CN109558812B - Face image extraction method and device, training system and storage medium - Google Patents
Face image extraction method and device, training system and storage medium Download PDFInfo
- Publication number
- CN109558812B CN109558812B CN201811347342.5A CN201811347342A CN109558812B CN 109558812 B CN109558812 B CN 109558812B CN 201811347342 A CN201811347342 A CN 201811347342A CN 109558812 B CN109558812 B CN 109558812B
- Authority
- CN
- China
- Prior art keywords
- face image
- face
- image
- images
- extracting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000012549 training Methods 0.000 title claims abstract description 93
- 238000000605 extraction Methods 0.000 title claims description 17
- 238000000034 method Methods 0.000 claims abstract description 35
- 230000001815 facial effect Effects 0.000 claims abstract description 4
- 238000004590 computer program Methods 0.000 claims description 23
- 229910052751 metal Inorganic materials 0.000 claims description 20
- 239000002184 metal Substances 0.000 claims description 20
- 238000012545 processing Methods 0.000 claims description 13
- 238000004458 analytical method Methods 0.000 claims description 12
- 230000036544 posture Effects 0.000 claims description 9
- 230000005389 magnetism Effects 0.000 claims description 3
- 239000000284 extract Substances 0.000 abstract description 18
- 238000010586 diagram Methods 0.000 description 16
- 238000005516 engineering process Methods 0.000 description 5
- 238000003780 insertion Methods 0.000 description 4
- 230000037431 insertion Effects 0.000 description 4
- 238000007619 statistical method Methods 0.000 description 4
- 230000006870 function Effects 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 230000003068 static effect Effects 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 238000007405 data analysis Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000003628 erosive effect Effects 0.000 description 2
- 239000000696 magnetic material Substances 0.000 description 2
- 230000001360 synchronised effect Effects 0.000 description 2
- 230000002087 whitening effect Effects 0.000 description 2
- 238000001514 detection method Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V40/00—Recognition of biometric, human-related or animal-related patterns in image or video data
- G06V40/10—Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
- G06V40/16—Human faces, e.g. facial parts, sketches or expressions
- G06V40/161—Detection; Localisation; Normalisation
- G06V40/164—Detection; Localisation; Normalisation using holistic features
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V40/00—Recognition of biometric, human-related or animal-related patterns in image or video data
- G06V40/10—Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
- G06V40/16—Human faces, e.g. facial parts, sketches or expressions
- G06V40/168—Feature extraction; Face representation
- G06V40/169—Holistic features and representations, i.e. based on the facial image taken as a whole
Landscapes
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Oral & Maxillofacial Surgery (AREA)
- General Health & Medical Sciences (AREA)
- Human Computer Interaction (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Multimedia (AREA)
- Theoretical Computer Science (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Image Processing (AREA)
Abstract
本发明涉及一种人脸图像的提取方法和装置、实训系统和存储介质,该方法包括获取多目摄像头拍摄的多张图像,根据人脸肤色特征从该图像中提取第一人脸图像,根据标准人脸图像的欧拉数在第一人脸图像中确定第二人脸图像,获取各张图像之间的第二人脸图像的重叠区域,根据该重叠区域提取该图像中的第三人脸图像。基于通过人脸肤色特征提取的第一人脸图像,结合标准人脸图像欧拉数排除第一人脸图像中类似人脸肤色的图像背景得到第二人脸图像,再根据不同图像之间的第二人脸图像的重叠区域提取出人脸图像,提高了提取人脸图像的准确性,而且应用到嵌入式设备的实训系统当中,能够从实训场景图像中准确提取实训学员的人脸图像,便于对实训人员进行分析。
The invention relates to a method and device for extracting a face image, a training system and a storage medium. The method includes acquiring a plurality of images captured by a multi-eye camera, and extracting a first face image from the images according to the skin color feature of the face, Determine the second face image in the first face image according to the Euler number of the standard face image, obtain the overlapping area of the second face image between the images, and extract the third face image in the image according to the overlapping area face image. Based on the first face image extracted by the facial skin color feature, combined with the Euler number of the standard face image to exclude the image background similar to the face skin color in the first face image to obtain the second face image, and then according to the difference between the different images The face image is extracted from the overlapping area of the second face image, which improves the accuracy of extracting the face image, and is applied to the training system of the embedded device, which can accurately extract the trainees from the training scene images. Face image, easy to analyze the training personnel.
