Nothing Special   »   [go: up one dir, main page]

CN109957714B - 强度和低温韧性优良的管线用钢及其制造方法 - Google Patents

强度和低温韧性优良的管线用钢及其制造方法 Download PDF

Info

Publication number
CN109957714B
CN109957714B CN201711333530.8A CN201711333530A CN109957714B CN 109957714 B CN109957714 B CN 109957714B CN 201711333530 A CN201711333530 A CN 201711333530A CN 109957714 B CN109957714 B CN 109957714B
Authority
CN
China
Prior art keywords
less
steel
equal
temperature
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201711333530.8A
Other languages
English (en)
Other versions
CN109957714A (zh
Inventor
黄明浩
黄国建
付青才
王杨
孔祥磊
张英慧
乔磊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Angang Steel Co Ltd
Original Assignee
Angang Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Angang Steel Co Ltd filed Critical Angang Steel Co Ltd
Priority to CN201711333530.8A priority Critical patent/CN109957714B/zh
Publication of CN109957714A publication Critical patent/CN109957714A/zh
Application granted granted Critical
Publication of CN109957714B publication Critical patent/CN109957714B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/22Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/22Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
    • B21B2001/225Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length by hot-rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/009Pearlite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

本发明公开强度和低温韧性优良的管线用钢及其制造方法。钢中含有C:0.05%~0.10%,Si:0.10%~0.40%,Mn:1.60%~1.90%,P≤0.018%,S≤0.005%,Nb:0.05%~0.10%,Ti:0.010%~0.030%,Als:0.02%~0.06%,Cr:0.15%~0.40%,N≤0.008%,其余为Fe和不可避免的杂质。连铸板坯经加热炉加热至1150~1200℃,随后进行两阶段控制轧制,第一阶段终轧温度>980℃;第二阶段开轧温度<980℃,终轧温度为760~850℃,轧后冷却速度为7~14℃/s,卷取温度为450~550℃。生产出强度和低温韧性优良的油气输送用管线钢热轧卷板。

