Nothing Special   »   [go: up one dir, main page]

CN100402374C - 风力涡轮机叶片的制造方法 - Google Patents

风力涡轮机叶片的制造方法 Download PDF

Info

Publication number
CN100402374C
CN100402374C CNB2004800158096A CN200480015809A CN100402374C CN 100402374 C CN100402374 C CN 100402374C CN B2004800158096 A CNB2004800158096 A CN B2004800158096A CN 200480015809 A CN200480015809 A CN 200480015809A CN 100402374 C CN100402374 C CN 100402374C
Authority
CN
China
Prior art keywords
lining
blade
blade root
wind turbine
fiber mat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB2004800158096A
Other languages
English (en)
Other versions
CN1802285A (zh
Inventor
朗·希特-尼尔森
弗莱明·索伦森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Paddle Blade Technology Center
Original Assignee
SSP Technology AS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SSP Technology AS filed Critical SSP Technology AS
Publication of CN1802285A publication Critical patent/CN1802285A/zh
Application granted granted Critical
Publication of CN100402374C publication Critical patent/CN100402374C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/68Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts by incorporating or moulding on preformed parts, e.g. inserts or layers, e.g. foam blocks
    • B29C70/86Incorporated in coherent impregnated reinforcing layers, e.g. by winding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C11/00Propellers, e.g. of ducted type; Features common to propellers and rotors for rotorcraft
    • B64C11/02Hub construction
    • B64C11/04Blade mountings
    • B64C11/06Blade mountings for variable-pitch blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/06Rotors
    • F03D1/065Rotors characterised by their construction elements
    • F03D1/0658Arrangements for fixing wind-engaging parts to a hub
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/08Blades for rotors, stators, fans, turbines or the like, e.g. screw propellers
    • B29L2031/082Blades, e.g. for helicopters
    • B29L2031/085Wind turbine blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2230/00Manufacture
    • F05B2230/40Heat treatment
    • F05B2230/41Hardening; Annealing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors
    • F05B2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/30Retaining components in desired mutual position
    • F05B2260/301Retaining bolts or nuts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2280/00Materials; Properties thereof
    • F05B2280/60Properties or characteristics given to material by treatment or manufacturing
    • F05B2280/6003Composites; e.g. fibre-reinforced
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2253/00Other material characteristics; Treatment of material
    • F05C2253/04Composite, e.g. fibre-reinforced
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49316Impeller making
    • Y10T29/4932Turbomachine making
    • Y10T29/49321Assembling individual fluid flow interacting members, e.g., blades, vanes, buckets, on rotary support member
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49316Impeller making
    • Y10T29/49336Blade making
    • Y10T29/49337Composite blade
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49316Impeller making
    • Y10T29/49336Blade making
    • Y10T29/49339Hollow blade

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Sustainable Development (AREA)
  • General Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Wind Motors (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Control Of Turbines (AREA)

Abstract

本发明提供了一种制造风力涡轮机叶片(1)的叶根的方法,所述叶根具有多个完全结合的嵌入衬套(4),所述衬套(4)设置有用于装配螺栓的内螺纹(5),以便所述叶根可拆卸地联接至风力涡轮机的轮毂,所述方法包括以下步骤:提供一第一层纤维垫;将衬套(4)布置在所述第一层纤维垫上,使其基本上在所述叶片(1)的纵向方向上延伸;在所述衬套(4)的顶部设置另外的纤维垫层;强化所述纤维垫,其特征在于,包括如下的一初始步骤:设置具有用于容纳所述衬套(4)的间隔开的凹入部分(13)的一支座(12),将所述第一层纤维垫布置在所述支座(12)上,并将所述衬套(4)布置在所述凹入部分(13)中。