Description
技术领域technical field
本发明涉及图像处理技术领域,特别是涉及一种人脸图像的提取方法、人脸图像的提取装置、嵌入式设备的实训系统和计算机可读存储介质。The present invention relates to the technical field of image processing, and in particular, to a method for extracting a face image, a device for extracting a face image, a training system for embedded equipment, and a computer-readable storage medium.
背景技术Background technique
随着图像处理技术的发展,越来越多的行业需要采集图像进行数据分析,例如在教学实训当中通过采集课堂中学员的人脸图像能够对实训学员是否缺席实训等情况进行统计分析,而准确从拍摄的图像中提取人脸图像是对人脸图像进行数据分析的基础。With the development of image processing technology, more and more industries need to collect images for data analysis. For example, in teaching training, collecting face images of students in the classroom can conduct statistical analysis on whether the trainees are absent from the training. , and the accurate extraction of face images from the captured images is the basis for data analysis of face images.
传统技术采用的人脸图像提取方式容易受到背景噪声的影响使得图像背景被误提取为人脸图像,难以准确地从拍摄的源图像中提取人脸图像。The face image extraction method adopted by the traditional technology is easily affected by background noise, so that the image background is mistakenly extracted as a face image, and it is difficult to accurately extract the face image from the captured source image.
发明内容SUMMARY OF THE INVENTION
基于此,有必要针对传统技术难以准确地从拍摄的源图像中提取人脸图像的技术问题,提供一种人脸图像的提取方法、人脸图像的提取装置、嵌入式设备的实训系统和计算机可读存储介质。Based on this, it is necessary to provide a method for extracting a face image, a device for extracting a face image, a training system for embedded equipment, and a computer readable storage medium.
一种人脸图像的提取方法,包括步骤:A method for extracting a face image, comprising the steps of:
获取多目摄像头拍摄的多张图像;Obtain multiple images captured by a multi-camera;
根据人脸肤色特征从所述图像中提取第一人脸图像;Extract the first face image from the image according to the skin color feature of the face;
根据标准人脸图像的欧拉数在所述第一人脸图像中确定第二人脸图像;Determine a second face image in the first face image according to the Euler number of the standard face image;
获取各张所述图像之间的所述第二人脸图像的重叠区域;根据所述重叠区域提取所述图像中的第三人脸图像。Acquiring an overlapping area of the second face image between each of the images; and extracting a third face image in the images according to the overlapping area.
一种人脸图像的提取装置,包括:A device for extracting a face image, comprising:
获取模块,用于获取多目摄像头拍摄的多张图像;The acquisition module is used to acquire multiple images captured by the multi-eye camera;
第一提取模块,用于根据人脸肤色特征从所述图像中提取第一人脸图像;The first extraction module is used for extracting the first face image from the image according to the skin color feature of the face;
确定模块,用于根据标准人脸图像的欧拉数在所述第一人脸图像中确定第二人脸图像;A determination module for determining a second human face image in the first human face image according to the Euler number of the standard human face image;
第二提取模块,用于获取各张所述图像之间的所述第二人脸图像的重叠区域;根据所述重叠区域提取所述图像中的第三人脸图像。The second extraction module is configured to acquire the overlapping area of the second face images between the images; and extract the third face image in the images according to the overlapping area.
一种嵌入式设备的实训系统,包括:嵌入式设备、用于对所述嵌入式设备进行编程的编程主机、嵌入式设备的插线平台和嵌入式设备的多个扩展模块,以及双目摄像头和导播装置;其中,An embedded device training system, comprising: an embedded device, a programming host for programming the embedded device, a plug-in platform for the embedded device, a plurality of expansion modules for the embedded device, and a binocular Cameras and directing devices; of which,
所述嵌入式设备通过所述插线平台与所述多个扩展模块电连接,用于实训人员进行实训操作;The embedded device is electrically connected to the plurality of expansion modules through the plug-in platform, and is used for training personnel to perform training operations;
所述双目摄像头,用于采集实训场景图像,发送至所述导播装置;所述实训场景图像携带所述实训人员的人脸图像;The binocular camera is used for collecting training scene images and sending them to the broadcasting director; the training scene images carry the face images of the training personnel;
所述导播装置,用于根据上述的人脸图像的提取方法,从所述实训场景图像中提取所述实训人员的人脸图像。The broadcasting device is used for extracting the face image of the trainee from the training scene image according to the above-mentioned method for extracting the face image.