Description

强度和低温韧性优良的管线用钢及其制造方法
技术领域
本发明属于高强低合金钢技术领域,特别涉及屈服强度600MPa以上的高强度高韧性管线用钢及其制造方法。
背景技术
石油、天然气是工业发展的主要能源,石油、天然气管道输送具有高效、安全、经济等特点。为降低石油、天然气管线输送的成本,石油、天然气输送管道趋向于大口径、高压和高钢级方向发展。为确保管道输送的稳定性和安全性,长距离、高压输送管线需要管线钢具有足够的强度和低温韧性来保障安全。
当前,油气管道业面临的挑战是:在高寒、深海、沙漠、地震和地质灾害等恶劣环境下建设长距离、高压、大流量输送管道。因此,低温状态使用的高强度管线钢是未来发展的方向之一,具有发展潜力。
目前,采用热连轧机组生产高强度管线钢热轧卷板在国内外有部分报道,但屈服强度满足600MPa以上、同时-40℃落锤DWTT达到85%以上的管线钢热轧卷板没有相关报道。以下简单介绍与本发明较为接近的专利和文献:
CN101514435A公开了低温韧性优良且稳定的管线钢及其热轧板卷轧制方法。钢中含有C:0.03%~0.07%,Mn:1.50%~1.90%,Ti:0.01%~0.02%,Ni≤0.30%,Cr≤0.02%,Mo:0.20%~0.40%,Cu≤0.30%,Nb:0.02%~0.10%;精轧终轧温度900~760℃,层流冷却,水冷速度15~30℃/s,终冷温度550~400℃。所述钢板合金成本高,屈服强度低(565~580MPa),落锤DWTT温度为-15℃;
CN103834874A公开了厚壁高DWTT性能X65-70海底管线钢及制造方法。钢中含有C:0.03%~0.05%,Mn:1.47%~1.70%,Ti:0.006%~0.010%,Ni:0.36%~0.45%,Cr:0.10%~0.20%,Cu:0.12%~0.20%,Nb:0.04%~0.05%;精轧开轧温度800±20℃,精轧终轧温度790±15℃,层流冷却,水冷速度20±2℃/s,终冷温度520±30℃。所述钢板合金成本高,屈服强度低(450~605MPa),落锤DWTT温度为-15℃;
CN105568143A公开了一种易卷取且低温性能优异的厚规格管线钢热连轧钢带及其制造方法。钢中含有C:0.03%~0.08%,Mn:1.50%~1.85%,Nb:0.04%~0.08%,Cr:0.10%~0.35%,Ti:0.010%~0.025%,V≤0.06%,Mo≤0.20%,Ni≤0.20%,Cu≤0.15%;精轧终轧温度750~810℃,超快冷冷却,水冷速度≥35℃/s,终冷温度380~500℃。所述钢板合金成本高,屈服强度低(≥520MPa),落锤DWTT温度为-10℃;
CN104278204A公开了一种无钼低温断裂韧性优良的管线卷板及其生产方法。钢中含有C:0.02%~0.05%,Mn:1.50%~1.75%,Nb:0.03%~0.08%,V:0.01%~0.05%,Ti:0.010%~0.025%,Cr:0.10%~0.50%;精轧终轧温度900~750℃,层流冷却,水冷速度10~25℃/s,终冷温度600~450℃。该钢板合金成本高,屈服强度低(485MPa),落锤DWTT温度为-25℃;
尹绍江,陈礼斌,李梦英等在2007年河北省轧钢技术与学术年会发表的论文“唐钢高强高韧性管线钢X65的试制”,成分采用C-Mn-Nb-V-Ti设计,屈服强度490~580MPa,落锤DWTT温度为0℃;轧制冷却工艺未公开。
以上公开的技术文献强度达到了美国石油协会API Spec 5L规定的X65-X70级别要求,添加合金元素Mo、Ni、Cu、V等,合金成本高;屈服强度低于600MPa,落锤DWTT温度高于-40℃,不能满足高寒、深海、沙漠、地震等恶劣环境下管线钢的使用要求。
发明内容
针对目前生产高强度高韧性管线钢热轧卷板存在的合金成本高、屈服强度低等技术问题,本发明的目的在于提供一种油气输送用高强度高韧性管线钢热轧卷板及其制造方法,特别是屈服强度600MPa以上,-40℃落锤DWTT大于85%的热轧卷板及其制造方法。
具体的技术方案是:
一种高强度高韧性管线钢热轧卷板及其制造方法,化学成分按质量百分比计为:C:0.05%~0.10%,Si:0.10%~0.40%,Mn:1.60%~1.90%,P≤0.018%,S≤0.005%,Nb:0.05%~0.10%,Ti:0.010%~0.030%,Als:0.02%~0.06%,Cr:0.15%~0.40%,N≤0.008%,其余为Fe和不可避免元素。
各元素的作用机理如下:
C:碳属于固溶元素,主要起固溶强化和析出强化作用,是保证强度最为有效的元素,可以提高淬透性。碳含量的提高,一方面提高了M/A的形成比例,对屈服强度和抗拉强度的提高有利;另一方面,可生产少量细小珠光体,对提高屈服强度和抗拉强度有利。但是,碳含量的过高对材料低温韧性和焊接性不利,所以,碳含量也不能过高,本发明将碳含量控制在0.05%~0.10%。
Si:硅可以起到固溶强化作用,但其含量过高会使钢的塑性和韧性降低,本发明将Si含量控制在0.10%~0.40%。
Mn:锰具有固溶强化作用,还能增加奥氏体稳定性,对提高淬透性也有利,可有效提高屈服强度和抗拉强度。但锰含量超过2.0%时,增加连铸坯的中心偏析倾向,影响热轧钢材的组织均匀性,板坯中心偏析控制难度加大,本发明将Mn含量控制在1.60%~1.90%。
P:磷是钢中有害元素,增加钢的冷脆性,使焊接性能变坏,降低塑性,使冷弯性能变坏,本发明将P含量控制在≤0.018%。
S:硫是钢中有害元素,使钢产生热脆性,降低钢的延展性和韧性,焊接性能也不利,易与锰形成硫化锰夹杂,制管成型时容易导致开裂,本发明将S含量控制在≤0.005%。