Description

风力涡轮机叶片的制造方法
技术领域
本发明涉及一种制造风力涡轮机叶片的叶根的方法,所述叶根具有多个完全结合的嵌入衬套,所述衬套设置有用于装配螺栓的内螺纹,以便所述叶根可拆卸地联接至风力涡轮机的轮毂,所述方法包括以下步骤:提供一第一层纤维垫;将衬套布置在所述第一层纤维垫上,使其基本上在所述叶片的纵向方向上延伸;在所述衬套的顶部设置另外的纤维垫层;强化所述纤维垫。
背景技术
风力涡轮机被用于开发风能以例如产生电力已经有几十年了。为了降低通过这种风力涡轮机生产的电力的价格,风力涡轮机的大小已经增加到商用风力涡轮机当前的平均标称功率,约为1.5MW,而高达3MW的风力涡轮机正在开发中,人们希望在未来的几年里更大的风力涡轮机能够进入市场。普通的商用风力涡轮机具有三个叶片,对于1.5MW的风力涡轮机,叶片的长度约为35m。
由于风压以及叶片的重量和旋转,叶片经受很大的力和弯曲力矩等,而且,由于周期性的负载,叶片易于疲劳。例如,在一次回转中,叶片在圆周上部经过最大风力负载区域,而在其经过塔架时叶片经过较低风力区域(或者甚至是背风的)。此外,由于可能会有阵风,所以风力通常不是恒定的。自然地,叶片的根部以及叶片与轮毂的连接处必须能够承受叶片的负载,而叶根或者轮毂的失效将是毁坏性的,并且对风力涡轮机附近的人员可能是致命的。
若干年来,人们尝试着采用不同的方法,例如可以参见美国专利No.4,915,590,其公开了一种风力涡轮机叶片联接方法。该现有技术的叶片联接技术包括固定在叶根中的玻璃纤维推拉杆(suckerrod),该推拉杆没有结合到叶根上,相当大的一部分在根端形成自由端,并且推拉杆的该自由端从叶根端部缩进,也就是说,推拉杆可以处于拉力作用下。该专利指出推拉杆可以在长度的85%上不结合至转子叶片。推拉杆的直径朝着结合区中的固定端逐渐减小,其中在结合区中,杆被内部配合到叶片上。尽管这在1987年8月提交该美国申请时对于风力涡轮机中使用的相对较小的叶片可能是适合的,但是并不适合当前使用的相对较大的叶片,因为推拉杆不能承受大型叶片的叶根处出现的非常大的力,尤其该杆仅仅是在非常有限的程度上与叶根结合。
在如WO-A2-01/42647的叶片联接中,叶片通过螺栓连接至轮毂,所述螺栓拧入设置在叶根中的径向孔内的插入件中。但是,其缺点在于径向孔必须设置在叶根中,而这些孔严重地削弱了结构,并且产生应力集中,这意味着叶根必须构造成强度很大,因此也很笨重,这又给结构带来了重压。
美国专利No.6,371,730描述了类似的结构,其公开了一种通过螺栓连接至轮毂的叶片,所述螺栓拧入插入到叶根中的径向盲孔的螺母中。尽管这些孔不是贯通的,但是它们依然严重削弱了叶根,因此这种结构也不是有利的。
人们还尝试为叶根设置各具有突出的带螺纹螺栓部分的嵌入式或完全结合式衬套,这在美国专利No.4,420,354中公开了。该现有技术采取在由木材-树脂复合物制成的叶根中钻取相对较大的轴向延伸孔,具有预制树脂套管的衬套被树脂结合在该孔中。利用该现有技术,去除了比较大量的叶根材料,这削弱了结构,使得叶根必须是超大尺寸的。尤其是对于相对较柔软的象纤维增强塑料的现代复合物制成的大型叶片,由于衬套要钢硬得多,所以衬套端部处的应力集中可能是有害的。另外,该现有技术方法有一定的负面作用,由于叶根所用的纤维增强塑料较昂贵,且不久因为将引入高科技的碳纤维增强塑料,因而研发出更大的叶片会更昂贵,因此该步骤将会不适用。
通常,前述类型的现有技术方法需要大量劳动力且消耗很多时间,这是因为衬套通过例如泡沫材料等间隔件间隔开,由此需要精确地布置间隔件和衬套。另外,还可能在衬套和间隔件之间的叶根部形成气体包,这样的气体包难以检测到,因此会极大地影响叶根的强度。
发明内容
本发明的一个目的是提供一种制造重量轻、具有高联接强度的风力涡轮机叶片的方法。
为了实现这个目的,根据本发明的方法的特征在于包括如下的一初始步骤:设置具有用于容纳所述衬套的间隔开的凹入部分的一支座,将所述第一层纤维垫布置在所述支座上,并将所述衬套布置在所述凹入部分中。
根据一实施例,本发明还包括使用真空垫压紧所述纤维垫的步骤,由此根据一实施例,该方法包括利用真空垫压紧所述纤维垫的附加步骤,从而实现坚实的压紧,并且显著减小了气包截留在复合物中的可能性。
所述垫可以是干垫,只包括增强纤维。但是,根据一实施例,所述垫是预浸渍类型的,从而可以以非常有效的方式生产叶片,因为整个叶片可以在铺设复合物之后以一整体被强化,例如通过加热而热固化复合物中包括的结合件的方式。
在该方法的优选实施例中,所述嵌入衬套包括一第一部分和一延伸部分,所述延伸部分的挠性在远离所述第一部分的方向上逐渐增大。
由此,嵌入叶根并从而与之成为一体的衬套同时可以与螺栓实现坚固的螺纹连接,以联接至风力涡轮机的轮毂,并且衬套可以具有相对较挠性的未端,从而不会出现应力集中。由此,通过这些方式实现了重量非常轻并具有较高的联接强度的叶片。
所述第一部分可以具有任何希望的形状,但是根据一个实施例,优选地,衬套的第一部分大致为柱形。从而,可以实现相对简单从而成本效率高的衬套,此外,具有大致柱形的第一部分的衬套在叶根的复合材料中将占取相对较小的空间。
优选地,衬套是金属的,当然,由例如高强度聚合物或聚合物复合物制成的非金属衬套也可以使用。
衬套的延伸部分可以被斜切成具有逐渐减小的横截面,从而以非常简单的方式实现了逐渐增大的挠性。此外,通过减小衬套延伸部分的横截面,实现了衬套的第一部分和叶根的复合结构之间在朝向叶尖方向上的平滑过渡。此外,通过这种平滑的过渡,大大减小了空气包或气体包被截留在衬套处的结构内的可能性。
衬套的内螺纹可以在全长上延伸,但是优选,所述衬套的第一部分的一第一部分是无螺纹的。由此,实现了引入衬套中并螺纹啮合的螺栓可以处于拉力作用下,使得在叶片的循环过程的所有时刻叶根都可以保持与轮毂啮合,而无论叶片上的循环负载如何,其中所述负载包括拉力和压力以及弯曲力矩和扭矩。
