Nothing Special   »   [go: up one dir, main page]

CN101946334B - 双层薄膜全息太阳能集中器/收集器 - Google Patents

双层薄膜全息太阳能集中器/收集器 Download PDF

Info

Publication number
CN101946334B
CN101946334B CN2009801050255A CN200980105025A CN101946334B CN 101946334 B CN101946334 B CN 101946334B CN 2009801050255 A CN2009801050255 A CN 2009801050255A CN 200980105025 A CN200980105025 A CN 200980105025A CN 101946334 B CN101946334 B CN 101946334B
Authority
CN
China
Prior art keywords
light
photoconduction
diffractive features
photoconductive
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2009801050255A
Other languages
English (en)
Other versions
CN101946334A (zh
Inventor
约恩·比塔
鲁塞尔·韦恩·格鲁尔克
徐刚
马克·莫里斯·米尼亚尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qualcomm MEMS Technologies Inc
Original Assignee
Qualcomm MEMS Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm MEMS Technologies Inc filed Critical Qualcomm MEMS Technologies Inc
Publication of CN101946334A publication Critical patent/CN101946334A/zh
Application granted granted Critical
Publication of CN101946334B publication Critical patent/CN101946334B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • H01L31/0543
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/04Processes or apparatus for producing holograms
    • G03H1/0402Recording geometries or arrangements
    • G03H1/0408Total internal reflection [TIR] holograms, e.g. edge lit or substrate mode holograms
    • H01L31/0547
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/12Light guides
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0075Arrangements of multiple light guides
    • G02B6/0076Stacked arrangements of multiple light guides of the same or different cross-sectional area
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/04Processes or apparatus for producing holograms
    • G03H1/0402Recording geometries or arrangements
    • G03H2001/0439Recording geometries or arrangements for recording Holographic Optical Element [HOE]
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/22Processes or apparatus for obtaining an optical image from holograms
    • G03H1/2202Reconstruction geometries or arrangements
    • G03H2001/2223Particular relationship between light source, hologram and observer
    • G03H2001/2226Edge lit holograms
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/26Processes or apparatus specially adapted to produce multiple sub- holograms or to obtain images from them, e.g. multicolour technique
    • G03H2001/2605Arrangement of the sub-holograms, e.g. partial overlapping
    • G03H2001/261Arrangement of the sub-holograms, e.g. partial overlapping in optical contact
    • G03H2001/2615Arrangement of the sub-holograms, e.g. partial overlapping in optical contact in physical contact, i.e. layered holograms
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/26Processes or apparatus specially adapted to produce multiple sub- holograms or to obtain images from them, e.g. multicolour technique
    • G03H2001/2625Nature of the sub-holograms
    • G03H2001/264One hologram being a HOE
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Photovoltaic Devices (AREA)
  • Holo Graphy (AREA)

Abstract

在本文所描述的各种实施例中,描述一种包含光学耦合到一个或一个以上光电池的一个或一个以上光导(701a、701b、701c)的装置。所述装置进一步包含一个或一个以上光转向膜或层(702a、702b、702c),其包含体积或表面衍射特征或全息图。入射在所述光导(701a、701b、701c)上的光借助于反射性或透射性的体积或表面衍射特征或全息图而转向,且借助于多次全内反射而被导向穿过所述光导(701a、701b、701c)。所述所导向的光被向所述光电池引导。在某些实施例中,太阳能还用于对热产生器供能或加热,以对水进行加热或从蒸汽中产生电。各种实施例可包含设置在所述多个光导(701a、701b、701c)之间的气隙和/或光学隔离层。