Nb:铌是细晶和析出强化元素,可通过晶粒细化和析出强化的作用提高强度和韧性。铌在钢中可以提高奥氏体的再结晶温度,从而达到细化奥氏体晶粒的目的。通过形成NbC或NbN等间隙中间相,在再结晶过程中,NbC,NbN对位错的钉扎及对亚晶界的迁移进行阻止等作用,从而大大增加了再结晶的时间。在高于临界温度时,Nb元素对再结晶的作用表现为溶质拖曳作用,而在低于临界温度时,则表现为析出钉扎作用。在非再结晶轧制及控制冷却阶段,形变奥氏体组织在相变时转变为细小的相变产物,有效细化晶粒,以使钢板具有高强度和高韧性;在冷却阶段,固溶的Nb能有效延迟铁素体相变,促进贝氏体转变,可以提高强度但不降低韧性。太低的Nb对再结晶控制及析出效应不明显,无法发挥细化晶粒、析出强化的作用,太高的Nb无法完全固溶,不能全部发挥作用且增加合金成本,因此本发明中将Nb含量控制在0.05%~0.10%。
Ti:钛是强碳氮化物形成元素,加入0.015%左右Ti时,可在板坯连铸时形成高温稳定细小的TiN析出相,这种细小的TiN析出相可有效阻止连铸坯在加热过程中奥氏体晶粒的长大,同时可抑制钢板焊接时焊缝和热影响区组织长大,改善焊缝和热影响区的韧性。含量太高,合金成本高,且提高了工艺控制难度,本发明将Ti含量控制在0.010%~0.030%。
Cr:铬很强的固溶强化作用,能够有效提高淬透性,还可以有效提高组织稳定性,抑制多边形铁素体和珠光体的产生,促进在中温和低温区内形成大量位错分布的铁素体或贝氏体,与Nb组合使用,效果更显著。作为一种廉价元素,Cr的加入能够在保证材料性能的同时显著降低生产成本,但Cr含量过高会使碳当量增加,所以,本发明将Cr含量控制在0.15%~0.40%。
Als:铝是常用的脱氧剂,在钢中加入少量的铝,可细化晶粒,提高冲击韧性,本发明将Als含量控制在0.02%~0.06%。
N:固溶氮有钉扎位错的强烈作用,对韧性有不良影响,本发明将N含量控制为≤0.008%。
本发明还提出一种油气输送用高强度高韧性管线钢热轧卷板及其制造方法,包括铁水预处理、钢水冶炼、炉外精炼和板坯连铸、连铸坯再加热、轧制、冷却、卷取。具体包括是:
(1)冶炼连铸工艺:铁水预处理,转炉冶炼-经顶吹或顶底复合吹炼,炉外精炼-经LF炉轻脱硫处理及进行钙处理以控制夹杂物形态和提高钢的延展性、韧性和冷弯性能,钢水连铸制成连铸板坯-连铸采用电磁搅拌或动态轻压下,以提高连铸板坯的质量。通过RH处理,减少气体[H]、[O]含量,[O]≤10ppm,[H]≤2ppm。连铸坯厚度200mm以上。
(2)轧制冷却工艺:连铸板坯经加热炉加热至1150~1200℃,该加热温度范围可以保证合金元素充分固溶,同时,抑制奥氏体晶粒过分长大;随后在热连轧机组进行两阶段控制轧制,第一阶段终轧温度大于980℃,形变和再结晶同时进行,通过反复变形和再结晶,使奥氏体晶粒显著细化;第二阶段开轧温度小于980℃,终轧温度为760~850℃,在未再结晶区域轧制,是形变和相变同时进行的阶段,奥氏体晶粒被伸长,同时产生滑移带,奥氏体晶界增加和滑移带为铁素体形核提供条件,得到细晶铁素体。轧后卷板以7~14℃/s的冷却速度进行冷却,该冷却速度下生产少量珠光体,在450~550℃温度进行板卷卷取,有利于贝氏体产生。最终组织为铁素体-贝氏体-珠光体的混合组织,铁素体体积含量8%~15%,珠光体体积含量1%~5%,贝氏体体积含量80%~90%。
有益效果:
本发明同现有技术相比,有益效果如下:
(1)本方案C、Mn含量适中,卷板强度高,屈服强度>600MPa;
(2)利用少量添加Cr,取代贵重元素Mo、Ni、Cu、V等,节约合金成本;添加微量Ti,保证钢管焊缝和热影响区性能;
(3)产品低温韧性优良,-40℃落锤DWTT大于85%。
附图说明
图1为实例5的组织图,图中组织为铁素体+珠光体+贝氏体。
具体实施方式
以下实施例用于具体说明本发明内容,这些实施例仅为本发明内容的一般描述,并不对本发明内容进行限制。
表1为实施例钢的化学成分;表2为实施例钢的加热和轧制冷却工艺;表3为实施例钢的力学性能。
表1 实施例钢的化学成分 wt%
实施例 C Si Mn P S Nb Ti Cr Als N
1 0.08 0.19 1.64 0.015 0.004 0.07 0.01 0.27 0.03 0.004
2 0.08 0.16 1.72 0.017 0.003 0.07 0.02 0.17 0.02 0.005
3 0.07 0.20 1.74 0.012 0.002 0.06 0.03 0.25 0.04 0.003
4 0.06 0.28 1.68 0.011 0.003 0.07 0.02 0.26 0.02 0.002
5 0.09 0.35 1.65 0.013 0.002 0.05 0.02 0.22 0.03 0.002
6 0.05 0.22 1.82 0.012 0.003 0.08 0.01 0.21 0.02 0.004
7 0.10 0.12 1.73 0.011 0.002 0.06 0.01 0.16 0.03 0.003
8 0.07 0.20 1.86 0.013 0.004 0.09 0.02 0.38 0.05 0.004
注:钢中[O]≤10ppm,[H]≤2ppm。
表2 实施例钢的加热、轧制、冷却工艺
Figure BDA0001507050150000071
表3 实施例钢的力学性能
Figure BDA0001507050150000072
由上述表中可见,采用本发明的成分设计、轧制、冷却和卷取工艺,生产出强度和低温韧性优良的油气输送用管线钢热轧卷板,屈服强度600MPa以上,-40℃落锤DWTT大于85%。