尽管在有些情况下,在衬套的外表面上设置倒钩、径向凸缘等是有利的,但是根据一实施例,优选地,衬套的外表面是光滑的。
为了提供与结合件的额外抓握力以结合所述衬套,衬套的外表面可以通过例如蚀刻、喷沙等处理而略微粗糙。
附图说明
以下将参照示意图通过示例更为详细地描述本发明,其中:
图1是风力涡轮机叶片的平面图;
图2是叶根的端视图;
图3是衬套的纵截面;
图4是制造过程中叶片的端视图;
图5是叶根的截面图;
图6是沿图5中线VI-VI截取的叶根纵截面;和
图7是沿图6中线VII-VII截取的叶根纵截面。
具体实施方式
在图1的平面图中可以看到风力涡轮机叶片1。叶片1包括具有最适宜风能开发的形状的经空气动力学设计的部分1和用于连接至风力涡轮机的轮毂(未示出)的叶根3。因为风力涡轮机叶片受到由风、旋转质量等引起的很大的力,所以叶根3是风力涡轮机叶片的一个应变很大的区域。作为一个例子,普通的用于1.5MW风力涡轮机的风力涡轮机叶片1大小约为35m,每个叶片的质量约为6000kg。绝大多数现代风力涡轮机叶片包括一中央空心高强度梁和具有有限强度的空气动力学的覆盖物,并且通常梁和覆盖物都由例如纤维增强塑料等复合物材料制成。其它的叶片设计包括I-梁,或者由于覆盖物被增强以实现自支撑而不包括梁。
图2中可以更仔细地看到叶根3,其中图2是叶根3的端视图。为了可拆卸地连接至风力涡轮机的轮毂,叶根3包括嵌入叶根3中的多个衬套4(仅示出其中的少数几个),从而螺栓(未示出)可以拧入到衬套4的内螺纹中,以与之牢固但可拆卸地接合。
图3是衬套4的纵截面,该衬套4包括第一部分6和一延伸部分7,该延伸部分7的横截面逐渐减小至一尖端或近似尖端9,使得延伸部分具有逐渐增大的挠性。当然,这种挠性可以通过其它方式获得,例如在径向或轴向上设置狭缝或其它切口,这对于技术人员是显而易见的。这两个部分6、7可以是一体的或者设置成可以通过例如螺纹连接、焊接(welding)、软焊接(soldering)、压配等方式永久或可拆卸地连接的独立部件。目前,优选制造由两个独立的部件构成的衬套4,并将它们通过螺纹连接而可拆卸地接合,当然也可以使用更为永久的连接,例如通过胶粘、焊接、铜焊等。通过制造两个分开部件构成的衬套4,对延伸部分7的加工更容易进行,并且在衬套的钻孔中更容易加工出螺纹5。在一个实施例中,对35m的叶片使用M30的螺纹。或者,螺纹5可以设置在延伸部分7中,并且延伸部分7可以压配到第一部分6中。
如图3所示意性地示出的,衬套4包括一内螺纹5。通过设置一从衬套4的叶根端部10延伸出的无螺纹的近端部分11,可以使拧入螺纹5的螺栓处于拉力作用下,从而螺栓用作连杆(tie rod)。由此,可以实现与轮毂的牢固连接,并且在风力涡轮机的运行中该螺栓可以处于拉力作用下。或者,衬套4可以包括沿其全长的一内螺纹5,而螺栓可以仅在其末端附近设有螺纹,从而由于螺栓会处于拉力作用下而可以实现相同的效果。
图4示意性地示出叶根制造中的第一步骤,图5-7对此进行了更具体的图示。叶根3是梁的一部分,其优选由两个部件构成,这两个部件在固化(hardening)之后组装在一起。叶根3大致为圆形,因此由两个半圆横截面的部件构成。在模(mould)(未示出)中放置至少一层纤维垫,并且在该纤维垫上放置由例如泡沫材料制成的支座12。支座12具有用于容纳衬套4的若干间隔开的凹入部分13。在将衬套4放入凹入部分13之前,支座12用至少一个第一层纤维垫14衬在内侧上,覆盖凹入部分13,并且支座12的外侧设置有粘接剂19和外壳层20。然后衬套4被放入支座12的凹入部分13中,位于纤维垫层14的顶部,并固定到根板(root plate)(未示出)以对其正确定位。构成所谓中间平面的玻璃纤维带16被布置在衬套4之间,以在叶片的纵向方向上延伸。在一个实施例中,使用了四到五层叠置的玻璃纤维带16。如图7所示,玻璃纤维带16的层至少沿衬套4的全长延伸,并且具有不同的长度,以便实现平滑的过渡区。
在根据图6的实施例中,衬套4由两个分开的部件,即第一部分6和延伸部分7构成。第一部分6在与延伸部分7的外螺纹啮合的端部处包括内螺纹。两个部分6、7都设置成空心管,但是延伸部分被斜切或磨削成设有一延伸构件,该延伸构件在从叶根3向风力涡轮机叶片的末端的方向上具有逐渐增大的挠性。如图6所示,在衬套4的开口端中邻近螺纹5设置有一阻塞器17,用于防止环氧树脂等进入螺纹5。此外,在衬套4的凹入部分中设有泡沫楔块18,用于确保牢固地结合衬套并避免层状结构中产生气包。在衬套4上设置另外的纤维垫层15,从而得到层状结构的叶根。当完成了复合结构叶根时,优选通过例如真空垫(vacuum mat)等方式压紧该结构。之后,通过例如喷射等方式施加例如环氧树脂等结合物(binder)等将垫固化。衬套4沿着从叶根的叶根端部10到其尖端或近似尖端9的衬套4的全长被结合在层状叶根结构中,以实现衬套4在叶根3中的牢固锚接。在固化以后,将根板与衬套4分离。优选,垫是热固化的,在这种情况下,容纳叶根的模被加热到一固化温度。适合的垫包括所谓的SPRINT和包括例如环氧树脂等树脂的预浸渍材料的纤维垫。对这些材料进行热固化的温度约为120℃。对于垫,应该理解为各种通过对增强纤维的丝线和热塑性纤维的丝线或者其它类型的结合物的例如织造(weaving)、编织(braiding)、编结(knitting)或某种掺杂方式制造出的织网(web)、织物(fabric)、网状物(mesh)等。垫优选应该在叶片的纵向方向上延伸,以实现叶根和梁之间的平滑过渡。
根据本发明的叶片重量约为4500kg,而现有技术的叶片重量约为6000kg,即,减少了25%。显然,这是很大的缩减,使得在叶片的制造、运输和安装过程中更容易操控叶片,而且成本更低。此外,叶片越轻,意味着风力涡轮机的结构部件上的负载越小。
作为示例,五十四个衬套被嵌入在用于1.5MW涡轮机的叶片的根部,其中该涡轮机具有大小为35m的三个叶片,每个衬套总长约为80cm。当然,衬套的数量和尺寸依赖于诸如材料(强度、挠性等)和衬套形状之类的参数。

Claims (10)

1.一种制造风力涡轮机叶片(1)的叶根的方法,所述叶根具有多个完全结合的嵌入衬套(4),所述衬套(4)设置有用于装配螺栓的内螺纹(5),以便所述叶根可拆卸地联接至风力涡轮机的轮毂,所述方法包括以下步骤:
提供一第一层纤维垫;
将衬套(4)布置在所述第一层纤维垫上,使其基本上在所述叶片(1)的纵向方向上延伸;
在所述衬套(4)的顶部设置另外的纤维垫层;
强化所述纤维垫,
其特征在于,包括如下的一初始步骤:设置具有用于容纳所述衬套(4)的间隔开的凹入部分(13)的一支座(12),将所述第一层纤维垫布置在所述支座(12)上,并将所述衬套(4)布置在所述凹入部分(13)中。
2.如权利要求1所述的方法,其中,还包括使用真空垫压紧所述纤维垫的步骤。
3.如权利要求1或2所述的方法,其中,所述垫是预浸渍类型的,并且所述方法还包括加热所述叶根(3)以强化所述预浸渍垫的步骤。
4.如权利要求1或2所述的方法,其中,所述嵌入衬套(4)包括一第一部分(6)和一延伸部分(7),所述延伸部分(7)的挠性在远离所述第一部分(6)的方向上逐渐增大。
5.如权利要求4所述的方法,其中,所述衬套(4)的第一部分(6)大致为柱形。
6.如权利要求4所述的方法,其中,所述衬套(4)是金属的。
7.如权利要求4所述的方法,其中,所述衬套(4)的延伸部分(7)被斜切成具有一逐渐减小的横截面。
8.如权利要求4所述的方法,其中,所述第一部分(6)的一近端部分(11)是无螺纹的。
9.如权利要求4所述的方法,其中,所述衬套(4)的外表面是光滑的。
10.如权利要求4所述的方法,其中,所述衬套(4)的外表面是略微粗糙的。
CNB2004800158096A 2003-06-12 2004-06-10 风力涡轮机叶片的制造方法 Expired - Fee Related CN100402374C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP03388045.1 2003-06-12
EP03388045A EP1486415A1 (en) 2003-06-12 2003-06-12 Wind turbine blade and method of manufacturing a blade root

Publications (2)

Publication Number Publication Date
CN1802285A CN1802285A (zh) 2006-07-12
CN100402374C true CN100402374C (zh) 2008-07-16

Family

ID=33186009

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2004800158096A Expired - Fee Related CN100402374C (zh) 2003-06-12 2004-06-10 风力涡轮机叶片的制造方法

Country Status (14)

Country Link
US (2) US7530168B2 (zh)
EP (2) EP1486415A1 (zh)
CN (1) CN100402374C (zh)
AT (1) ATE369282T1 (zh)
AU (1) AU2004247325B2 (zh)
BR (1) BRPI0411022B1 (zh)
CA (1) CA2526407C (zh)
DE (1) DE602004008070T2 (zh)
DK (1) DK1633624T3 (zh)
ES (1) ES2293261T3 (zh)
NO (1) NO331037B1 (zh)
PL (1) PL215306B1 (zh)
PT (1) PT1633624E (zh)
WO (1) WO2004110862A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102817791A (zh) * 2011-06-10 2012-12-12 西门子公司 用于风力涡轮机的转子叶片
CN103477069A (zh) * 2011-01-21 2013-12-25 赫克赛尔控股有限责任公司 用于保持至少一个衬套的模块
CN108138743A (zh) * 2015-10-14 2018-06-08 乌本产权有限公司 风能设备转子叶片和用于制造风能设备转子叶片的方法

Families Citing this family (83)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2265760B1 (es) * 2005-03-31 2008-01-16 GAMESA INNOVATION & TECHNOLOGY, S.L. Pala para generadores eolicos.
ES2274701B1 (es) * 2005-07-15 2008-05-01 GAMESA INNOVATION & TECHNOLOGY, S.L. Procedimiento de fabricacion de piezas huecas de grandes dimensiones a base de materiales compuestos.
DK176321B1 (da) 2005-12-28 2007-08-06 Lm Glasfiber As Planering af rodbösninger på vinger til vindenergianlæg
DE102006022272C5 (de) 2006-05-11 2013-07-25 Repower Systems Ag Rotorblattanschluss
CN101418775B (zh) * 2007-10-24 2011-05-18 中国科学院工程热物理研究所 一种水平轴风车及风电机组叶片的制作方法
US8337163B2 (en) 2007-12-05 2012-12-25 General Electric Company Fiber composite half-product with integrated elements, manufacturing method therefor and use thereof
EP2078851A1 (en) * 2008-01-14 2009-07-15 Lm Glasfiber A/S Wind turbine blade and hub assembly
DE102008012664A1 (de) 2008-01-30 2009-08-06 Repower Systems Ag Windenergieanlage und ein Turm oder Turmsegment und eine Türzarge dafür
ES2364258B1 (es) * 2008-03-05 2012-06-01 Manuel Torres Martinez Sistema de union de tramos de palas de aerogenerador
DE102008021498A1 (de) 2008-04-29 2009-11-05 Repower Systems Ag Verfahren zur Fertigung eines Blattanschlusses eines Rotorblatts, ein Blattanschluss und ein Befestigungselement für einen Blattanschluss
EP2138716B2 (en) 2008-06-27 2024-02-14 Siemens Gamesa Renewable Energy Innovation & Technology, S.L. Blade insert
CA2741479A1 (en) * 2008-10-22 2010-04-29 Vec Industries, L.L.C. Wind turbine blade and method for manufacturing thereof
GB2465167A (en) 2008-11-07 2010-05-12 Vestas Wind Sys As A turbine blade having mounting inserts of different lengths
GB0822681D0 (en) * 2008-12-12 2009-01-21 Aviat Entpr Ltd Rotor blades
US8079820B2 (en) * 2008-12-18 2011-12-20 General Electric Company Blade module, a modular rotor blade and a method for assembling a modular rotor blade
CN102231988A (zh) 2009-01-29 2011-11-02 诺尔玛克药物有限责任及股份两合公司 细菌脂肪酶药物制剂
CN102022255A (zh) * 2009-09-23 2011-04-20 苏州红枫风电模具有限公司 用于风力涡轮机叶片根部的嵌入件
US8066490B2 (en) 2009-12-21 2011-11-29 General Electric Company Wind turbine rotor blade
WO2011156947A1 (zh) * 2010-06-13 2011-12-22 连云港中复连众复合材料集团有限公司 一种兆瓦级风力发电机叶片根部的制作方法
DE202010013535U1 (de) 2010-09-24 2010-12-02 Repower Systems Ag Blattanschluss eines Rotorblatts einer Windenergieanlage
EP2453129B8 (en) * 2010-11-11 2014-11-19 ALSTOM Renewable Technologies Blade for a wind turbine
EP2457830B1 (en) 2010-11-25 2014-11-12 AIRBUS HELICOPTERS DEUTSCHLAND GmbH Blade to rotor hub joint
CN102126115B (zh) * 2011-04-02 2012-08-01 赵欣 垂直轴风力发电机扇叶外壳的制作方法
DE102011051172A1 (de) 2011-06-17 2012-12-20 Lars Kästner Laminiertes Rotorblatt für Windenergieanlagen mit einem Befestigungssystem für Rotorblätter an der Rotornabe
DK2551512T3 (da) * 2011-07-27 2014-07-21 Alstom Renovables Espana Sl Forbindelsesanordning på en vindmøllevinge
EP2554834B1 (en) 2011-08-02 2016-07-13 Alstom Wind, S.L.U. Rotor for a wind turbine
GB2496162A (en) * 2011-11-03 2013-05-08 Vestas Wind Sys As Datum transfer apparatus for work piece
EP2589796B1 (en) 2011-11-04 2015-07-29 Siemens Aktiengesellschaft Manufacture of a root section
ES2382245B1 (es) * 2012-01-31 2013-05-16 Argolabe Ingenieria, S.L. Método de fabricación de pala de aerogenerador
EP2682256A1 (en) * 2012-07-03 2014-01-08 Fiberline A/S A method of producing an assembly for use in a fibre reinforced structural element
WO2014041151A2 (en) * 2012-09-17 2014-03-20 Lm Wp Patent Holding A/S Wind turbine blade with fastening means
US9597821B2 (en) 2012-09-27 2017-03-21 General Electric Company Frame assembly, mold, and method for forming rotor blade
ES2475491B1 (es) 2013-01-10 2015-04-17 Ingeniería Prosix, S.L. Pala de turbina eólica
EP2781344B1 (en) * 2013-03-21 2019-10-09 GE Renewable Technologies Wind B.V. Method of manufacturing a portion of a wind turbine blade
ITMI20130449A1 (it) 2013-03-25 2014-09-26 Wilic Sarl Radice di pala di un aerogeneratore e procedimento per la fabbricazione di una radice di pala di aerogeneratore
CN103264510B (zh) * 2013-05-29 2015-04-15 连云港中复连众复合材料集团有限公司 一种风机叶片根部预埋螺栓套成型方法
CN106863842B (zh) * 2013-05-31 2020-07-07 Lm Wp 专利控股有限公司 用于辅助风力涡轮机叶片壳体的制造的系统和方法
US9464622B2 (en) 2013-05-31 2016-10-11 General Electric Company Rotor blade assembly having a stiffening root insert
ES2683273T3 (es) * 2013-07-12 2018-09-25 Lm Wind Power International Technology Ii Aps Método y herramientas para fabricar una pala de aerogenerador
CN103909662B (zh) * 2014-04-28 2016-01-13 连云港中复连众复合材料集团有限公司 一种采用拉挤工艺制造的风机叶片根部预埋螺栓套的方法
DE102014008558B4 (de) 2014-05-28 2019-09-12 Windnovation Engineering Solutions Gmbh Rotorblattanschluss
EP2952739A1 (en) 2014-06-05 2015-12-09 Siemens Aktiengesellschaft A root bushing for a blade root of a wind turbine rotor blade, a blade root, a wind turbine rotor blade and a wind turbine
EP2952735A1 (en) * 2014-06-05 2015-12-09 Siemens Aktiengesellschaft A root bushing for a wind turbine rotor blade, a wind turbine rotor blade, a wind turbine and a method for manufacturing a wind turbine rotor blade for a wind turbine
EP2952734B1 (en) 2014-06-05 2021-04-07 Siemens Gamesa Renewable Energy A/S A root bushing for a blade root of a wind turbine rotor blade, a blade root, a wind turbine rotor blade and a wind turbine
EP2952738A1 (en) 2014-06-05 2015-12-09 Siemens Aktiengesellschaft A root bushing for a blade root of a wind turbine rotor blade, a blade root, a wind turbine rotor blade, a wind turbine and a method for manufacturing a root bushing
GB201410429D0 (en) * 2014-06-11 2014-07-23 Lm Wp Patent Holding As A tip system for a wild turbine blade
DE102014221966B4 (de) * 2014-10-28 2018-07-12 Senvion Gmbh Verfahren zum Herstellen eines Rotorblatts einer Windenergieanlage
US9745956B2 (en) 2014-12-10 2017-08-29 General Electric Company Spar cap for a wind turbine rotor blade
WO2016156184A1 (en) 2015-03-31 2016-10-06 Siemens Aktiengesellschaft A fiber lay-up, a blade root for a wind turbine rotor blade, a wind turbine rotor blade and a method for producing a wind turbine rotor blade
DK178855B1 (en) * 2015-05-18 2017-04-03 Vestas Wind Sys As Blade root insert and method of manufacture
DE102015007977A1 (de) * 2015-06-23 2016-12-29 Senvion Gmbh Rotorblattanschluss mit Stahl-Laminat-Verklebung
US10337490B2 (en) 2015-06-29 2019-07-02 General Electric Company Structural component for a modular rotor blade
US9897065B2 (en) 2015-06-29 2018-02-20 General Electric Company Modular wind turbine rotor blades and methods of assembling same
US10077758B2 (en) 2015-06-30 2018-09-18 General Electric Company Corrugated pre-cured laminate plates for use within wind turbine rotor blades
US10072632B2 (en) 2015-06-30 2018-09-11 General Electric Company Spar cap for a wind turbine rotor blade formed from pre-cured laminate plates of varying thicknesses
US10190571B2 (en) 2015-07-01 2019-01-29 General Electric Company Ring insert for a wind turbine rotor blade
US10060411B2 (en) * 2015-07-22 2018-08-28 General Electric Company Rotor blade root assembly for a wind turbine
US9970304B2 (en) 2015-07-22 2018-05-15 General Electric Company Rotor blade root assembly for a wind turbine
CN105089944B (zh) * 2015-08-21 2018-05-22 东方电气风电有限公司 一种风力发电机叶片叶根联接结构及其制作方法
EP3139038B8 (en) * 2015-09-01 2019-05-15 Nidec SSB Wind Systems GmbH A method for estimating the surface condition of a rotating blade
US10107257B2 (en) 2015-09-23 2018-10-23 General Electric Company Wind turbine rotor blade components formed from pultruded hybrid-resin fiber-reinforced composites
US10113532B2 (en) 2015-10-23 2018-10-30 General Electric Company Pre-cured composites for rotor blade components
ES2749974T3 (es) 2015-12-14 2020-03-24 Vestas Wind Sys As Junta para conectar una pala de rotor de turbina eólica a un buje de rotor y método asociado
ES2941668T3 (es) * 2016-04-04 2023-05-24 Nabrawind Tech Sl Dispositivo para la unión de una pala modular
WO2017215735A1 (en) 2016-06-14 2017-12-21 Ssp Technology A/S A connection structure of a wind turbine blade and method for its manufacture
US10422316B2 (en) 2016-08-30 2019-09-24 General Electric Company Pre-cured rotor blade components having areas of variable stiffness
US9932961B1 (en) 2016-09-16 2018-04-03 Jeremy W. Gorman Replacement airfoil blades for a wind power generator
US10626847B2 (en) 2017-01-05 2020-04-21 General Electric Company Method for manufacturing a wind turbine rotor blade root section with pultruded rods and associated wind turbine blade
US10046515B1 (en) 2017-03-30 2018-08-14 General Electric Company Method of forming wind turbine rotor blade root portions
DE102017003061B4 (de) * 2017-03-30 2022-11-24 Albany Engineered Composites, Inc. Anschlusselement
US10557455B2 (en) * 2017-06-27 2020-02-11 General Electric Company Root insert and a wind turbine having wind turbine blades with root inserts
US10677216B2 (en) 2017-10-24 2020-06-09 General Electric Company Wind turbine rotor blade components formed using pultruded rods
US11408392B2 (en) * 2017-12-08 2022-08-09 Vestas Wind Systems A/S Insert and blank for a wind turbine blade root
US11738530B2 (en) 2018-03-22 2023-08-29 General Electric Company Methods for manufacturing wind turbine rotor blade components
DE102018130007A1 (de) 2018-11-27 2020-05-28 Deutsches Zentrum für Luft- und Raumfahrt e.V. Verfahren zur Fixierung einer Hülse an einem Faserverbundbauteil, Verfahren zur Herstellung einer Heizeinrichtung und Anordnung
EP3947959A1 (de) 2019-03-28 2022-02-09 Aero Dynamik Consult GmbH Anordnung, verfahren und werkzeug zum befestigen von bauteilen
DE202019003517U1 (de) 2019-08-19 2019-10-08 Windnovation Engineering Solutions Gmbh Rotorblattanschluss mit Insert und Dehnhülse
DK3822065T3 (da) * 2019-11-14 2024-09-16 Siemens Gamesa Renewable Energy As Fremgangsmåde til fremstilling af rodsegmentafsnit til et rodsegment af et turbinerotorblad, fremgangsmåde til fremstilling af rodsegmentet og fremgangsmåde til fremstilling af turbinerotorbladet
CN111022248B (zh) * 2019-12-26 2024-04-16 中材科技风电叶片股份有限公司 风电叶片叶根的预制件、叶根部件、叶片及其制造方法
CN111765041B (zh) * 2020-07-14 2022-11-01 连云港中复连众复合材料集团有限公司 风电叶片的根部连接结构及其制造方法
EP3995688A1 (en) 2020-11-05 2022-05-11 Nordex Blade Technology Centre APS A method of manufacturing a wind turbine rotor blade connection part having a joining surface
AU2021458504A1 (en) 2021-07-29 2024-02-15 Nabrawind Technologies, Sl Transition of variable thicknesses of composite material laminates of a modular blade
EP4272929A1 (en) 2022-05-02 2023-11-08 Nordex Blade Technology Centre ApS Device for rolling a fiber mat and method for rolling a fiber mat

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2115075A (en) * 1982-02-01 1983-09-01 Stanford Res Inst Int Concrete structure e.g. a rotor blade
US4420354A (en) * 1982-06-14 1983-12-13 Gougeon Brothers, Inc. Process for securing projecting studs in the ends of wood resin composite bodies and the like and the structure formed thereby
US4915590A (en) * 1987-08-24 1990-04-10 Fayette Manufacturing Corporation Wind turbine blade attachment methods
JPH11182408A (ja) * 1997-12-15 1999-07-06 Mitsubishi Heavy Ind Ltd 風車翼取付装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3734642A (en) * 1971-06-29 1973-05-22 United Aircraft Corp Aerodynamic blade root end attachment
US4648921A (en) * 1980-10-02 1987-03-10 United Technologies Corporation Method of making fiber reinforced articles
DE3103710C2 (de) * 1981-02-04 1983-03-24 Messerschmitt-Bölkow-Blohm GmbH, 8000 München "Rotor in Schalenbauweise"
DE19733372C1 (de) * 1997-08-01 1999-01-07 Aloys Wobben Rotorblatt und Rotor einer Windenergieanlage
US6305905B1 (en) * 1999-05-05 2001-10-23 United Technologies Corporation Bolted-on propeller blade
NL1013807C2 (nl) 1999-12-09 2001-07-05 Aerpac Holding B V Windturbinerotor, alsmede naaf en extender daarvoor.

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2115075A (en) * 1982-02-01 1983-09-01 Stanford Res Inst Int Concrete structure e.g. a rotor blade
US4420354A (en) * 1982-06-14 1983-12-13 Gougeon Brothers, Inc. Process for securing projecting studs in the ends of wood resin composite bodies and the like and the structure formed thereby
US4915590A (en) * 1987-08-24 1990-04-10 Fayette Manufacturing Corporation Wind turbine blade attachment methods
JPH11182408A (ja) * 1997-12-15 1999-07-06 Mitsubishi Heavy Ind Ltd 風車翼取付装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103477069A (zh) * 2011-01-21 2013-12-25 赫克赛尔控股有限责任公司 用于保持至少一个衬套的模块
CN102817791A (zh) * 2011-06-10 2012-12-12 西门子公司 用于风力涡轮机的转子叶片
US9234497B2 (en) 2011-06-10 2016-01-12 Siemens Aktiengesellschaft Rotor blade for a wind turbine
CN102817791B (zh) * 2011-06-10 2016-12-14 西门子公司 用于风力涡轮机的转子叶片
CN108138743A (zh) * 2015-10-14 2018-06-08 乌本产权有限公司 风能设备转子叶片和用于制造风能设备转子叶片的方法
CN108138743B (zh) * 2015-10-14 2020-06-05 乌本产权有限公司 风能设备转子叶片和用于制造风能设备转子叶片的方法

Also Published As

Publication number Publication date
EP1633624A1 (en) 2006-03-15
NO331037B1 (no) 2011-09-19
AU2004247325B2 (en) 2008-06-26
PL215306B1 (pl) 2013-11-29
USRE43692E1 (en) 2012-10-02
NO20056143L (no) 2005-12-22
DE602004008070D1 (de) 2007-09-20
PT1633624E (pt) 2007-11-19
CA2526407C (en) 2012-11-06
PL379166A1 (pl) 2006-07-24
ATE369282T1 (de) 2007-08-15
AU2004247325A1 (en) 2004-12-23
US20070065288A1 (en) 2007-03-22
US7530168B2 (en) 2009-05-12
CN1802285A (zh) 2006-07-12
EP1633624B1 (en) 2007-08-08
BRPI0411022B1 (pt) 2015-08-11
DK1633624T3 (da) 2007-12-10
ES2293261T3 (es) 2008-03-16
BRPI0411022A (pt) 2006-07-18
WO2004110862A1 (en) 2004-12-23
CA2526407A1 (en) 2004-12-23
DE602004008070T2 (de) 2008-04-24
EP1486415A1 (en) 2004-12-15

Similar Documents

Publication Publication Date Title
CN100402374C (zh) 风力涡轮机叶片的制造方法
CN103732383B (zh) 具有根部区带有提供有金属纤维的延长的紧固构件的风力涡轮机叶片
US9555588B2 (en) Insert for forming an end connection in a uni-axial composite material
US7988423B2 (en) Wind turbine blade
CN103703217B (zh) 包括金属纤维和过渡区域的风力涡轮机叶片
US9745956B2 (en) Spar cap for a wind turbine rotor blade
US20150354541A1 (en) Root bushing for a wind turbine rotor blade, a wind turbine rotor blade, a wind turbine and a method for manufacturing a wind turbine rotor blade for a wind turbine
CN105089944B (zh) 一种风力发电机叶片叶根联接结构及其制作方法
US20140064980A1 (en) Rotor blades with infused prefabricated shear webs and methods for making the same
GB2472460A (en) Wind or Tidal Turbine Blade having an Attachment
EP3345751B1 (en) A method for manufacturing a wind turbine rotor blade root section with pultruded rods and associated wind turbine blade
CN108016055A (zh) 一种使用拉挤预制件制造叶片根部的方法
CN108883588B (zh) 用于风轮机叶片的嵌入元件
CN105587752A (zh) 复合材料连接杆及其制备方法
EP4413252A1 (en) A root bushing, a bushing insert thereof, a wind turbine blade comprising said root bushing and a manufacturing method thereof
DK202170490A1 (en) A root bushing, a bushing insert thereof, a wind turbine blade comprising said root bushing and a manufacturing method thereof
EP4388192A1 (en) Winged spar cap configuration for a jointed wind turbine blade

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C56 Change in the name or address of the patentee
CP02 Change in the address of a patent holder

Address after: DanMai Sten J Troup

Patentee after: SSP Technology AS

Address before: Denmark broby

Patentee before: SSP Technology AS

TR01 Transfer of patent right

Effective date of registration: 20180517

Address after: DanMai Sten J Troup

Patentee after: Paddle blade technology center

Address before: DanMai Sten J Troup

Patentee before: SSP Technology AS

TR01 Transfer of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20080716

Termination date: 20210610

CF01 Termination of patent right due to non-payment of annual fee