一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现上述的人脸图像的提取方法的步骤。A computer-readable storage medium on which a computer program is stored, and when the computer program is executed by a processor, implements the steps of the above-mentioned method for extracting a face image.
上述人脸图像的提取方法和装置、实训系统和存储介质,获取多目摄像头拍摄的多张图像,根据人脸肤色特征从该图像中提取第一人脸图像,根据标准人脸图像的欧拉数在第一人脸图像中确定第二人脸图像,获取各张图像之间的第二人脸图像的重叠区域,并根据该重叠区域提取该图像中的第三人脸图像,能够基于通过人脸肤色特征提取得到的第一人脸图像,结合标准人脸图像的欧拉数排除第一人脸图像中类似人脸肤色的图像背景得到第二人脸图像,再根据不同图像之间的第二人脸图像的相互重叠的区域在图像中提取出准确的人脸图像,克服了传统技术容易将图像背景误提取为人脸图像的问题,提高了提取人脸图像的准确性,而且应用到嵌入式设备的实训系统当中,能够从实训场景图像中准确地提取出实训学员的人脸图像,便于对实训人员进行统计分析。The above-mentioned extraction method and device, training system and storage medium of a face image obtain multiple images captured by a multi-eye camera, extract a first face image from the image according to the skin color feature of the face, and extract the first face image from the image according to the characteristics of the skin color of the face. The method determines the second face image in the first face image, obtains the overlapping area of the second face image between each image, and extracts the third face image in the image according to the overlapping area, which can be based on The first face image is obtained by extracting the skin color feature of the face, combined with the Euler number of the standard face image to exclude the image background similar to the skin color of the face in the first face image to obtain the second face image, and then according to the difference between different images The overlapping area of the second face image can extract an accurate face image in the image, which overcomes the problem that the traditional technology is easy to extract the image background as a face image by mistake, and improves the accuracy of extracting the face image. In the training system of the embedded device, the face images of the trainees can be accurately extracted from the training scene images, which is convenient for statistical analysis of the trainees.
附图说明Description of drawings
图1为一个实施例中人脸图像的提取方法的流程示意图;1 is a schematic flowchart of a method for extracting a face image in one embodiment;
图2为一个实施例中人脸图像的提取装置的结构框图;2 is a structural block diagram of an apparatus for extracting a face image in one embodiment;
图3为一个实施例中嵌入式设备的实训系统的结构示意图;3 is a schematic structural diagram of a training system of an embedded device in one embodiment;
图4为一个实施例中插座的结构示意图;4 is a schematic structural diagram of a socket in one embodiment;
图5为另一个实施例中插座的结构示意图;5 is a schematic structural diagram of a socket in another embodiment;
图6为一个实施例中引脚的结构示意图;6 is a schematic structural diagram of a pin in one embodiment;
图7为一个实施例中插孔连接线的结构示意图;7 is a schematic structural diagram of a jack connecting line in one embodiment;
图8为一个实施例中计算机设备的内部结构图。FIG. 8 is a diagram of the internal structure of a computer device in one embodiment.
具体实施方式Detailed ways
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。In order to make the objectives, technical solutions and advantages of the present invention clearer, the present invention will be further described in detail below with reference to the accompanying drawings and embodiments. It should be understood that the specific embodiments described herein are only used to explain the present invention, but not to limit the present invention.
当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施方式的目的,不是旨在于限制本发明。本发明中所述“第一”、“第二”不代表具体的数量及顺序,仅仅是用于名称的区分。When an element is referred to as being "connected" to another element, it can be directly connected to the other element or intervening elements may also be present. Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. The terms used herein in the description of the present invention are for the purpose of describing specific embodiments only, and are not intended to limit the present invention. The "first" and "second" mentioned in the present invention do not represent a specific quantity and order, but are only used for the distinction of names.