Claims (1)

1.一种强度和低温韧性优良的管线用钢的制造方法,其特征在于,钢中化学成分按质量百分比为:C:0.06%~0.10%,Si:0.10%~0.40%,Mn:1.72%~1.90%,P≤0.018%,S≤0.005%,Nb:0.05%~0.10%,Ti:0.010%~0.030%,Als:0.02%~0.06%,Cr:0.15%~0.40%,N≤0.008%,其余为Fe和不可避免的杂质;
钢板的生产工艺为:铁水预处理、钢水冶炼、炉外精炼和板坯连铸、连铸坯再加热、轧制、冷却、卷取,其中,
(1)冶炼连铸工艺:通过RH处理,控制[O]≤10ppm,[H]≤2ppm,连铸采用电磁搅拌或动态轻压下,连铸坯厚度≥200mm以上;
(2)轧制冷却工艺:连铸板坯经加热炉加热至1150~1200℃,随后进行两阶段控制轧制,第一阶段终轧温度>980℃;第二阶段开轧温度<980℃,终轧温度为760~850℃,轧后冷却速度为7~14℃/s,卷取温度为465~540℃;
钢板的组织为铁素体-贝氏体-珠光体的混合组织,按体积百分比计,铁素体体积含量为8%~15%,珠光体含量为1%~5%,贝氏体含量为80%~90%;
所述钢板屈服强度>600MPa。
CN201711333530.8A 2017-12-14 2017-12-14 强度和低温韧性优良的管线用钢及其制造方法 Active CN109957714B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711333530.8A CN109957714B (zh) 2017-12-14 2017-12-14 强度和低温韧性优良的管线用钢及其制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711333530.8A CN109957714B (zh) 2017-12-14 2017-12-14 强度和低温韧性优良的管线用钢及其制造方法

Publications (2)

Publication Number Publication Date
CN109957714A CN109957714A (zh) 2019-07-02
CN109957714B true CN109957714B (zh) 2021-02-23

Family

ID=67017503

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711333530.8A Active CN109957714B (zh) 2017-12-14 2017-12-14 强度和低温韧性优良的管线用钢及其制造方法

Country Status (1)