Description

双层薄膜全息太阳能集中器/收集器
相关申请案的交叉参考
本申请案依据35U.S.C.§119(e)主张2008年2月12日申请的标题为“薄膜全息太阳能集中器/收集器(THIN FILM HOLOGRAPHIC SOLAR CONCENTRATOR/COLLECTOR)”的第61/028,139号美国临时申请案(代理人案号QMRC.002PR)的优先权,所述临时申请案全文以引用的方式明确地并入本文中。
技术领域
本发明涉及太阳能的领域,且更特定来说涉及使用微结构化薄膜来收集且集中太阳辐射。
背景技术
超过一个世纪以来,在美国例如煤炭、石油和天然气等化石燃料已提供主要能源。对替用能源的需要日益增加。化石燃料是快速耗尽的不可再生能源。例如印度和中国等发展中国家的大规模工业化已对可用化石燃料造成相当大的负担。此外,地理政治问题可快速影响此类燃料的供应。全球变暖也在近年来引起较大关注。虽然认为许多因素造成全球变暖,然而推测化石燃料的广泛使用是导致全球变暖的主要原因。因此急需寻找可再生且经济可行且还对环境安全的能源。太阳能是可转化为其它能量形式(例如,热能和电能)的对环境安全的可再生的能源。然而,将太阳能用作经济竞争性可再生能源受到光能转化为电能的低效率以及太阳能视一天中的时刻和一年中的月份而定的变化阻碍。
光伏(PV)电池将光能转化为电能且因此可用于将太阳能转化为电力。可将光伏太阳能电池制造得极薄且模块化。PV电池的尺寸可在数毫米到数十厘米范围内。一个PV电池的个别电输出可在数毫瓦(milliwatt)到数瓦(Watt)范围内。可将若干PV电池电连接且封装以产生足够电量。PV电池可用于广泛应用中,例如为卫星和其它太空船提供动力,提供住宅性电力和商业性电力,为汽车电池充电等。
太阳能集中器可用于收集且聚焦太阳能从而在PV电池中实现较高转化效率。举例来说,抛物面镜可用于将光收集且聚焦于将光能转化为热和电的装置上。还可使用其它类型的透镜和镜面来显著增加转化效率。
使用将光收集且聚焦于PV电池上且追踪太阳一整天的移动的光收集器和集中器可为有利的。另外具有在多云的日子收集漫射光的能力也是有利的。然而此类系统较复杂,通常笨重且庞大。对于许多应用来说,还希望这些光收集器和/或集中器尺寸紧密。有可能使用全息薄膜作为紧密太阳能收集器和/或集中器。
发明内容
在本文所描述的各种实施例中,描述一种装置,其包含光学耦合到光电池的光导。所述装置进一步包含光转向膜或层,其包含体积或表面衍射特征或全息图。入射于光导上的光经具反射或透射性的体积或表面衍射特征或全息图转向,且通过多次全内反射而导向穿过光导。将经导向的光引导朝向光电池。在某些实施例中,太阳能还用于加热热产生器以加热水或由蒸汽产生电。在各种实施例中,光导为薄的(例如,小于1毫米)且包含(例如)薄膜。光导可由柔性材料形成。可将多个光导层堆叠在彼此之上以制得在较宽角度和/或波长范围内操作且具有增加的衍射效率的集中器。
在各种实施例中,揭示一种用于收集太阳能的装置,其包含具有顶面和底面的第一光导。所述装置进一步包含第一光电池和多个衍射特征,所述衍射特征经设置以将入射在第一光导的所述顶面上的环境光重定向以使所述光在光导中通过从所述顶面和底面的全内反射而导向到所述第一光电池,其中所述第一光导具有小于或等于1毫米的厚度。
在各种实施例中,揭示一种用于收集太阳能的装置,其包含用于导光的第一装置。所述光导装置包括顶面和底面且光通过在所述顶面和底面处的多次全内反射而在其中经导向。所述装置进一步包含用于吸收光的第一装置,所述光吸收装置经配置以产生由于光被光吸收装置吸收所引起的电信号。所述装置还包含多个用于使光衍射的装置,所述光衍射装置经设置以将入射在第一光导装置的所述顶面上的环境光重定向以使所述光在所述光导装置中通过从所述顶面和底面的全内反射而导向到所述第一光吸收装置,其中所述第一光导装置具有小于或等于1毫米的厚度。在一些实施例中,光导装置包含光导,光吸收装置包含光电池或光衍射装置包含衍射特征。
在各种实施例中,揭示一种制造用于收集太阳能的装置的方法。所述方法包含提供具有顶面和底面的第一光导,所述光导包括多个衍射特征且通过在所述顶面和底面处的多次全内反射而将光在其中导向。所述方法进一步包含提供第一光电池,其中所述第一光导具有小于或等于1毫米的厚度。在各种实施例中,将所述多个衍射特征设置于第一光导上。
在各种实施例中,揭示一种用于收集太阳能的装置,其包含将光在其中导向的第一和第二光导层。所述装置进一步包含第一光电池;第一多个衍射特征,所述衍射特征经设置以将入射在所述第一光导层上的环境光重定向;以及第二多个衍射特征,所述衍射特征经设置以将入射在所述第二光导层上的环境光重定向,其中将光在所述第一和第二光导层中导向到所述第一光电池。
在各种实施例中,揭示一种用于收集太阳能的装置,其包含至少一个光收集器。所述光收集器包含:光导,其具有顶面和底面以及多个衍射特征,所述衍射特征经配置以将入射在所述光导的所述顶面上的环境光重定向;至少一个光电池和太阳能热产生器。
在各种实施例中,揭示一种用于收集太阳能的装置,其包含具有顶面和底面的光导,所述光导通过在所述顶面和底面处的多次全内反射将光在其中导向。所述装置进一步包含光电池和透射衍射元件,所述透射衍射元件包含多个衍射特征,所述衍射特征经设置以将入射在光导的所述顶面上的环境光重定向以使所述光在光导中通过从所述顶面和底面的全内反射而导向到所述第一光电池。
在各种实施例中,揭示一种用于收集太阳能的装置,其包含用于导光的装置,所述光导装置具有顶面和底面且通过在所述顶面和底面处的多次全内反射将光在其中导向。所述装置进一步包含用于吸收光的装置,所述光吸收装置经配置以产生由于光被光吸收装置吸收所引起的电信号。所述装置还包含通过透射使光衍射的装置,所述光衍射装置包含多个衍射特征,所述衍射特征经设置以将入射在光导的所述顶面上的环境光重定向以使所述光在光导中通过从所述顶面和底面的全内反射而导向到所述光吸收装置。在各种实施例中,光导装置包含光导,光吸收装置包含光电池,或借助透射的光衍射装置包含包括多个衍射特征的透射衍射元件。
在各种实施例中,揭示一种制造用于收集太阳能的装置的方法。所述方法包含:提供具有顶面和底面的光导,所述光导包括包含多个衍射特征的透射衍射元件且通过在所述顶面和底面处的多次全内反射将光在其中导向;以及提供光电池。
在各种实施例中,揭示一种用于收集太阳能的装置,其包含用于导光的第一和第二装置。所述装置进一步包含用于吸收光的第一装置,其中所述光吸收装置经配置以产生由于光被光吸收装置吸收所引起的电信号。所述装置还包含用于使光衍射的第一多个装置和用于使光衍射的第二多个装置。所述第一和第二多个光衍射装置经配置以将入射在所述第一和第二光导装置上的环境光重定向。光在所述第一和第二光导装置中被导向到所述第一光吸收装置。在各种实施例中,第一和第二光导装置包含光导,第一光吸收装置包含光电池且第一和第二多个光衍射装置包含衍射特征。
在各种实施例中,揭示一种制造用于收集太阳能的装置的方法。所述方法包含提供将光在其中导向的第一和第二光导层,所述第一光导层将第一多个衍射特征包括于其中且所述第二光导层将第二多个衍射特征包括于其中。所述方法进一步包含提供第一光电池。在一些实施例中,光在所述第一和第二光导层中被导向到所述第一光电池。在一些实施例中,将第一和第二多个衍射特征设置于所述第一和第二光导层上。
在各种实施例中,揭示一种用于收集太阳能的装置,其包含至少一个用于收集光的装置。所述光收集装置进一步包含用于导光的装置,所述光导装置具有顶面和底面以及多个用于使光衍射的装置。光衍射装置经配置以将入射在所述光导装置的所述顶面上的环境光重定向。所述装置进一步包含至少一个用于吸收光的装置,所述光吸收装置经配置以产生由于光被光吸收装置吸收所引起的电信号。所述装置还包含用于将热能转化为电能或机械能的装置。在各种实施例中,光收集装置包含光收集器,光导装置包含光导,光衍射装置包含衍射特征,光吸收装置包含光电池或热能转化装置包含太阳能热产生器。
在各种实施例中,揭示一种制造用于收集太阳能的装置的方法。所述方法包含提供至少一个光收集器,所述光收集器包含具有顶面和底面以及多个衍射特征的光导,所述衍射特征经配置以将入射在所述光导的所述顶面上的环境光重定向。所述方法进一步包含提供至少一个光电池和提供太阳能热产生器。
附图说明
本文中所揭示的实例实施例在随附示意图中说明,随附示意图仅用于说明性目的。
图1A示意说明光导的侧视图,其中光线在光导内部折射且随后透射离开所述光导。
图1B示意说明光导和折射锥的侧视图。
图1C示意说明光转向元件的侧视图,所述光转向元件包含设置于光导的上表面上的透射全息图。
图1D示意说明光转向元件的侧视图,所述光转向元件包含设置于光导的下表面上的反射全息图。
图2A示意说明在光导内被导向的光锥,所述光导包含具有体积或表面衍射特征或全息图的光转向元件。
图2B示意说明光导的另一实施例,所述光导包含具有体积或表面衍射特征或全息图的光转向元件以及在所述光导内导向的两个光锥。
图3A示意说明光转向层的实施例,所述光转向层包含体积全息图。
图3B示意说明光转向层的实施例,所述光转向层包含表面起伏衍射特征。
图3C示意说明光转向层的实施例,所述光转向层包含平坦化表面起伏衍射特征。
图4A示意说明一种用于制造包含具有透射全息图的光转向层的光收集器的布置。
图4B示意说明通过图4A的方法制造的光收集器和其中收集且导向的环境光。
图4C示意说明一种用于制造包含多个体积全息图的光收集器的布置。
图5A示意说明一种用于制造包含具有反射全息图的光转向层的光收集器的布置。
图5B示意说明通过图5A的方法制造的光收集器和其中收集且导向的环境光。
图6示意说明包含堆叠的多个光收集器的实施例,其中连续的光收集器之间具有气隙。
图7示意说明包含多个光收集器的实施例,所述光收集器层压在一起以使不同光收集器光学耦合。
图8示意说明包含多个光收集器的实施例,其在连续的光收集器之间包含低折射率材料。
图9和图9A示意说明包含多个光收集器的实施例,其中每一光收集器收集以不同角度入射的光。
图10示意说明包含多个光收集器的实施例,其中每一光收集器收集不同波长的光。
图11A示意说明包含光收集器和沿光收集器的相对边缘横向设置的PV电池的实施例。
图11B-11D示意说明光收集器的各种实施例,所述光收集器包含一个、两个或四个沿光收集器的边缘横向设置的PV电池。
图12示意说明包含光收集器、PV电池和太阳能热产生器的系统。
图13示意说明置于住宅屋顶上和窗户上的光学耦合到光电池的光收集板、片或膜。
图14示意说明将光学耦合到光电池的光收集板、片或膜放置于汽车顶盖上的实施例。
图15示意说明将光学耦合到光电池的光收集板、片或膜附接到膝上型计算机的主体。
图16示意说明将光学耦合到光电池的光收集板、片或膜附接到衣物的实例。
图17示意说明将光学耦合到光电池的光收集板、片或膜放置于鞋上的实例。
图18示意说明将光学耦合到光电池的光收集板、片或膜附接到飞机的翼和窗的实施例。
图19示意说明将光学耦合到光电池的光收集板、片或膜附接到帆船的实施例。
图20示意说明将光学耦合到光电池的光收集片、板或膜附接到自行车的实施例。
图21示意说明将光学耦合到光电池的光收集板、片或膜附接到卫星的实施例。
图22示意说明将大体上具柔性以便可卷的光收集片光学耦合到光电池的实施例。
具体实施方式
以下详细描述针对本发明的某些特定实施例。然而,本发明可以许多不同方式来体现。如从以下描述中将显而易见,所述实施例可在经配置以收集、截留和集中来自一来源的辐射的任何装置中实施。更特定来说,预期本文所描述的实施例可在多种应用中实施或与多种应用相关联,所述应用例如提供住宅性电力和商业性电力,为例如膝上型计算机、PDA、手表、计算器、手机、摄像机(camcorder)、静态和视频相机、mp3播放器等电子装置提供电力。此外,本文所描述的实施例还可用于可穿戴的发电衣物、鞋和配饰。本文所描述的一些实施例可用于为汽车电池、导航仪器充电和抽水。本文所描述的实施例还可用于航空和卫星应用中。另外其它应用是可能的。
在本文描述的各种实施例中,将太阳能收集器和/或集中器耦合到光电池。所述太阳能收集器和/或集中器包含光导,例如其中形成有体积或表面起伏衍射特征或全息图的板、片或膜。入射于光导上的环境光经体积或表面起伏衍射特征或全息图转向到所述光导中,且通过全内反射而导向穿过所述光导。将光电池沿光导的一个或一个以上边缘设置且使从光导发出的光耦合到光电池中。使用光导将环境光收集、集中且引导到光电池可实现以增加的效率和降低的成本使光能转化为电的光电装置。在某些实施例中,太阳能还用于为热产生器提供动力(例如,加热)以加热水或由蒸汽产生电。光导可形成为板、片或膜。在各种实施例中,光导为薄的(例如,小于1厘米)且包含(例如)薄膜。光导可由刚性或半刚性材料制造。在一些实施例中,光导可由柔性材料形成。光导可包含具反射或透射性的表面和体积衍射特征或全息图。可将多个光导层堆叠在彼此之上以制得在较宽角度和/或波长范围内操作且具有增加的衍射效率的集中器。
本文中所揭示的本发明的若干实施例实现以包含全息元件的平坦集中器设备收集日光以传递到光电池处。环境日光由衍射或全息元件捕获且耦合成光导的导向模式。图1A展示包含由空气包围的光导101的实施例的侧视图。光导101可包含对于一个或一个以上波长的辐射大体上光学透射的光学透射材料。举例来说,在一个实施例中,光导101对于可见和近红外区中的波长可为大体上光学透射的。在其它实施例中,光导101对于紫外或红外区中的波长可为可透过的。光导101可包含大体上光学透射的板、片或膜。光导101可为平坦的或弯曲的。光导101可由刚性或半刚性材料(例如,玻璃或丙烯酸系物)形成以便对实施例提供结构稳定性。在其它实施例中,光导101可由例如柔性聚合物等柔性材料形成。在若干其它实施例中,可使用例如聚甲基丙烯酸甲酯(PMMA)、聚碳酸酯、聚酯(例如,PET)、环烯烃聚合物(例如,Zeonor)等其它材料形成光导101。在一些实施例中厚度可决定光导101为刚性还是柔性的。在某些实施例中,光导101可包含设置于衬底上的薄膜。衬底可为不透明、部分或大体上完全光学透射或透明的。衬底可为刚性或柔性的。
光导101可包含两个表面。上表面经配置以接收环境光。在一些实施例中,光导的底面可粘合到衬底。光导101可以周围多个边缘为界。在各种实施例中,光导101的长度和宽度大体上大于光导101的厚度。光导101的厚度可介于0.1mm到10mm之间。光导101的面积可介于1.0cm2到10,000cm2之间。然而,超出这些范围的尺寸是可能的。
如图1A中所示,考虑入射于光导101的实施例的上表面上的环境光线102i发生于空气中。光线102i以相对于表面的法线成角度θi入射。在一些实施例中,光线102i将相对于法线成角度θr作为光线102r折射到光导101中,且随后将相对于法线成角度θt作为光线102t从光导101透射出到达周围空气介质中。在一些实施例中,光线102t从光导101透射出的角度θt近似等于光线102i入射于光导101上的角度θi
折射光线102r在光导101内与光导101的法线所成的折射角θr可由斯奈尔定律(Snell′s law)计算且等于光导材料的折射率与空气介质的折射率的比率的反正弦。如图1B中所示,在一些实施例中,从空气入射于光导101上且位于半球102中的光线在由光线103a和103b界定的锥形内折射,且随后从光导101透射出。因为在这些实施例中入射光线几乎始终从光导透射出而与入射角无关,所以可能难以使用此光导截留光且将光在其中导向。
为防止图1A的光线102r从光导101透射出,折射角θr必须大于或等于构成光导101的材料的临界角θTIR。临界角θTIR是从光学较致密介质传到光学较稀疏介质的光线全内反射时的最小入射角。临界角θTIR视光学较致密介质和光学稀疏介质的折射率而定。参看图1A,因此临界角θTIR视构成光导101的材料和围绕光导101的材料(例如,空气)而定。在一些实施例中,由斯奈尔定律可展示对于发生于空气中的光线(例如,如图1A中所示),当入射角相对于表面的法线近似等于90度时,折射角近似等于临界角。
光导内可包括光转向元件以截留入射于光导上的环境光且将此入射光转化为光导的导向模式。光转向元件可将光导内的入射光线的角度转向以使光线可在光导内通过全内反射而导向。在一些实施例中,由光导收集且导向的光的量可称为所述光导的光收集效率。因此,在各种实施例中,光转向元件可实现和/或增加光导的光收集效率。可将由包含光转向元件的光导收集且导向的光向一个或一个以上设置于光导的一个或一个以上边缘处的光电装置(例如,太阳能电池)传递。通过适当选择尺寸和构成光导的材料,入射的环境光线可被导向穿过光导且传递所需距离。
图1C和1D说明进一步包含光转向元件105的光导101的实施例。光转向元件105可为微结构化薄膜。在一些实施例中,光转向元件105可包含体积或表面起伏衍射特征或全息图。光转向元件105可为薄板、薄片或薄膜。在一些实施例中光转向元件105的厚度可在约1μm到约100μm范围内,但在其它实施例中可更大或更小。在一些实施例中,光转向元件或层105的厚度可介于5μm与50μm之间。在一些其它实施例中,光转向元件或层105的厚度可介于1μm与10μm之间。光转向元件105可通过粘合剂附接到光导101的表面。粘合剂的折射率(index)可与构成光导101的材料匹配。在一些实施例中,粘合剂的折射率可与构成光转向元件105的材料匹配。在一些实施例中,可将光转向元件105层压于光导101上。在某些其它实施例中,可通过压印、模制或其它工艺使体积或表面衍射特征或全息图形成于光导101的上表面或下表面上。
体积或表面衍射元件或全息图可在透射或反射模式中操作。透射衍射元件或全息图通常包含光学透射材料且使穿过该处的光衍射。反射衍射元件和全息图通常包含反射材料且使从该处反射的光衍射。在某些实施例中,体积或表面衍射元件/全息图可为透射和反射结构的混杂物。衍射元件/全息图可包括彩虹全息图、计算机产生的衍射元件或全息图或其它类型的全息图或衍射光学元件。在一些实施例中,反射全息图可与透射全息图相比为优选的,因为反射全息图在收集且导向白光方面可能比透射全息图好。在那些需要某一程度的透明度的实施例中,可使用透射全息图。在包含多个层的实施例中,透射全息图可与反射全息图相比为优选的。在下文所描述的某些实施例中,透射层(例如,透射全息图)的堆叠可用于增加光学性能。透射层还可用于经设计以允许一些光穿过光导到达光导下方的空间区域的实施例中。出于设计或美学目的,衍射元件或全息图还可反射或透射颜色。在出于设计或美学目的使光导经配置以透射一种或一种以上颜色的实施例中,可使用透射全息图或彩虹全息图。在出于设计或美学目的可使光导经配置以反射一种或一种以上颜色的实施例中,可使用反射全息图或彩虹全息图。
下文中参看图1C和1D解释光转向元件105的一个可能优点。图1C展示一实施例,其中光转向元件105包含透射全息图且设置于光导101的上表面上。环境光线102i以入射角θ1入射于光转向元件105的顶面上。光转向元件105使入射光线102i的方向转变或使其衍射。使衍射光线102b入射于光导101上以使光导101中的光线102r的传播角为大于θTIR的θ″1。因此在不存在光转向元件105的情况下将从光导101透射出且未在光导101内导向的光线102t(例如,如图1A中所示)现在存在光转向元件105的情况下在光导101内收集且导向。光转向元件105可因此增加光导101的收集效率。
图1D说明一实施例,其中光转向元件105包含反射全息图且设置于光导101的底面上。如先前参看图1A所描述,光线102i以角度θ1入射于光导101的上表面上以使光线102r的传播角为θ′1。当折射光线102r照到光转向元件105上时,其由光转向元件105以大于光导101的临界角θTIR的角度θ″1转向成光线102b。由于角度θ″1大于临界角θTIR,因此随后光线102b在光导101内经由多次全内反射被导向。因此先前不受光导101导向的光线102i(例如,如图1A中所示)现由于光转向元件105的存在而在光导101内导向。在一些实施例中,光导101和光转向元件105一起可称为光收集器,或如果其包含膜或层则称为光收集膜或层。
如上所述,可使用光转向元件增加受光锥角,位于其内的光线被光导收集且导向。图2A展示光导201的一实施例,所述光导201包含设置于光导201的上表面上的具有体积或表面衍射特征的光转向元件205。以半角β位于锥形204的内的入射光线(下文称为不受导向的光)由光转向元件205转向或弯曲以使光导201中的转向或弯曲光线的传播角小于或等于θTIR。因此,位于不受导向的光锥204内的入射光线可从光导透射出。在各种实施例中,如下文关于图2B所描述,位于不受导向的光锥204外的光线可在光导内被收集且导向。
在光转向元件205中,可形成表面或体积衍射特征或全息图以便沿不同方向接受环境光。举例来说,在图2B中说明的实施例中,表面或体积衍射特征可接受锥形206和锥形207内的入射光线且使所述光线转向,其中锥形206位于以-x和y轴为界的第二几何象限中且锥形207位于以x和y轴为界的第一几何象限中。锥形206内的光线沿锥形208内的路径传输,而锥形207内的光线沿锥形209内的路径传输。锥形208和209内的光线可在光导201内被导向且可耦合到光电装置(例如,光电池)中,所述光电装置可沿光导201的边缘设置。
全息图通过记录由光敏板、膜或层上的两个光束的干扰产生的图案而制造。两个光束的一者称作输入光束且另一者称作输出光束。所述两个光束干扰且将所得干扰图案在光敏板、膜或层上记录为折射率的调制(例如,体积全息图)或记录为地形特征(例如,表面全息图(surface hologram))。在一些实施例中,干扰图案可记录为条纹或格子。在某些实施例中,干扰图案(或全息图案)可记录为折射率的变化。此类特征称为体积特征(例如,在体积全息图中)。图3A展示包含体积特征的全息板、膜或层的侧视图。在其它实施例中,干扰图案可记录为全息板、膜或层的(例如)表面上的地形变化。此类特征称为表面起伏特征(例如,在表面全息图或衍射光学元件中)。图3B展示包含表面起伏全息或衍射特征的全息板、膜或层的侧视图。
为使第二光束再现,可由第一光束照射全息板、膜或层。在一些实施例中,全息板、膜或层的转化效率可定义为由全息板、膜或层输出的光与输入在所述全息板、膜或层上的光的比率。在一些实施例中,体积全息图的转化效率可高于表面全息图的转化效率。在某些实施例中,如图3C中所示可将较低折射率平坦化材料设置于表面全息特征上。平坦化表面全息图可有利地允许额外层在全息图表面上形成且可保护表面特征,从而产生更稳健的结构。平坦化还可有利地使得多个光收集膜能够层压在一起。
图4A展示一种制造包含体积透射全息图的实施例400的方法。所述方法包含在光导401的上表面上设置光敏板、膜或层405。如上所述,例如可通过粘合层将光敏板、膜或层405层压或粘合到光导401。此粘合层可与光导401折射率匹配。在其它实施例中,将光敏材料涂覆于光导401上。在某些实施例中,光敏板、膜或层405可称为全息记录材料。光敏板、膜或层405可包含照相乳胶、重铬酸盐明胶、光致抗蚀剂、光热塑性塑料(photothermoplastic)、光聚合物、光致变色材料(photochromic)、光折射材料(photorefractive)等。在一些实施例中,全息记录材料可包含一层卤化银或其它光敏化学品。衍射特征可通过将光敏材料曝露于例如干扰图案等光图案而在光敏材料中形成。
例如在某些实施例中,所述方法包含将第一光源408和第二光源407设置于光导401的前方。将耦合棱镜406设置于全息记录材料405上以使来自第一光源408的光束(也称为参考光束)可以陡峭角度入射于全息材料上且为光导401的导向模式。来自第二光源407的光束(也称为目标光束)也经由耦合棱镜而经引导朝向全息记录材料。将目标光束与参考光束之间的干扰记录在全息记录材料上。在照相板、膜或层405显影之后,实施例400可用于如图4B中所示收集且导向日光。当曝露于日光下时,实施例400将使具有与目标光束近似相同的入射角的日光光线转向且将其导向穿过光导401。使入射的太阳光线在光导401内沿与受导向的参考光束相同的方向导向。
如图4C中所示通过改变参考光束和目标光束的角度可记录多个全息图。在图4C中,光线411o表示以第一入射角入射的目标光束,而光线412o表示以第二入射角入射的目标光束。光线411r和412r分别表示对应于目标光束411o和412o的参考光束。以第一角度入射的太阳光线将沿参考光束411r的方向被收集且经导向穿过光导,而以第二角度入射的太阳光线将沿参考光束412r的方向被收集且经导向穿过光导。因此包含多个全息图的转向层可收集且导向以多个角度入射的太阳光线。
还可通过改变参考光束的波长和/或入射角而记录多个全息图。举例来说,在一个实施例中,对于三种不同波长的参考光束(例如,紫外线、蓝光和绿光)可记录三种不同全息图。在一些实施例中,参考光束的波长可为约325μm、约365μm、约418μm和约532μm。如果可利用适当的记录介质,那么可将红光激光用作参考光束。记录不同波长的参考光束处的多个全息图对于收集太阳光谱中较宽范围波长的光可为有利的。
图5A展示一种制造包含反射全息图的实施例500的方法。在此实施例中,所述方法包含在光导501的底面上设置光敏板、膜或层505。可将照相板、膜或层涂覆于或层压于光导501的底面上。如上文参看图4A所描述,可使用粘合剂将光敏板、膜或层接合到光导501。将参考激光源508设置于光导501的后方以使参考光束入射于光导501的底面上。如上所述,参考棱镜506可用于将参考光束以陡峭角度(例如,θ″)耦合以产生为光导501的经导向模式的光束。将光源507设置于光导501的前方以使目标光束入射于光导501的上表面上。将从光源507发出的目标光束与参考光束之间的干扰图案记录在全息记录材料上。如图5B中所示,以与来自图5A的光源507的目标光束近似相同的入射角入射于光导501上的太阳光线将沿经导向参考光束的方向被导向穿过光导。
其它记录全息图的方法也是可能的。举例来说,在一个实施例中产生所需经导向模式的母板全息图案可用于将所需全息图案压印于转向膜或层上或经由光学方法再现所需全息图案。产生所需导向模式的全息图案还可通过光学方法或通过使用计算机程序(例如,计算机产生的全息图)来制造。
如上文所制造的包含光转向元件的光导可用于收集且集中日光且因此可称为光收集器。虽然入射于这些光收集器上的光的大部分将被捕获,但仍有一部分入射于这些光收集器上的环境光未被收集且可从光收集器引出,从而降低光收集器的收集效率。为改进光收集效率,可将多个光收集器包括于堆叠中。在一些实施例中,多个光收集器层包含与光转向元件一起设置的光导(所述光转向元件包含表面或体积衍射特征或全息图),以使透射穿过上部光导层的光可由下部光导层接收。
图6展示包含三个光导层601a、601b和601c的实施例。使三个光导层堆叠以使在任何两个连续光导层之间包括气隙603。将光转向元件602a、602b和602c设置于光导层601a、601b和601c的表面上。每一光转向层包含使光经由不同角度转向的体积或表面起伏衍射特征。举例来说,在图6中,在锥形604内的环境光入射于设置在光导601a上的光转向元件602a上。光转向元件602a可使入射光转向成导向模式。以大于临界角的角度耦合离开光转向元件602a的光线(例如,位于锥形605内)将耦合成光导601a的导向模式。以小于临界角的角度从光转向元件602a引出的光线(例如,位于锥形606内)将不会被收集且将入射于设置在光导601b上的光转向元件602b上。光转向元件602b可使入射于其上的光转向。以大于临界角的角度耦合离开光转向元件602b的光线(例如,位于锥形607中)将耦合成光导601b的导向模式,而以小于临界角的角度从光转向元件602b引出的光线(例如,位于锥形608内)将耦合离开光导601b。类似地,光转向元件602c可使入射于其上的光转向。以大于临界角的角度耦合离开光转向元件602c的光线(例如,位于锥形609中)将耦合成光导601c的导向模式。因此,环境光的大部分可由上文描述的多个光导的堆叠收集。在一些实施例中,在所需的角度和光谱范围内,所有组合的层的累积光收集效率可接近约100%。在某些实施例中,光转向元件602a、602b和602c可使入射光转向近似相同或不同角度。在某些实施例中,光转向元件602a、602b和602c可包含不同表面起伏衍射特征或全息图以使三个光转向元件的每一者收集不同波长的光。在某些实施例中,不同光导601a、601b和601c可收集不同波长的光。在一个实施例中,堆叠的光导仅可收集那些可由光电池转化为电能的波长的光(例如,可见波长),而可损坏光电池或光导或全息材料的紫外(UV)和红外(IR)辐射从光导层透射出。可将所透射的UV和IR辐射传递到另一元件,例如产热元件。此产热元件可加热水(例如)以提供热水或热量。在一些实施例中,水或其它液体(例如,油)可形成蒸汽。此蒸汽可用于驱动一个或一个以上涡轮机且发电。这些从太阳能辐射产生热的方法可称为太阳能发热。在各种实施例中,太阳能热产生器可用于加热例如水、油等流体或气体以产生电和/或机械动力。
图7说明复合光收集器,其包含堆叠在一起且其间无气隙的光导层701a、701b和701c。将光转向元件702a、702b和702c设置于光导层701a、701b和701c的上表面上。可将光导与光转向元件层压在一起。在一些实施例中,可将所有光导和光转向元件如图7中所示光学耦合在一起以形成单个光导。入射于复合光导的上表面上的光可与其它光转向膜或层702a、702b和702c的任一者交互且可转化为光导的导向模式。此堆叠光导的方法的一个优点在于复合光导层的总厚度可减少。在一些实施例中,此复合光导的总厚度可小于1cm,但超过此范围的值是可能的。举例来说,在一个实施例中,如果所层压的复合光导具有气隙,那么光导的厚度可大于1cm。在多层复合光导中每一层的厚度可近似为1mm。在一些实施例中,光导的厚度可小于0.5mm。在一些其它实施例中,光导的厚度可小于1mm。
图8展示包含多个光导801a、801b和801c的复合光收集器。每一光导801a、801b和801c由低折射率材料层803分隔。在一些实施例中低折射率材料层803可称为覆盖层(cladding)。在各种实施例中,低折射率材料层803可光学隔离每一光导。因此,在一些实施例中,低折射率材料层803可称为光学隔离层。复合光收集器进一步包含设置于光导801a、801b和801c的表面上的光转向元件(例如,802a、802b和802c)。如上文参看图6所描述,入射于复合光导的上表面上的光的第一部分被导向穿过光导801a,而入射于复合光导的上表面上的光的第二部分透射穿过光导801a,其随后入射于光导801b上。入射于光导的堆叠的上表面上的光的一部分被导向穿过光导801b,而入射于光导801b上的光的另一部分从光导801b透射出且随后入射于光导801c上。此过程重复直到所需角度和/或光谱范围内的光的大部分被复合光收集器收集且导向为止。
对于上文描述的堆叠的复合光收集器的每一实施例,通过设计每一光转向元件以捕获或收集不同角度锥形中的光以及不同光谱区中的光可进一步增加光收集效率。下文详细描述此概念。在图9中展示的实施例900中,多个光导层901、902、903、904、905和906堆叠在一起以形成复合光收集结构。如图9中所示,可将PV电池913相对于复合光收集结构横向设置。如图9A中所示,每一光导层901到906进一步包含包括衍射特征或全息图的光转向元件907到912。不同光转向元件907到912经配置以捕获从周围介质(例如,空气)以不同角度入射于光收集器上的光。举例来说,在一个实施例中光转向元件907可捕获或收集相对于光转向元件907的法线介于约0度与-15度之间入射的光线。光转向元件908可收集相对于光转向元件908的法线介于约-15度与-30度之间入射的光线。而光转向元件909可收集相对于光转向元件909的法线介于约-30度与-45度之间入射的光线。光转向元件910可收集相对于光转向元件910的法线介于约0度与15度之间入射的光线。光转向元件911可收集相对于光转向元件911的法线介于约15度与30度之间入射的光线,且光转向元件912可收集相对于光转向元件912的法线介于约30度与45度之间入射的光线。因此,复合光收集结构可有效收集相对于复合光导的表面的法线介于约-45度与45度之间入射的光。在一些实施例中,复合光收集结构可有效收集相对于复合光导的表面的法线介于约-80度与80度之间的光。在某些实施例中,复合光收集结构可有效收集相对于复合光导的表面的法线介于约±70度或±60度或±50度之间的光。上文指定的收集角度仅为实例。在各种其它实施例中其它范围的收集角度是可能的。
堆叠各经配置以收集不同锥形的光的若干光收集层的一个可能优点在于无需机械改变光收集器的方向即可在一天的大部分时间内有效收集光。举例来说,在早晨和晚上太阳光线以掠射角(grazing angle)入射,而在中午太阳光线接近垂直入射。图9中所描述的实施例可在早晨、下午和晚上以近似相等的效率收集光。
图10展示包含多个堆叠在一起的光导层1001、1002和1003的实施例。每一光导层进一步包含光转向元件1004、1005和1006,其每一者包含衍射特征或全息图。光伏(PV)电池1007、1008和1009相对于每一光导层1001、1002和1003横向设置。每一光转向元件1004、1005和1006经配置以收集具有等于相应PV电池的带隙的能量的不同光谱区中的光。举例来说,如图10中所示,入射光束1010包含光谱范围Δλ1中的光;入射光束1011包含光谱范围Δλ2中的光;入射光束1012包含光谱范围Δλ3中的光,且入射光束1013包含光谱范围Δλ4中的光。在某些实施例中,光谱范围Δλ1、Δλ2和Δλ3可对应于蓝光、绿光和红光。光转向元件1006可有效收集光谱范围Δλ1中的光且将其转向为光导1001的导向模式,引导朝向PV电池1007。PV电池1007的带隙有效吸收光谱范围Δλ1中的光。类似地,光转向元件1005和1004分别可有效收集光谱范围Δλ2和Δλ3中的光且将其转向为光导1002和1003的导向模式,引导朝向PV电池1008和1009。PV电池1008和1009的带隙分别有效吸收光谱范围Δλ2和Δλ3中的光。图10中说明的实施例中还展示包含光谱范围Δλ4中的光的光束1013,所述光谱范围Δλ4是不需要的光谱范围(例如,IR或UV)。光束1013未经光转向元件1004、1005和1006的任一者转向且透射出。
如本文所描述,可将具有不同全息层或衍射光学元件的多个光导或光导层堆叠。尽管图6-8和图10中展示具有三个不同全息层或衍射光学元件的三个光导或光导层,但可使用具有更多或更少不同全息层或衍射光学元件的更多或更少光导或光导层。不需要在整个堆叠中使用相同配置。举例来说,可使用气隙分隔一些光导,同时可使用低折射率材料分隔其它光导。另外,彼此未光学隔离的光导层也可与一个或一个以上光学隔离的光导一起包括。使用多个堆叠可改进效率。多个全息层的效率(例如)通常高于单层中所记录的多个全息图的效率。因此,经全息图衍射且(例如)耦合到光电池的光的量可增加。
在各种实施例中,光导为薄的,例如小于1厘米。在某些实施例中,光导可例如小于1mm、0.5mm或0.25mm。因此,光导可称为薄膜。此类薄膜可包含聚合物或塑料。此类薄膜可为轻的、柔性的、便宜的且易于制造。
包含衍射特征的光转向元件也可为薄的,例如小于100μm。在某些实施例中光转向元件可(例如)小于50μm、10μm或1μm。同样,光转向元件可称为薄膜。此类薄膜可包含光敏材料。举例来说,在一个实施例中光转向元件可包含来自特拉华州威尔明顿市(Wilmington,DE)的杜邦公司(DuPont)的全息聚合物。
在各种实施例中,可在包含光导的载体上形成光转向元件。如上所述,此载体可为小于1毫米厚(例如,小于0.5mm、0.3mm或0.1mm)的薄膜。类似地,此载体可包含聚合物或塑料且为柔性且便宜的。
可将全息记录材料涂覆到载体上且在所述涂层中可记录全息图或衍射光学元件。在一些实施例中可将此涂层显影以形成光转向特征。在某些实施例中,可使用母板来形成载体上的涂层中的光转向特征。可将光学方法与母板结合使用来形成涂层中的光转向特征。还可使用例如压印等其它方法从母板形成光转向特征。
可(例如)将母板设置于筒(drum)上,且其上具有涂层的载体可穿过所述滚筒以在涂层中产生衍射特征。在一些实施例中,此配置用于压印工艺中。在一些实施例中,为使表面平坦化和/或保护衍射特征或出于其它原因,可将一层设置于例如图3C中所展示的衍射特征上。在一些实施例中,所述层可包含折射率比光转向元件低的低折射率材料。
为制造大型母板,可使用光学方法经由计算机产生法制造第一母板。在一些实施例中,此第一母板可包含具有由光刻和蚀刻技术形成的特征的晶片。可使用其它方法来制造此第一母板。此母板可用于生产多个相同电铸形体(electroform)。在一些实施例中,这些电铸形体的宽度和长度可小于12英寸。在一些实施例中,所述电铸形体的宽度和长度可为约6英寸。所述电铸形体可布置成一阵列且安装于衬底上以产生较大母板。此母板可包括(例如)10-20个此类电铸形体。较大的母板可用于制造其中具有转向特征的大型片。可使用例如热压印、UV压印等压印。也可使用其它方法。在一些实施例中此类片可大于1米宽。此方法使得能够生产大型片而无需使用例如透镜、棱镜和/或镜面等非常大的光学器件。
在另一实施例中,将在可包含光导的基底膜或载体上形成的全息特征或衍射转向特征的片设置于共同载体膜上。此载体膜可比条带宽。在一个实施例中,(例如)条带为5-10厘米宽且布置于约1米宽的载体上。然而,在这些范围之外的尺寸是可能的。可使用粘合剂将全息或衍射层粘合到载体膜。其上设置全息特征或衍射转向特征的层(例如,载体、粘合剂和基底膜)的任一者或全部可用作光导且将光在其中传播和导向。
如上所述,可将光收集器与PV电池集成以捕获日光且将其转化为电。图11A展示与光收集器1102集成的PV电池1101的透视图。光收集器1102包含向前表面1102f和向后表面1102r。光收集器1102进一步包含介于向前表面1102f与向后表面1102r之间的多个边缘1102e。如图11A中所示,可将PV电池1101相对于多个边缘1102e中的一者或一者以上横向设置。可形成光收集器以便捕获和收集不同入射角和不同波长的光且将所捕获的光朝向一个或一个以上PV电池引导。
图11B展示一实施例的俯视图,所述实施例包含光收集器1102和沿所述光收集器1102的一个边缘设置的PV电池1101。图11C展示一实施例的俯视图,其中沿光收集器1102的两个不同边缘设置两个PV电池1101,而图11D展示一实施例的俯视图,其中沿光收集器1102的四个不同边缘设置四个PV电池1101。沿光收集器的一个或一个以上边缘设置超过四个PV电池的其它实施例是可能的。光收集器可经设计以使不同波长的入射光被朝向不同PV电池引导。在一些实施例中,可将PV电池设置在光收集器1102的一个或一个以上隅角处。
如图12中所示,可使不需要的波长的入射光从光收集器朝向设置于光收集器的后方的太阳能热转换器透射出。图12展示可由入射光发热和发电的系统的侧视图。展示于图12中的实施例包含光收集器1201。光收集器1201由光导和具有衍射特征或全息图的光转向层组成。展示于图12中的实施例进一步包含相对于光收集器1201的边缘横向设置的PV电池1202。光收集器1201朝向PV电池1202收集且导向入射的太阳能辐射的一部分,在PV电池1202处将其转化为电。太阳能辐射的不需要的光谱频率(例如,UV和IR)从光收集器1201透射出且朝向产热元件1203(例如,太阳能热转换器)引导。
使用包含表面衍射特征或全息图的光收集板、片或膜向光电池收集、集中和引导光的方法可用于实现具有增加的效率且可为便宜、薄、重量轻且对环境稳定和稳健的太阳能电池。包含耦合到光电池的光收集板、片或膜的太阳能电池可经布置以形成太阳能电池面板。使用此方法形成的太阳能电池面板可较轻,对环境稳定和稳健且相对易于升级。举例来说,当新一代更有效的PV电池变得可用时,可将来自这些面板的较旧PV电池以较新的PV电池替换。还可相对容易地替换光收集板、片或膜。
此类太阳能电池面板可在多种应用中使用。举例来说,如图13中所说明,可将包含多个光学耦合到PV电池和/或太阳能热产生器的光收集器的太阳能电池面板安装于住宅或商业建筑的屋顶上或置于门窗上以提供家用或商用补充电力。光收集器可由透明或半透明的板、片或膜形成。光收集器可(例如)允许红外辐射穿过而到达收集器下方的空间区域(例如,屋顶)以加热房子或建筑物或水管。光收集器可包含具有反射全息图的光转向层,所述反射全息图出于除收集或捕获入射光之外的美学目的反射所需的颜色(例如,红色或棕色)。光收集器可为刚性或柔性的。在一些实施例中,光收集器可足够地柔性从而卷起。如图13中所示,包含此类片1308的太阳能电池面板可附接到窗玻璃。光收集片可为透明的从而透过窗户可见。然而,光收集片可通过将光重定向到PV电池而减弱一些光。在一些实施例中光收集片用作中性密度滤光片,使跨越可见和可能的不可见光谱(例如,红外线)的透射减少大体上恒定量。因此,此类片可减少住宅和建筑物中的眩光且降低其中的温度。或者光收集片可能经着色。在一些实施例中,光收集器可具有波长过滤性质以滤出紫外辐射或其它非可见光谱成份。在某些实施例中,可将光收集片用作可卷上或卷下的遮光帘或附接到卷上或卷下的遮光帘。
在其它应用中,分别如图14和15中所示,可将光收集器安装于汽车和膝上型计算机上以提供电力。在图14中,将光收集板、片或膜1404放置到汽车顶盖上。可沿光收集器1404的边缘设置光电池1408。由光电池产生的电力可(例如)用于给由汽油、电或两者提供动力的车辆的电池再充电,或也可使电组件运作。在图15中,可将光收集板、片或膜1504附接到膝上型计算机的主体(例如,外壳)。在不存在电连接的情况下这可有利地为膝上型计算机提供电力。或者,光学耦合到光电池的光导收集器可用于给膝上型计算机电池再充电。
在一些实施例中,可将光学耦合到光电池的光收集板、片或膜附接到衣物或鞋。举例来说,图16说明一夹克或背心,其包含光学耦合到设置于所述夹克或背心的下部边缘周围的光电池1608的光收集板、片或膜1604。在一些实施例中,可将光电池1608设置于夹克或背心的其它地方。光收集板、片或膜1604可将环境光收集、集中和引导到光电池1608。由光电池1608产生的电可用于给手持式装置(例如,PDA、mp3播放器、手机等)加电。或者,由光电池1608产生的电可用于使在黑暗中由航空地勤人员、警察、消防人员和应急工作人员穿戴的背心和夹克发光以增加能见度。在图17中说明的另一实施例中,可将光收集板、片或膜1704设置于鞋上。可将光电池1708沿光收集板、片或膜1704的边缘设置。
还可将包含耦合到光电池的具有表面衍射特征或全息图的光收集板、片或膜的太阳能电池面板安装于飞机、卡车、火车、自行车、帆船、卫星以及其它车辆和结构上。举例来说,如图18中所示,可将光收集板、片或膜1804附接到飞机的翼或所述飞机的窗玻璃。如图18中所说明,可将光电池1808沿光收集板、片或膜的边缘设置。所产生的电可用于给飞机的各部分提供动力。图19说明使用耦合到光电池的光收集器给帆船中的导航仪表或例如冰箱、电视机和其它电气设备等装置加电。可将光收集板、片或膜1904附接到帆船的帆。可将PV电池1908设置于光收集板、片或膜1904的边缘。在替代实施例中,可将光收集板、片或膜1904附接到帆船的主体(例如,船舱船体或甲板)。如图20中所示,可将光收集板、片或膜2004安装于自行车上。图21说明光学耦合到光电池的光收集板、片或膜给通信卫星、气象卫星和其它类型的卫星提供动力的又一应用。光收集板、片或膜还可用于其它应用。
图22说明具有足够柔性以便卷起的光收集片2204。光收集片光学耦合到光电池。可将图22中描述的实施例卷起且在露营或背包旅行时携带以便在电连接稀少的户外和边远地区产生电力。另外,可将光学耦合到光电池的光收集板、片或膜附接到多种结构和产品以提供电。
光学耦合到光电池的光收集板、片或膜可具有模块化的附加优点。举例来说,视设计而定,光电池可经配置以便可选择性地附接到光收集板、片或膜且可与所述光收集板、片或膜分离。因此可定期用更新且更有效的光电池替换现有光电池而不必替换整个系统。此替换光电池的能力可大体上降低维护和升级的成本。
多种其它变化也是可能的。可添加、移除或重新布置膜、层、组件和/或元件。此外,可添加、移除处理步骤或将处理步骤重新排序。并且,尽管已在本文中使用术语膜和层,但如本文所使用的此类术语包括膜堆叠和多层。可使用粘合剂将此类膜堆叠和多层粘合到其它结构,或可使用沉积或以其它方式将此类膜堆叠和多层形成于其它结构上。
上文描述的实例仅为示范性的,且所属领域的技术人员现可在不脱离本文所揭示的发明概念的情况下大量利用上述实例且偏离上述实例。所属领域的技术人员可容易了解对这些实例的各种修改,且本文所定义的一般原理可在不偏离本文所描述的新颖方面的精神或范围的情况下应用于其它实例。因此,本发明的范围不希望限于本文所展示的实例,而是将被赋予与本文所揭示的原理和新颖特征一致的最广范围。本文专门使用词语“示范性”来表示“充当一实例、例子或说明”。不必将本文中描述为“示范性”的任何实例均解释为与其它实例相比为优选或有利的。

Claims (39)

1.一种用于收集太阳能的装置,其包含:
第一和第二光导层,其在其中导光,所述第一光导层设置在所述第二光导层的前方;
第一光电池;
第一多个衍射特征,其设置在所述第一光导层的向前表面处且经配置以重定向在第一角度范围内入射在所述第一光导层上的环境光;以及
第二多个衍射特征,其设置在所述第二光导层的向前表面处,以重定向在第二角度范围内入射在所述第二光导层上的环境光,所述第二角度范围不同于所述第一角度范围,
其中光在所述第一和第二光导层中被导向到所述第一光电池。
2.根据权利要求1所述的装置,其中所述第一和第二光导层包含塑料。
3.根据权利要求2所述的装置,其中所述塑料包含丙烯酸、聚碳酸酯、聚酯或环烯聚合物。
4.根据权利要求1所述的装置,其中所述第一光电池包含光伏电池。
5.根据权利要求1所述的装置,其中所述第一光电池对接耦合到所述第一光导的边缘。
6.根据权利要求1所述的装置,其中所述第一光电池设置在所述第一光导的隅角处。
7.根据权利要求1所述的装置,其中所述第一多个衍射特征与所述第二多个衍射特征是分离的。
8.根据权利要求1所述的装置,其中所述第一和第二光导层中的每一者为至少1cm2
9.根据权利要求1所述的装置,其中所述第一和第二光导是柔性的。
10.根据权利要求1所述的装置,其中所述第一和第二光导层包含薄膜。
11.根据权利要求1所述的装置,其中所述第一和第二光导层各自具有小于500微米的厚度。
12.根据权利要求1所述的装置,其中所述第一和第二多个衍射特征各自设置在单独的层中,所述单独的层各自的厚度在1μm与100μm之间。
13.根据权利要求1所述的装置,其中所述第一和第二多个衍射特征各自设置在单独的层中,所述单独的层分离至少100微米。
14.根据权利要求1所述的装置,其中所述第一多个衍射特征包含体积特征。
15.根据权利要求1所述的装置,其中所述第一多个衍射特征包含表面起伏特征。
16.根据权利要求1所述的装置,其中所述第一和第二多个衍射特征形成于第一和第二单独全息层中。
17.根据权利要求16所述的装置,其中所述第一和第二单独全息层包含透射全息图。
18.根据权利要求1所述的装置,其进一步包含气隙,所述气隙位于所述第一光导层与所述第二光导层之间,从而使所述第一多个衍射特征和所述第二多个衍射特征分离。
19.根据权利要求1所述的装置,其进一步包含光学隔离层,所述光学隔离层位于所述第一光导层与所述第二光导层之间,从而使所述第一多个衍射特征和所述第二多个衍射特征分离,所述光学隔离层具有比所述第一和第二光导层低的折射率。
20.根据权利要求1所述的装置,其中所述第一和第二光导层形成单个光导的若干部分。
21.根据权利要求1所述的装置,其中所述第一和第二光导层层压在一起。
22.根据权利要求1所述的装置,其中所述第一和第二光导层设置在汽车、飞机、航天器或航海船舶上。
23.根据权利要求1所述的装置,其中所述第一和第二光导层设置在自行车、手推童车或拖车上。
24.根据权利要求1所述的装置,其中所述第一和第二光导层设置在衣物上。
25.根据权利要求24所述的装置,其中所述第一和第二光导层设置在衬衫、衬裤、短裤、外衣、外套、背心、帽子或鞋类上。
26.根据权利要求1所述的装置,其中所述第一和第二光导层设置在计算机、手机或个人数字助理上。
27.根据权利要求1所述的装置,其中所述第一和第二光导层设置在建筑结构上。
28.根据权利要求27所述的装置,其中所述第一和第二光导层设置在房屋或建筑物上。
29.根据权利要求1所述的装置,其中所述第一和第二光导层设置在电装置上。
30.根据权利要求29所述的装置,其中所述第一和第二光导层设置在灯、电话机或马达上。
31.根据权利要求1所述的装置,其中所述第一和第二光导层设置在帐篷或睡袋上。
32.根据权利要求1所述的装置,其中所述第一和第二光导层被卷起或折叠。
33.一种用于收集太阳能的装置,其包含:
第一和第二用于导光的装置,所述第一导光装置设置在所述第二导光装置的前方;
第一用于吸收光的装置,所述光吸收装置经配置以因所述光吸收装置所吸收的光而产生电信号;
第一多个用于衍射光的装置,所述光衍射装置设置在所述第一导光装置的向前表面处且经配置以重定向在第一角度范围内入射在所述第一导光装置上的环境光;以及
第二多个用于衍射光的装置,其设置在所述第二导光装置的向前表面处,所述第二多个光衍射装置经配置以重定向在第二角度范围内入射在所述第二导光装置上的环境光,所述第二角度范围不同于所述第一角度范围,
其中光在所述第一和第二导光装置中被导向到所述第一光吸收装置。
34.根据权利要求33所述的装置,其中所述第一和第二导光装置包含光导层;或所述第一光吸收装置包含光电池;或所述多个光衍射装置包含衍射特征。
35.一种制造用于收集太阳能的装置的方法,所述方法包含:
提供在其中导光的第一和第二光导层,所述第一光导层设置于所述第二光导层的前方,所述第一光导层中包括第一多个衍射特征,且所述第二光导层中包括第二多个衍射特征,使得所述第一多个衍射特征设置在所述第一光导层的顶部并且所述第二多个衍射特征设置在所述第二光导层的顶部;
提供第一光电池;
其中所述第一多个衍射特征经配置以重导向在第一角度范围内入射的环境光,使得所述在第一角度范围内入射的环境光在所述第一光导层中朝向所述第一光电池被导向,且所述第二多个衍射特征经配置以重导向在第二角度范围内入射的环境光,使得所述在所述第二角度范围内入射的环境光在所述第二光导层中被导向到所述第一光电池,所述第二角度范围不同于所述第一角度范围。
36.根据权利要求35所述的方法,其中提供第一光电池包含将所述第一光电池对接耦合到所述第一光导的边缘。
37.根据权利要求35所述的方法,其中提供第一光电池包含将所述第一光电池设置在所述第一光导的隅角处。
38.根据权利要求35所述的方法,其中其中所述第二多个衍射特征设置在所述第二光导层上。
39.根据权利要求35所述的方法,其中所述第一多个衍射特征压印在所述第一光导上,且所述第二多个衍射特征压印在所述第二光导上。
CN2009801050255A 2008-02-12 2009-02-09 双层薄膜全息太阳能集中器/收集器 Expired - Fee Related CN101946334B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US2813908P 2008-02-12 2008-02-12
US61/028,139 2008-02-12
PCT/US2009/033593 WO2009102671A2 (en) 2008-02-12 2009-02-09 Thin film holographic solar concentrator/collector