在一个实施例中,提供了一种人脸图像的提取方法,参考图1,图1为一个实施例中人脸图像的提取方法的流程示意图,该方法可以通过如个人计算机、平板电脑等计算机设备实现,该人脸图像的提取方法可以包括以下步骤:In one embodiment, a method for extracting a face image is provided. Referring to FIG. 1, FIG. 1 is a schematic flowchart of a method for extracting a face image in one embodiment. The device is implemented, and the method for extracting the face image may include the following steps:
步骤S101,获取多目摄像头拍摄的多张图像。Step S101, acquiring multiple images captured by a multi-eye camera.
本步骤中,可以通过多目摄像头对目标区域进行拍摄,每个摄像头可以拍摄得到图像,从而可以得到各个摄像头拍摄的多张图像。以双目摄像头为例,可以通过该双目摄像头拍摄同一目标区域的图像,可以分别得到两张图像,即左目摄像头拍摄得到的图像以及右目摄像头拍摄得到的图像,而当目标区域中存在人物时,通过多目摄像头拍摄对目标区域进行拍摄的多张图像中则携带人脸图像,可以基于该多张图像提取其中的人脸图像。具体的,该目标区域可以是实训课堂或实训室内实训人员的实训场景图像。In this step, the target area can be photographed by using multiple cameras, and each camera can photograph to obtain an image, so that multiple images photographed by each camera can be obtained. Taking a binocular camera as an example, an image of the same target area can be captured by the binocular camera, and two images can be obtained respectively, that is, the image captured by the left-eye camera and the image captured by the right-eye camera, and when there is a person in the target area. , the multiple images captured by the multi-camera to capture the target area carry face images, and the face images in the multiple images can be extracted based on the multiple images. Specifically, the target area may be a training scene image of the training personnel in the training classroom or the training room.
步骤S102,根据人脸肤色特征从图像中提取第一人脸图像。Step S102, extracting a first face image from the image according to the skin color feature of the face.
本步骤主要是基于人脸肤色特征,分别在多张图像中提取第一人脸图像。其中,根据人脸肤色特征可以确定人脸肤色范围是100≤B≤120,140≤R≤160,所以可以将图像中颜色通道在此范围内的像素点的灰度值设置为1,剩余像素点的灰度值则设置为0,其中,B表示RGB颜色标准中的蓝色通道(B),R表示RGB颜色标准中的红色通道(R),按照这种方式,可以在各张图像中分别提取出第一人脸图像,而在第一人脸图像中的疑似人脸的区域的像素点灰度值可以被标记为1,也可以被标记为0。This step mainly extracts the first face image from multiple images based on the skin color feature of the face. Among them, according to the characteristics of the skin color of the face, it can be determined that the range of the skin color of the face is 100≤B≤120, 140≤R≤160, so the gray value of the pixel points in the color channel in the image within this range can be set to 1, and the remaining pixels The gray value of the point is set to 0, where B represents the blue channel (B) in the RGB color standard, and R represents the red channel (R) in the RGB color standard. The first face image is extracted respectively, and the gray value of the pixel point in the area of the suspected face in the first face image may be marked as 1, or may be marked as 0.
步骤S103,根据标准人脸图像的欧拉数在所述第一人脸图像中确定第二人脸图像。Step S103, determining a second face image in the first face image according to the Euler number of the standard face image.
本步骤中,欧拉数是指在图像中根据该图像的一块区域中的碎片数通过计算得出的常数,而标准人脸图像具有相对稳定的欧拉数,本步骤将标准人脸图像的欧拉数作为识别人脸的主要特征,而欧拉数对于人脸的静态图像更容易进行判断,鉴于拍摄的图像通常是静态图像,所以基于标准人脸图像的欧拉数能够从第一人脸图像中剔除与人脸肤色相近但不是人脸的图像背景,即排除第一人脸图像中疑似人脸但不是人脸的背景区域,可以分别得到各张图像的第二人脸图像。In this step, the Euler number refers to a constant calculated according to the number of fragments in an area of the image in the image, and the standard face image has a relatively stable Euler number. The Euler number is used as the main feature to identify the face, and the Euler number is easier to judge for the static image of the face. Since the captured image is usually a static image, the Euler number based on the standard face image can be obtained from the first person. The image background that is similar to the skin color of the human face but not the human face is eliminated from the face image, that is, the background area that is suspected to be a human face but is not a human face in the first human face image is excluded, and the second face image of each image can be obtained respectively.