Country Link
CN (1) CN109957714B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110468332A (zh) * 2019-09-02 2019-11-19 鞍钢股份有限公司 一种薄规格直缝低屈强比高韧性管线卷板及其制造方法
CN111534741A (zh) * 2020-04-29 2020-08-14 鞍钢股份有限公司 一种海底管线用钢X56Mo轧制方法
CN113186446A (zh) * 2021-04-02 2021-07-30 甘肃酒钢集团宏兴钢铁股份有限公司 一种控制微合金化中厚板珠光体形态及碳氮化合物析出的工艺
CN115029620B (zh) * 2022-04-28 2023-09-26 鞍钢股份有限公司 一种旋挖钻机钻杆用低成本高韧性热轧卷板及其制造方法
CN116288017B (zh) * 2023-05-22 2023-07-25 江苏省沙钢钢铁研究院有限公司 大厚壁耐低温管线钢及其制造方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102851599A (zh) * 2011-06-28 2013-01-02 鞍钢股份有限公司 一种螺旋焊管用厚壁低成本x65热轧卷板及其制造方法
CN102851614A (zh) * 2011-06-28 2013-01-02 鞍钢股份有限公司 一种低屈强比x80管线钢热轧卷板及其制造方法
CN102851600A (zh) * 2011-06-28 2013-01-02 鞍钢股份有限公司 一种低温韧性优异的x65管线钢及其制造方法
CN102912245A (zh) * 2012-10-23 2013-02-06 鞍钢股份有限公司 N80级电阻焊石油套管用钢及其制造方法
CN103160746A (zh) * 2011-12-14 2013-06-19 鞍钢股份有限公司 一种高强度厚壁输水管用钢及其制造方法
CN103882301A (zh) * 2012-12-21 2014-06-25 鞍钢股份有限公司 J55级低成本电阻焊石油套管用钢及其制造方法
CN105695882A (zh) * 2014-11-28 2016-06-22 鞍钢股份有限公司 J55级低屈强比电阻焊套管用钢及其制造方法
CN106480374A (zh) * 2015-08-31 2017-03-08 鞍钢股份有限公司 一种耐寒管线用高韧性低屈强比热轧厚板及其生产方法
CN106811699A (zh) * 2015-12-02 2017-06-09 鞍钢股份有限公司 一种erw用x65热轧卷板及其制造方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102851599A (zh) * 2011-06-28 2013-01-02 鞍钢股份有限公司 一种螺旋焊管用厚壁低成本x65热轧卷板及其制造方法
CN102851614A (zh) * 2011-06-28 2013-01-02 鞍钢股份有限公司 一种低屈强比x80管线钢热轧卷板及其制造方法
CN102851600A (zh) * 2011-06-28 2013-01-02 鞍钢股份有限公司 一种低温韧性优异的x65管线钢及其制造方法
CN103160746A (zh) * 2011-12-14 2013-06-19 鞍钢股份有限公司 一种高强度厚壁输水管用钢及其制造方法
CN102912245A (zh) * 2012-10-23 2013-02-06 鞍钢股份有限公司 N80级电阻焊石油套管用钢及其制造方法
CN103882301A (zh) * 2012-12-21 2014-06-25 鞍钢股份有限公司 J55级低成本电阻焊石油套管用钢及其制造方法
CN105695882A (zh) * 2014-11-28 2016-06-22 鞍钢股份有限公司 J55级低屈强比电阻焊套管用钢及其制造方法
CN106480374A (zh) * 2015-08-31 2017-03-08 鞍钢股份有限公司 一种耐寒管线用高韧性低屈强比热轧厚板及其生产方法
CN106811699A (zh) * 2015-12-02 2017-06-09 鞍钢股份有限公司 一种erw用x65热轧卷板及其制造方法

Also Published As

Publication number Publication date
CN109957714A (zh) 2019-07-02

Similar Documents

Publication Publication Date Title
CN109957712B (zh) 一种低硬度x70m管线钢热轧板卷及其制造方法
CN109957714B (zh) 强度和低温韧性优良的管线用钢及其制造方法
CN102560284B (zh) 高强度高韧性x100管线钢热轧钢带及其制造方法
CN109023069B (zh) NbC纳米颗粒强化X80塑性管用钢板及其制造方法
CN111996449B (zh) 一种塑韧性优异的管线用厚板及其生产方法
CN102828120A (zh) 一种基于应变设计的经济型管线用钢及其制造方法
CN103510003B (zh) 一种大口径管道用抗大变形多相x100高强钢板及其制造方法
CN102953018A (zh) 高强度管线用钢、钢管及其制造方法
CN106282831A (zh) 一种高强度集装箱用耐大气腐蚀钢及其制造方法
WO2018040246A1 (zh) 深海钻探隔水管用x80及以下钢级管线钢及其制备方法
CN103866204A (zh) 一种低温大压下工艺生产的大应变x80双相钢板
CN107988562A (zh) 一种x65级低成本海底管线钢及其制造方法
CN111893386B (zh) 基于塑变和抗压溃性设计深水管线用厚板及其生产方法
CN111607750A (zh) 一种厚度≥20mm的X90级高强度管线钢板卷及其制造方法
CN103468905A (zh) 一种485MPa级管线钢热轧卷板及其制造方法
CN102400062B (zh) 低屈强比超高强度x130管线钢
CN103469098A (zh) 一种具有良好抗hic性能的x80管线钢及其生产方法
CN109023068B (zh) Vc纳米颗粒强化x90塑性管用钢板及其制造方法
CN109136756B (zh) NbC纳米颗粒强化X90塑性管用钢板及其制造方法
CN109957709B (zh) 一种含v大变形x70m管线钢板及其制造方法
CN109957710B (zh) 一种含v大变形x80m管线钢板及其制造方法
CN110241360B (zh) 一种厚壁大口径的erw海底管线用热轧钢板卷及其制备方法
CN101165203B (zh) 超高强度高韧性x120管线钢及其制造方法
KR20160078624A (ko) 저온인성 및 강도가 우수한 강관용 열연강판 및 그 제조방법
CN109112402B (zh) Vc纳米颗粒强化x80塑性管用钢板及其制造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant