得的0~20的常数;
步骤4:支持向量机模型的性能测定,
采用交叉验证方法进行测定,即将训练集随机均分成n个互不相交的子集,利用n-1个训练子集,对给定的一组参数建立模型,利用剩下一个子集做测试评估参数性能,即为n倍的内在交叉效度;
步骤5:以支持向量机模型为支持算法的分类器来区分过敏原和非过敏原;
步骤3所述支持向量机是基于结构风险最小化原则的统计,其使用核函数将输进去的矢量投射到高维特征空间,在空间形成一个超平面,使过敏原和非过敏原得以在超平面两边分开,支持向量机的核函数首先经过标准化,以使每个向量在特征空间拥有长度单位1,核函数标准化的公式如下:
y ( X , Y ) = X · Y ( X · Y ) ( X · Y ) ;
其中X为是指蛋白X,Y是指蛋白Y;
步骤4所述支持向量机模型的性能测定采用十倍的内在的交叉效度方法进行测定,计算模型的敏感性、特异性、精确度,马太相关系数,而这四个参数的计算公式如下:
SE = TP TP + FN
SP = TN TN + FP
ACC = TP + TN TP + TN + FP + FN
MCC = ( TP × TN ) - ( FN × FP ) ( TN + FN ) × ( TP + FN ) × ( TN + FP ) × ( TP + FP )
其中,SE为敏感性、SP为特异性、ACC为精确度、MCC为马太相关系数,真阳性TP代表确定的过敏群体中过敏原的数目;真阴性TN代表确定的非过敏群体中非过敏原的数目;假阴性FN代表确定的过敏群体中非过敏原的数目;假阳性FP确定的非过敏群体中过敏原的数目。
2.根据权利要求1所述的借助支持向量机建立过敏原家族特征肽的过敏原的预测方法,其特征在于:所述核函数y(X,Y)转换为径向基函数RBF以使形成的平面通过原点,由核函数转换为径向基函数RBF的公式如下:
y . . ( X , Y ) = e - y ( X , X ) - 2 * y ( X , Y ) + y ( Y , Y ) 2 σ 2 + 1
其中,σ是特征空间里阳性的训练矢量到阴性矢量的欧几里德距离中值。
3.根据权利要求1所述的借助支持向量机建立过敏原家族特征肽的过敏原的预测方法,其特征在于:步骤1所述数据库的建立中过敏原序列是从各过敏原数据库收集过敏原序列,并移除序列同源性达到80-90%的过敏原后得到的;非过敏原序列是以大米,苹果,胡萝卜和人类自身蛋白并经过过敏原筛选后得到的。
CN201110302532.7A 2011-10-09 2011-10-09 一种借助支持向量机建立过敏原家族特征肽的过敏原的预测方法 Active CN102346817B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201110302532.7A CN102346817B (zh) 2011-10-09 2011-10-09 一种借助支持向量机建立过敏原家族特征肽的过敏原的预测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201110302532.7A CN102346817B (zh) 2011-10-09 2011-10-09 一种借助支持向量机建立过敏原家族特征肽的过敏原的预测方法

Publications (2)

Publication Number Publication Date
CN102346817A CN102346817A (zh) 2012-02-08
CN102346817B true CN102346817B (zh) 2015-03-25

Family

ID=45545489

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201110302532.7A Active CN102346817B (zh) 2011-10-09 2011-10-09 一种借助支持向量机建立过敏原家族特征肽的过敏原的预测方法

Country Status (1)

Country Link
CN (1) CN102346817B (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103049679B (zh) * 2012-12-28 2017-07-11 上海交通大学 蛋白质潜在致敏性的预测方法
CN105469118B (zh) * 2015-12-04 2018-07-20 浙江鸿程计算机系统有限公司 基于核函数的融合主动学习和非参半监督聚类的稀有类别检测方法
EP3414348A4 (en) * 2016-02-11 2019-10-09 The Board of Trustees of the Leland Stanford Junior University SEQUENCING ALIGNMENT ALGORITHM OF THE THIRD GENERATION
GB201607521D0 (en) * 2016-04-29 2016-06-15 Oncolmmunity As Method
CN107102149B (zh) * 2017-05-03 2019-03-29 杭州帕匹德科技有限公司 一种食品中蛋白质定量检测用特征肽段的筛选方法
CN109147957A (zh) * 2018-06-30 2019-01-04 湖北海纳天鹰科技发展有限公司 一种空气中过敏原的个性化监测方法和装置
CN115631853A (zh) * 2022-11-02 2023-01-20 内蒙古卫数数据科技有限公司 一种基于血常规数据的过敏源数据提取方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1729295A (zh) * 2002-12-20 2006-02-01 荷兰联合利华有限公司 抗冻蛋白的制备
CN102108357A (zh) * 2009-12-24 2011-06-29 上海市农业科学院 源于昆虫抗冻肽基因及其制备方法和应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1729295A (zh) * 2002-12-20 2006-02-01 荷兰联合利华有限公司 抗冻蛋白的制备
CN102108357A (zh) * 2009-12-24 2011-06-29 上海市农业科学院 源于昆虫抗冻肽基因及其制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
AllerHunter:A SVM-Pairwise System for Assessment of Allergenicity and Allegic Cross-Reactivity in Proteins;Hon cheng muh等;《PLoS ONE》;20090630;第4卷(第6期);第1-5页 *