Publications (2)

Publication Number Publication Date
CN101946334A CN101946334A (zh) 2011-01-12
CN101946334B true CN101946334B (zh) 2013-08-21

Family

ID=40756625

Family Applications (2)

Application Number Title Priority Date Filing Date
CN2009801050236A Pending CN101946333A (zh) 2008-02-12 2009-02-09 双层薄膜全息太阳能集中器/收集器
CN2009801050255A Expired - Fee Related CN101946334B (zh) 2008-02-12 2009-02-09 双层薄膜全息太阳能集中器/收集器

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN2009801050236A Pending CN101946333A (zh) 2008-02-12 2009-02-09 双层薄膜全息太阳能集中器/收集器

Country Status (7)

Country Link
US (2) US20090199893A1 (zh)
EP (2) EP2248189A1 (zh)
JP (5) JP2011515017A (zh)
KR (2) KR20100114125A (zh)
CN (2) CN101946333A (zh)
TW (2) TW201001735A (zh)
WO (2) WO2009102671A2 (zh)

Families Citing this family (99)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI289708B (en) 2002-12-25 2007-11-11 Qualcomm Mems Technologies Inc Optical interference type color display
US7342705B2 (en) 2004-02-03 2008-03-11 Idc, Llc Spatial light modulator with integrated optical compensation structure
US7508571B2 (en) 2004-09-27 2009-03-24 Idc, Llc Optical films for controlling angular characteristics of displays
US7630123B2 (en) 2004-09-27 2009-12-08 Qualcomm Mems Technologies, Inc. Method and device for compensating for color shift as a function of angle of view
US7813026B2 (en) 2004-09-27 2010-10-12 Qualcomm Mems Technologies, Inc. System and method of reducing color shift in a display
US20140166067A1 (en) * 2006-08-07 2014-06-19 Emcore Solar Power, Inc. Solar power system for aircraft, watercraft, or land vehicles using inverted metamorphic multijunction solar cells
KR101628340B1 (ko) 2006-10-06 2016-06-08 퀄컴 엠이엠에스 테크놀로지스, 인크. 디스플레이 장치 및 디스플레이의 형성 방법
EP2069838A2 (en) 2006-10-06 2009-06-17 Qualcomm Mems Technologies, Inc. Illumination device with built-in light coupler
WO2008045207A2 (en) 2006-10-06 2008-04-17 Qualcomm Mems Technologies, Inc. Light guide
US8107155B2 (en) 2006-10-06 2012-01-31 Qualcomm Mems Technologies, Inc. System and method for reducing visual artifacts in displays
WO2008045463A2 (en) 2006-10-10 2008-04-17 Qualcomm Mems Technologies, Inc. Display device with diffractive optics
US7864395B2 (en) 2006-10-27 2011-01-04 Qualcomm Mems Technologies, Inc. Light guide including optical scattering elements and a method of manufacture
WO2009052324A2 (en) 2007-10-19 2009-04-23 Qualcomm Mems Technologies, Inc. Display with integrated photovoltaic device
US8068710B2 (en) 2007-12-07 2011-11-29 Qualcomm Mems Technologies, Inc. Decoupled holographic film and diffuser
WO2009102731A2 (en) 2008-02-12 2009-08-20 Qualcomm Mems Technologies, Inc. Devices and methods for enhancing brightness of displays using angle conversion layers
US8049951B2 (en) * 2008-04-15 2011-11-01 Qualcomm Mems Technologies, Inc. Light with bi-directional propagation
US20100180937A1 (en) * 2008-06-30 2010-07-22 General Electric Company Holographic energy-collecting medium and associated device
DE102008035575B4 (de) * 2008-07-30 2016-08-11 Soitec Solar Gmbh Photovoltaik-Vorrichtung zur direkten Umwandlung von Sonnenenergie in elektrische Energie enthaltend eine zweistufige aus mehreren Elementen bestehende Konzentratoroptik
WO2010033632A2 (en) * 2008-09-18 2010-03-25 Qualcomm Mems Technologies, Inc. Increasing the angular range of light collection in solar collectors/concentrators
TWI382551B (zh) * 2008-11-06 2013-01-11 Ind Tech Res Inst 太陽能集光模組
US9105783B2 (en) * 2009-01-26 2015-08-11 The Aerospace Corporation Holographic solar concentrator
CA2658193A1 (en) * 2009-03-12 2010-09-12 Morgan Solar Inc. Stimulated emission luminescent light-guide solar concentrators
US8290318B2 (en) * 2009-04-21 2012-10-16 Svv Technology Innovations, Inc. Light trapping optical cover
TWI414072B (zh) * 2009-05-06 2013-11-01 Ind Tech Res Inst 太陽能模組
US20120247537A1 (en) * 2009-06-17 2012-10-04 Aaron Mei Glass system of a solar photovoltaic panel
WO2011033958A1 (ja) 2009-09-18 2011-03-24 シャープ株式会社 太陽電池モジュール及び太陽光発電装置
WO2011039356A1 (en) * 2009-10-01 2011-04-07 Danmarks Tekniske Universitet Solar energy harvesting system
WO2011122220A1 (ja) * 2010-03-30 2011-10-06 シャープ株式会社 太陽電池モジュール及び太陽光発電装置
US8735791B2 (en) 2010-07-13 2014-05-27 Svv Technology Innovations, Inc. Light harvesting system employing microstructures for efficient light trapping
CN101916800B (zh) * 2010-08-13 2014-06-25 浙江尚越光电科技有限公司 一种提高铜铟镓硒太阳能电池光电转化效率的方法及结构
WO2012066935A1 (ja) * 2010-11-16 2012-05-24 シャープ株式会社 太陽電池モジュールおよび太陽光発電装置
KR101753739B1 (ko) 2010-12-08 2017-07-05 삼성전자주식회사 태양광 집광판
US8902484B2 (en) 2010-12-15 2014-12-02 Qualcomm Mems Technologies, Inc. Holographic brightness enhancement film
KR101880729B1 (ko) 2011-02-01 2018-08-20 삼성전자주식회사 태양광 집광판
TWI505489B (zh) 2011-02-11 2015-10-21 Wintek Corp 集光模組以及太陽能裝置
US20120214556A1 (en) * 2011-02-17 2012-08-23 Nokia Corporation Method and Apparatus for Solar Cell Light Concentrator Panel
US9263605B1 (en) 2011-04-20 2016-02-16 Morgan Solar Inc. Pulsed stimulated emission luminescent photovoltaic solar concentrator
US8791355B2 (en) 2011-04-20 2014-07-29 International Business Machines Corporation Homogenizing light-pipe for solar concentrators
US20120318324A1 (en) * 2011-06-15 2012-12-20 Arizona Board of Regents, a body Corporate of the State of Arizona, Acting for and on Behalf of Ariz Laterally Arranged Multiple-Bandgap Solar Cells
CN102375171B (zh) * 2011-11-09 2013-10-02 中国科学院物理研究所 一种衍射光学元件及其设计方法和在太阳能电池中的应用
TWI470176B (zh) * 2011-12-14 2015-01-21 集光發電窗組及其集光發電模組
CN103378199B (zh) * 2012-04-26 2018-11-16 常州亚玛顿股份有限公司 太阳能光热系统
TWI574424B (zh) * 2012-12-28 2017-03-11 聚森股份有限公司 導光發電窗組及其導光發電模組
IN2015DN01583A (zh) * 2012-08-13 2015-07-03 Bayer Materialscience Ag
US9112087B2 (en) 2012-09-16 2015-08-18 Shalom Wretsberger Waveguide-based energy converters, and energy conversion cells using same
GB2506456A (en) * 2012-09-16 2014-04-02 Andle C Jeffrey Continuous Resonant Trap Refractor
US8532448B1 (en) 2012-09-16 2013-09-10 Solarsort Technologies, Inc. Light emitting pixel structure using tapered light waveguides, and devices using same
US8530825B1 (en) 2012-09-16 2013-09-10 Solarsort Technologies, Inc. Pixel structure and image array sensors using same
US9823415B2 (en) 2012-09-16 2017-11-21 CRTRIX Technologies Energy conversion cells using tapered waveguide spectral splitters
WO2014061719A1 (ja) * 2012-10-19 2014-04-24 国立大学法人北海道大学 光電変換装置、建築物および電子機器
US10355156B2 (en) * 2013-01-21 2019-07-16 Holomedia, Llc Light-concentrating mechanism, photovoltaic power generation device, window structure, and window glass
TWI642201B (zh) 2013-02-08 2018-11-21 劉鴻達 可撓式集光模組及包含可撓式集光模組的顯示器單元
US10546968B2 (en) * 2013-02-21 2020-01-28 HolFocus, LLC Solar concentration system using volume holograms
US9477033B2 (en) 2013-04-23 2016-10-25 Lumenco, Llc Multi-layered waveguide for capturing solar energy
CN105143932A (zh) * 2013-04-29 2015-12-09 夏普株式会社 能量产生透明结构和利用入射到能量产生透明结构的光来产生能量的方法
AU2014308538B2 (en) * 2013-08-19 2018-09-13 Tropiglas Technologies Ltd A device for generating electric energy
EP3039473B1 (en) * 2013-09-01 2024-04-17 Varun Akur Venkatesan Optical device for light collection
CN103512654B (zh) * 2013-09-13 2015-04-22 中国水产科学研究院东海水产研究所 一种全方位环境光采集装置以及鱼类放流标志
WO2015073586A1 (en) * 2013-11-12 2015-05-21 Nitto Denko Corporation Solar energy collection systems utilizing holographic optical elements useful for building integrated photovoltaics
FR3014417B1 (fr) * 2013-12-10 2017-09-08 European Aeronautic Defence & Space Co Eads France Nouvelle architecture de vehicule spatial
KR101495218B1 (ko) 2014-02-05 2015-02-24 (주) 한교아이씨 홀로그램필름을 이용한 고정방식 태양광 발전모듈
US11128179B2 (en) 2014-05-14 2021-09-21 California Institute Of Technology Large-scale space-based solar power station: power transmission using steerable beams
US10144533B2 (en) 2014-05-14 2018-12-04 California Institute Of Technology Large-scale space-based solar power station: multi-scale modular space power
WO2015187739A1 (en) 2014-06-02 2015-12-10 California Institute Of Technology Large-scale space-based solar power station: efficient power generation tiles
US12021162B2 (en) 2014-06-02 2024-06-25 California Institute Of Technology Ultralight photovoltaic power generation tiles
JP2015231016A (ja) * 2014-06-06 2015-12-21 Tdk株式会社 太陽電池
JP2016004809A (ja) * 2014-06-13 2016-01-12 Tdk株式会社 太陽電池
GB201413156D0 (en) 2014-07-24 2014-09-10 Bowater Holographic Res Ltd And Harman Technology Ltd Holographic windows
US9542970B2 (en) 2015-01-30 2017-01-10 National Central University Light interference module and holographic storage apparatus
TWI581260B (zh) * 2015-01-30 2017-05-01 國立中央大學 光干涉模組以及全像儲存裝置
WO2016183201A1 (en) * 2015-05-12 2016-11-17 Nitto Denko Corporation Solar energy collection systems utilizing holographic optical elements useful for building integrated photovoltaics
EP3296774A4 (en) * 2015-05-12 2019-01-23 Egarim Corporation Japan LIGHT CONDENSATION DEVICE, PHOTOVOLTAIC DEVICE, LIGHT CONDENSATION FILM, PHOTOVOLTAIC FILM AND METHOD FOR PRODUCING A LIGHT CONDENSATION DEVICE OR PHOTOVOLTAIC DEVICE
EP3325347B1 (en) 2015-07-22 2021-06-16 California Institute of Technology Large-area structures for compact packaging
US10992253B2 (en) 2015-08-10 2021-04-27 California Institute Of Technology Compactable power generation arrays
WO2017027633A1 (en) 2015-08-10 2017-02-16 California Institute Of Technology Systems and methods for controlling supply voltages of stacked power amplifiers
US11609427B2 (en) * 2015-10-16 2023-03-21 Ostendo Technologies, Inc. Dual-mode augmented/virtual reality (AR/VR) near-eye wearable displays
US11106273B2 (en) 2015-10-30 2021-08-31 Ostendo Technologies, Inc. System and methods for on-body gestural interfaces and projection displays
US10345594B2 (en) 2015-12-18 2019-07-09 Ostendo Technologies, Inc. Systems and methods for augmented near-eye wearable displays
US10578882B2 (en) 2015-12-28 2020-03-03 Ostendo Technologies, Inc. Non-telecentric emissive micro-pixel array light modulators and methods of fabrication thereof
US10353203B2 (en) 2016-04-05 2019-07-16 Ostendo Technologies, Inc. Augmented/virtual reality near-eye displays with edge imaging lens comprising a plurality of display devices
US20170288604A1 (en) * 2016-04-05 2017-10-05 Patrick Kenneth Powell Solar panel design assembly
ITUA20162561A1 (it) * 2016-04-13 2017-10-13 Goal S R L Pellicola olografica di particolare applicazione nei pannelli fotovoltaici, nei pannelli termico-solari e nei pannelli di diffusione della luce solare
US10453431B2 (en) 2016-04-28 2019-10-22 Ostendo Technologies, Inc. Integrated near-far light field display systems
US10522106B2 (en) 2016-05-05 2019-12-31 Ostendo Technologies, Inc. Methods and apparatus for active transparency modulation
US10908431B2 (en) 2016-06-06 2021-02-02 Shalom Wertsberger Nano-scale conical traps based splitter, combiner, and reflector, and applications utilizing same
CN106196577A (zh) * 2016-07-14 2016-12-07 安徽状元郎电子科技有限公司 一种利用太阳能热水器发电的电热水器
CN109923345A (zh) 2016-11-03 2019-06-21 巴斯夫欧洲公司 采光面板
JPWO2018109966A1 (ja) * 2016-12-15 2019-10-24 パナソニックIpマネジメント株式会社 導波シート及び光電変換装置
WO2018140642A1 (en) * 2017-01-27 2018-08-02 The Arizona Board Of Regents On Behalf Of The University Of Arizona Holographic system for extended energy capture
EP3435139A1 (en) * 2017-07-25 2019-01-30 Essilor International Optical article with a holographic waveguide
WO2019078081A1 (ja) * 2017-10-20 2019-04-25 パナソニックIpマネジメント株式会社 導波シート及び光電変換装置
CN111213076B (zh) * 2017-10-20 2021-06-22 株式会社Lg化学 光学隔离元件
US11086052B2 (en) * 2017-10-20 2021-08-10 Lg Chem, Ltd. Optical isolation element
CN108336965A (zh) * 2017-12-13 2018-07-27 清华大学深圳研究生院 一种全息衍射太阳能玻璃窗
KR102096266B1 (ko) * 2017-12-15 2020-04-02 주식회사 엘지화학 광고립 소자
US11634240B2 (en) 2018-07-17 2023-04-25 California Institute Of Technology Coilable thin-walled longerons and coilable structures implementing longerons and methods for their manufacture and coiling
CN109237815A (zh) * 2018-08-23 2019-01-18 清华大学深圳研究生院 一种反射体全息太阳能能量转换装置
US11772826B2 (en) 2018-10-31 2023-10-03 California Institute Of Technology Actively controlled spacecraft deployment mechanism
JPWO2021132615A1 (zh) * 2019-12-26 2021-07-01

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4863224A (en) * 1981-10-06 1989-09-05 Afian Viktor V Solar concentrator and manufacturing method therefor
US5118361A (en) * 1990-05-21 1992-06-02 The Boeing Company Terrestrial concentrator solar cell module
CN1358333A (zh) * 1999-05-28 2002-07-10 特尔雷森有限责任公司 用于凝聚光辐射的装置
CN1542757A (zh) * 2003-04-04 2004-11-03 ��ʽ���綫֥ 光盘和光盘设备
TW200510868A (en) * 2003-06-23 2005-03-16 Hitachi Chemical Co Ltd Photoelectric system

Family Cites Families (110)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2677714A (en) * 1951-09-21 1954-05-04 Alois Vogt Dr Optical-electrical conversion device comprising a light-permeable metal electrode
US3247392A (en) * 1961-05-17 1966-04-19 Optical Coating Laboratory Inc Optical coating and assembly used as a band pass interference filter reflecting in the ultraviolet and infrared
US4154219A (en) * 1977-03-11 1979-05-15 E-Systems, Inc. Prismatic solar reflector apparatus and method of solar tracking
US4149902A (en) * 1977-07-27 1979-04-17 Eastman Kodak Company Fluorescent solar energy concentrator
US4200472A (en) * 1978-06-05 1980-04-29 The Regents Of The University Of California Solar power system and high efficiency photovoltaic cells used therein
US4488047A (en) * 1981-11-25 1984-12-11 Exxon Research & Engineering Co. High efficiency multiple layer, all solid-state luminescent solar concentrator
US4497974A (en) * 1982-11-22 1985-02-05 Exxon Research & Engineering Co. Realization of a thin film solar cell with a detached reflector
GB2198867A (en) * 1986-12-17 1988-06-22 Philips Electronic Associated A liquid crystal display illumination system
US5123247A (en) * 1990-02-14 1992-06-23 116736 (Canada) Inc. Solar roof collector
US5110370A (en) * 1990-09-20 1992-05-05 United Solar Systems Corporation Photovoltaic device with decreased gridline shading and method for its manufacture
US5515184A (en) * 1991-11-12 1996-05-07 The University Of Alabama In Huntsville Waveguide hologram illuminators
US6381022B1 (en) * 1992-01-22 2002-04-30 Northeastern University Light modulating device
US5528720A (en) * 1992-03-23 1996-06-18 Minnesota Mining And Manufacturing Co. Tapered multilayer luminaire devices
JPH0627325A (ja) * 1992-07-07 1994-02-04 Sekisui Chem Co Ltd 面光源装置
US6674562B1 (en) * 1994-05-05 2004-01-06 Iridigm Display Corporation Interferometric modulation of radiation
US5398125A (en) * 1993-11-10 1995-03-14 Minnesota Mining And Manufacturing Company Liquid crystal projection panel having microlens arrays, on each side of the liquid crystal, with a focus beyond the liquid crystal
TW334523B (en) * 1994-03-02 1998-06-21 Toso Kk Back light
US6680792B2 (en) * 1994-05-05 2004-01-20 Iridigm Display Corporation Interferometric modulation of radiation
US6040937A (en) * 1994-05-05 2000-03-21 Etalon, Inc. Interferometric modulation
US5886688A (en) * 1995-06-02 1999-03-23 National Semiconductor Corporation Integrated solar panel and liquid crystal display for portable computer or the like
US6046840A (en) * 1995-06-19 2000-04-04 Reflectivity, Inc. Double substrate reflective spatial light modulator with self-limiting micro-mechanical elements
US5877874A (en) * 1995-08-24 1999-03-02 Terrasun L.L.C. Device for concentrating optical radiation
US7907319B2 (en) * 1995-11-06 2011-03-15 Qualcomm Mems Technologies, Inc. Method and device for modulating light with optical compensation
US5726805A (en) * 1996-06-25 1998-03-10 Sandia Corporation Optical filter including a sub-wavelength periodic structure and method of making
US5782993A (en) * 1996-06-28 1998-07-21 Ponewash; Jackie Photovoltaic cells having micro-embossed optical enhancing structures
FR2751398B1 (fr) * 1996-07-16 1998-08-28 Thomson Csf Dispositif d'eclairage et application a l'eclairage d'un ecran transmissif
US5720827A (en) * 1996-07-19 1998-02-24 University Of Florida Design for the fabrication of high efficiency solar cells
US6486862B1 (en) * 1996-10-31 2002-11-26 Kopin Corporation Card reader display system
US5913594A (en) * 1997-02-25 1999-06-22 Iimura; Keiji Flat panel light source device and passive display device utilizing the light source device
JP3231655B2 (ja) * 1997-03-28 2001-11-26 シャープ株式会社 前方照明装置およびこれを備えた反射型液晶表示装置
US6879354B1 (en) * 1997-03-28 2005-04-12 Sharp Kabushiki Kaisha Front-illuminating device and a reflection-type liquid crystal display using such a device
US6021007A (en) * 1997-10-18 2000-02-01 Murtha; R. Michael Side-collecting lightguide
US5914804A (en) * 1998-01-28 1999-06-22 Lucent Technologies Inc Double-cavity micromechanical optical modulator with plural multilayer mirrors
WO1999049522A1 (en) * 1998-03-25 1999-09-30 Tdk Corporation Solar cell module
JP3279265B2 (ja) * 1998-03-26 2002-04-30 株式会社エム・アール・システム研究所 画像表示装置
JP2986773B2 (ja) * 1998-04-01 1999-12-06 嶋田プレシジョン株式会社 点光源用の導光板
US8928967B2 (en) * 1998-04-08 2015-01-06 Qualcomm Mems Technologies, Inc. Method and device for modulating light
US6377535B1 (en) * 1998-07-06 2002-04-23 Read-Rite Corporation High numerical aperture optical focusing device having a conical incident facet and a parabolic reflector for use in data storage systems
GB9905642D0 (en) * 1999-03-11 1999-05-05 Imperial College Light concentrator for PV cells
JP3471001B2 (ja) * 1999-04-16 2003-11-25 富士写真光機株式会社 照明光学系およびこれを用いた投射型表示装置
AU5405400A (en) * 1999-06-14 2001-01-02 Carlos J.R.P. Augusto Stacked wavelength-selective opto-electronic device
US6518944B1 (en) * 1999-10-25 2003-02-11 Kent Displays, Inc. Combined cholesteric liquid crystal display and solar cell assembly device
JP2001215501A (ja) * 2000-02-02 2001-08-10 Fuji Photo Film Co Ltd 照明装置および液晶表示装置
US6789910B2 (en) * 2000-04-12 2004-09-14 Semiconductor Energy Laboratory, Co., Ltd. Illumination apparatus
AU2001270833A1 (en) * 2000-07-18 2002-01-30 Optaglio Limited Diffractive device
US6538813B1 (en) * 2000-09-19 2003-03-25 Honeywell International Inc. Display screen with metallized tapered waveguides
US7072086B2 (en) * 2001-10-19 2006-07-04 Batchko Robert G Digital focus lens system
US6556338B2 (en) * 2000-11-03 2003-04-29 Intpax, Inc. MEMS based variable optical attenuator (MBVOA)
JP2002148615A (ja) * 2000-11-08 2002-05-22 Nitto Denko Corp 光学フィルム及び反射型液晶表示装置
US6580496B2 (en) * 2000-11-09 2003-06-17 Canesta, Inc. Systems for CMOS-compatible three-dimensional image sensing using quantum efficiency modulation
US6678026B2 (en) * 2001-04-10 2004-01-13 Seiko Epson Corporation Liquid crystal device and electronic apparatus
GB0114862D0 (en) * 2001-06-19 2001-08-08 Secr Defence Image replication system
US7263268B2 (en) * 2001-07-23 2007-08-28 Ben-Zion Inditsky Ultra thin radiation management and distribution systems with hybrid optical waveguide
US6895145B2 (en) * 2001-08-02 2005-05-17 Edward Ho Apparatus and method for collecting light
KR100403814B1 (ko) * 2001-08-13 2003-10-30 삼성전자주식회사 멀티칩 모듈을 이용하여 디.씨 옵셋을 감소시킨 다이렉트컨버젼 수신기
CN1559000A (zh) * 2001-09-26 2004-12-29 皇家飞利浦电子股份有限公司 波导、边缘发光照明装置和包含这种装置的显示器
US6636285B2 (en) * 2001-11-01 2003-10-21 Motorola, Inc. Reflective liquid crystal display with improved contrast
WO2003040829A2 (en) * 2001-11-07 2003-05-15 Applied Materials, Inc. Maskless printer using photoelectric conversion of a light beam array
US6998196B2 (en) * 2001-12-28 2006-02-14 Wavefront Technology Diffractive optical element and method of manufacture
US6577429B1 (en) * 2002-01-15 2003-06-10 Eastman Kodak Company Laser projection display system
US6574033B1 (en) * 2002-02-27 2003-06-03 Iridigm Display Corporation Microelectromechanical systems device and method for fabricating same
US6965468B2 (en) * 2003-07-03 2005-11-15 Reflectivity, Inc Micromirror array having reduced gap between adjacent micromirrors of the micromirror array
JP4123415B2 (ja) * 2002-05-20 2008-07-23 ソニー株式会社 固体撮像装置
US6741377B2 (en) * 2002-07-02 2004-05-25 Iridigm Display Corporation Device having a light-absorbing mask and a method for fabricating same
JP2004078613A (ja) * 2002-08-19 2004-03-11 Fujitsu Ltd タッチパネル装置
TW547670U (en) * 2002-11-08 2003-08-11 Hon Hai Prec Ind Co Ltd Backlight system and its light guide plate
US7639916B2 (en) * 2002-12-09 2009-12-29 Orec, Advanced Illumination Solutions Inc. Flexible optical device
KR100506088B1 (ko) * 2003-01-14 2005-08-03 삼성전자주식회사 액정표시장치
JP4397394B2 (ja) * 2003-01-24 2010-01-13 ディジタル・オプティクス・インターナショナル・コーポレイション 高密度照明システム
US7255979B2 (en) * 2003-04-01 2007-08-14 Kodak Il Ltd. Lenticular printing
KR100506092B1 (ko) * 2003-04-16 2005-08-04 삼성전자주식회사 측면 발광형 백라이트 장치의 도광판 및 이를 채용한 측면발광형 백라이트 장치
JP3829819B2 (ja) * 2003-05-08 2006-10-04 ソニー株式会社 ホログラフィックステレオグラム作成装置
WO2004106983A2 (en) * 2003-05-22 2004-12-09 Optical Research Associates Illumination in optical systems
EP1649309A4 (en) * 2003-07-03 2011-03-09 Holo Touch Inc HOLOGRAPHIC HUMAN MACHINE INTERFACES
US7025461B2 (en) * 2003-08-28 2006-04-11 Brookhaven Science Associates Interactive display system having a digital micromirror imaging device
CA2490603C (en) * 2003-12-24 2012-12-11 National Research Council Of Canada Optical off-chip interconnects in multichannel planar waveguide devices
US7342705B2 (en) * 2004-02-03 2008-03-11 Idc, Llc Spatial light modulator with integrated optical compensation structure
US7706050B2 (en) * 2004-03-05 2010-04-27 Qualcomm Mems Technologies, Inc. Integrated modulator illumination
US7213958B2 (en) * 2004-06-30 2007-05-08 3M Innovative Properties Company Phosphor based illumination system having light guide and an interference reflector
US7412119B2 (en) * 2004-06-30 2008-08-12 Poa Sana Liquidating Trust Apparatus and method for making flexible waveguide substrates for use with light based touch screens
US7161730B2 (en) * 2004-09-27 2007-01-09 Idc, Llc System and method for providing thermal compensation for an interferometric modulator display
US7911428B2 (en) * 2004-09-27 2011-03-22 Qualcomm Mems Technologies, Inc. Method and device for manipulating color in a display
US7327510B2 (en) * 2004-09-27 2008-02-05 Idc, Llc Process for modifying offset voltage characteristics of an interferometric modulator
US8031133B2 (en) * 2004-09-27 2011-10-04 Qualcomm Mems Technologies, Inc. Method and device for manipulating color in a display
US7653371B2 (en) * 2004-09-27 2010-01-26 Qualcomm Mems Technologies, Inc. Selectable capacitance circuit
US7508571B2 (en) * 2004-09-27 2009-03-24 Idc, Llc Optical films for controlling angular characteristics of displays
JP4743846B2 (ja) * 2005-05-10 2011-08-10 シチズン電子株式会社 光通信装置及びそれを用いた情報機器
US20070095386A1 (en) * 2005-06-06 2007-05-03 Solaria Corporation Method and system for integrated solar cell using a plurality of photovoltaic regions
US7760197B2 (en) * 2005-10-31 2010-07-20 Hewlett-Packard Development Company, L.P. Fabry-perot interferometric MEMS electromagnetic wave modulator with zero-electric field
JP2006065360A (ja) * 2005-11-16 2006-03-09 Omron Corp 導光器及び表示装置
US20070113887A1 (en) * 2005-11-18 2007-05-24 Lih-Hong Laih Material system of photovoltaic cell with micro-cavity
TWI345105B (en) * 2006-01-26 2011-07-11 Chimei Innolux Corp Backlight module and application thereof
JP4639337B2 (ja) * 2006-02-17 2011-02-23 国立大学法人長岡技術科学大学 太陽電池および太陽集熱器
US7643203B2 (en) * 2006-04-10 2010-01-05 Qualcomm Mems Technologies, Inc. Interferometric optical display system with broadband characteristics
US7369292B2 (en) * 2006-05-03 2008-05-06 Qualcomm Mems Technologies, Inc. Electrode and interconnect materials for MEMS devices
US20070279935A1 (en) * 2006-05-31 2007-12-06 3M Innovative Properties Company Flexible light guide
US7876489B2 (en) * 2006-06-05 2011-01-25 Pixtronix, Inc. Display apparatus with optical cavities
JP4695626B2 (ja) * 2006-06-30 2011-06-08 株式会社東芝 照明装置及び液晶表示装置
US20080223438A1 (en) * 2006-10-19 2008-09-18 Intematix Corporation Systems and methods for improving luminescent concentrator performance
US20080105298A1 (en) * 2006-11-02 2008-05-08 Guardian Industries Corp. Front electrode for use in photovoltaic device and method of making same
US8072402B2 (en) * 2007-08-29 2011-12-06 Qualcomm Mems Technologies, Inc. Interferometric optical modulator with broadband reflection characteristics
CN101802985A (zh) * 2007-09-14 2010-08-11 高通Mems科技公司 用于微机电系统生产的蚀刻工艺
US20090078316A1 (en) * 2007-09-24 2009-03-26 Qualcomm Incorporated Interferometric photovoltaic cell
US8058549B2 (en) * 2007-10-19 2011-11-15 Qualcomm Mems Technologies, Inc. Photovoltaic devices with integrated color interferometric film stacks
WO2009052324A2 (en) * 2007-10-19 2009-04-23 Qualcomm Mems Technologies, Inc. Display with integrated photovoltaic device
JP2011504243A (ja) * 2007-10-23 2011-02-03 クォルコム・メムズ・テクノロジーズ・インコーポレーテッド 調節可能透過型memsベースの装置
US8127251B2 (en) * 2007-10-31 2012-02-28 Fimed Properties Ag Limited Liability Company Method and apparatus for a user interface with priority data
US20090126792A1 (en) * 2007-11-16 2009-05-21 Qualcomm Incorporated Thin film solar concentrator/collector
US7949213B2 (en) * 2007-12-07 2011-05-24 Qualcomm Mems Technologies, Inc. Light illumination of displays with front light guide and coupling elements
US20100051089A1 (en) * 2008-09-02 2010-03-04 Qualcomm Mems Technologies, Inc. Light collection device with prismatic light turning features

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4863224A (en) * 1981-10-06 1989-09-05 Afian Viktor V Solar concentrator and manufacturing method therefor
US5118361A (en) * 1990-05-21 1992-06-02 The Boeing Company Terrestrial concentrator solar cell module
CN1358333A (zh) * 1999-05-28 2002-07-10 特尔雷森有限责任公司 用于凝聚光辐射的装置
CN1542757A (zh) * 2003-04-04 2004-11-03 ��ʽ���綫֥ 光盘和光盘设备
TW200510868A (en) * 2003-06-23 2005-03-16 Hitachi Chemical Co Ltd Photoelectric system

Also Published As

Publication number Publication date
KR20100127775A (ko) 2010-12-06
WO2009102671A2 (en) 2009-08-20
TW200944729A (en) 2009-11-01
US20090199893A1 (en) 2009-08-13
JP2013080966A (ja) 2013-05-02
EP2248188A2 (en) 2010-11-10
CN101946333A (zh) 2011-01-12
WO2009102671A3 (en) 2009-10-29
JP2014003309A (ja) 2014-01-09
KR20100114125A (ko) 2010-10-22
US20090199900A1 (en) 2009-08-13
WO2009102670A1 (en) 2009-08-20
TW201001735A (en) 2010-01-01
JP2011515018A (ja) 2011-05-12
CN101946334A (zh) 2011-01-12
JP2011515017A (ja) 2011-05-12
JP2013080967A (ja) 2013-05-02
EP2248189A1 (en) 2010-11-10

Similar Documents

Publication Publication Date Title
CN101946334B (zh) 双层薄膜全息太阳能集中器/收集器
TW477900B (en) Device for concentrating optical radiation
US20100180946A1 (en) Increasing the angular range of light collection in solar collectors/concentrators
US20090126792A1 (en) Thin film solar concentrator/collector
JP5346008B2 (ja) 薄型フラット集光装置
US10355156B2 (en) Light-concentrating mechanism, photovoltaic power generation device, window structure, and window glass
US20080048102A1 (en) Optically enhanced multi-spectral detector structure
JP2001510902A (ja) 光放射集束デバイス
WO2013126344A2 (en) Hybrid wedge shaped/microstructured light collector
Teng et al. Planar solar concentrator composed of stacked waveguides with arc-segment structures and movable receiving assemblies
Chrysler et al. Lateral spectrum splitting system with perovskite photovoltaic cells
KR102506156B1 (ko) 구멍을 포함하는 태양전지 모듈 및 그를 제조하는 방법
CN109654443B (zh) 一种聚焦照明系统
Riccobono et al. Solar holography

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20130821

Termination date: 20160209

CF01 Termination of patent right due to non-payment of annual fee