Also Published As

Publication number Publication date
CN102346817A (zh) 2012-02-08

Similar Documents

Publication Publication Date Title
CN102346817B (zh) 一种借助支持向量机建立过敏原家族特征肽的过敏原的预测方法
Hameed et al. Multi-class skin diseases classification using deep convolutional neural network and support vector machine
Aydadenta et al. A clustering approach for feature selection in microarray data classification using random forest
Peng et al. A novel feature selection approach for biomedical data classification
CN102282559A (zh) 数据分析方法和系统
CN101517602A (zh) 使用基于分类器集成的遗传算法进行特征选择的方法
CN106250442A (zh) 一种网络安全数据的特征选择方法及系统
US9940383B2 (en) Method, an arrangement and a computer program product for analysing a biological or medical sample
Zhang et al. Multi-class support vector machine optimized by inter-cluster distance and self-adaptive deferential evolution
Barrat-Charlaix et al. Sparse generative modeling via parameter reduction of Boltzmann machines: application to protein-sequence families
WO2021161901A1 (ja) 特徴量選択方法、特徴量選択プログラム、マルチクラス分類方法、マルチクラス分類プログラム、特徴量選択装置、マルチクラス分類装置、及び特徴量セット
CN111950645A (zh) 一种通过改进随机森林提高类不平衡分类性能的方法
Chakradeo et al. Breast cancer recurrence prediction using machine learning
Pouyan et al. Clustering single-cell expression data using random forest graphs
Sahu et al. Efficient role of machine learning classifiers in the prediction and detection of breast cancer
CN116864011A (zh) 基于多组学数据的结直肠癌分子标志物识别方法及系统
CN116564409A (zh) 基于机器学习的转移性乳腺癌转录组测序数据识别方法
CN110942808A (zh) 一种基于基因大数据的预后预测方法及预测系统
KR20100001177A (ko) 주성분 분석을 이용한 유전자 선택 알고리즘
CN107607723A (zh) 一种基于随机投影集成分类的蛋白质间相互作用测定方法
Meng et al. Feature extraction and analysis of ovarian cancer proteomic mass spectra
CN104715166A (zh) 基于预测加权整合的农作物潜在过敏原检测实现方法
CN105095689A (zh) 一种基于韦恩预测的电子鼻数据挖掘方法
Kar et al. A comparative study on gene ranking and classification methods using microarray gene expression profiles
Yun et al. A New gene expression profiles classifying approach based on neighborhood rough set and probabilistic neural networks Ensemble

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CP01 Change in the name or title of a patent holder

Address after: 510260, No. 250 Chang Dong Road, Guangzhou, Guangdong, Haizhuqu District

Patentee after: THE SECOND AFFILIATED HOSPITAL OF GUANGZHOU MEDICAL University

Address before: 510260, No. 250 Chang Dong Road, Guangzhou, Guangdong, Haizhuqu District

Patentee before: THE SECOND AFFILIATED HOSPITAL OF GUANGZHOU MEDICAL University

CP01 Change in the name or title of a patent holder
TR01 Transfer of patent right

Effective date of registration: 20210331

Address after: 510000 room 515, 5th floor, building 1, No.1, Ruifa Road, Huangpu District, Guangzhou City, Guangdong Province

Patentee after: Guangzhou wood to wood Health Biotechnology Co.,Ltd.

Address before: 510260, No. 250 Chang Dong Road, Guangzhou, Guangdong, Haizhuqu District

Patentee before: THE SECOND AFFILIATED HOSPITAL OF GUANGZHOU MEDICAL University

TR01 Transfer of patent right