步骤S104,获取各张图像之间的第二人脸图像的重叠区域;根据重叠区域提取图像中的第三人脸图像。Step S104, acquiring the overlapping area of the second face image between the images; extracting the third face image in the images according to the overlapping area.
其中,每张拍摄的图像分别对应有第二人脸图像,本步骤主要是获取各张图像之间的第二人脸图像的重叠区域,然后可以根据该重叠区域在各张第二人脸图像中的位置来确定各张图像中的第三人脸图像,这样能够结合不同图像的第二人脸图像相重叠的区域来识别出各张图像中的人脸图像,进一步排除了噪声的干扰,能够提高对人脸图像进行识别的准确性。Wherein, each captured image corresponds to a second face image, and this step is mainly to obtain the overlapping area of the second face image between the images, and then according to the overlapping area, each second face image The position in each image is used to determine the third face image in each image, so that the overlapping area of the second face image of different images can be used to identify the face image in each image, which further eliminates the interference of noise. It can improve the accuracy of face image recognition.
上述人脸图像的提取方法,获取多目摄像头拍摄的多张图像,根据人脸肤色特征从该图像中提取第一人脸图像,根据标准人脸图像的欧拉数在第一人脸图像中确定第二人脸图像,获取各张图像之间的第二人脸图像的重叠区域,并根据该重叠区域提取该图像中的第三人脸图像,能够基于通过人脸肤色特征提取得到的第一人脸图像,结合标准人脸图像的欧拉数排除第一人脸图像中类似人脸肤色的图像背景得到第二人脸图像,再根据不同图像之间的第二人脸图像的相互重叠的区域在图像中提取出准确的人脸图像,克服了传统技术容易将图像背景误提取为人脸图像的问题,提高了提取人脸图像的准确性。The extraction method of the above-mentioned face image, obtains multiple images captured by a multi-eye camera, extracts a first face image from the image according to the skin color feature of the face, and extracts the first face image according to the Euler number of the standard face image in the first face image. Determine the second face image, obtain the overlapping area of the second face image between each image, and extract the third face image in the image according to the overlapping area, which can be based on the third face image obtained by extracting the skin color feature of the face. A face image, combined with the Euler number of the standard face image to exclude the image background similar to the skin color of the face in the first face image to obtain the second face image, and then according to the mutual overlap of the second face images between different images The accurate face image is extracted from the image, which overcomes the problem that the traditional technology easily extracts the image background as a face image by mistake, and improves the accuracy of extracting the face image.
在一个实施例中,根据人脸肤色特征从图像中提取第一人脸图像的步骤可以包括:In one embodiment, the step of extracting the first face image from the image according to the skin color feature of the face may include:
步骤S201,根据人脸肤色特征对图像进行二值化,得到第四人脸图像。Step S201, binarize the image according to the skin color feature of the face to obtain a fourth face image.
本步骤可以根据人脸肤色特征设定图像的各个像素点的颜色通道的取值范围,从而根据该取值范围对图像进行二值化得到第四人脸图像。具体来说,人脸肤色范围是100≤B≤120,140≤R≤160,所以可以在各张图像中将像素点的颜色通道在此范围内的像素点的灰度值设置为1,剩余像素点的灰度值可以设置为0,从而可以得到第四人脸图像,其中,B表示RGB颜色标准中的蓝色通道(B),R表示RGB颜色标准中的红色通道(R)。In this step, the value range of the color channel of each pixel of the image can be set according to the skin color feature of the face, so as to binarize the image according to the value range to obtain a fourth face image. Specifically, the skin color range of the face is 100≤B≤120, 140≤R≤160, so in each image, the gray value of the pixel whose color channel is within this range can be set to 1, and the remaining The gray value of the pixel can be set to 0, so that a fourth face image can be obtained, wherein B represents the blue channel (B) in the RGB color standard, and R represents the red channel (R) in the RGB color standard.
步骤S202,确定第四人脸图像中的多个目标区域。Step S202, determining multiple target regions in the fourth face image.
本步骤在第四人脸图像中的多个目标区域,这里的目标区域是指第四人脸图像中疑似人脸的区域,对人脸肤色特征对图像进行二值化的过程当中,可以将疑似人脸的区域的像素点灰度值设置为1,其他像素点的灰度值设置为0,则目标区域对应于第四人脸图像中的白化区域(即像素点灰度值为1的区域)。In this step, there are multiple target areas in the fourth face image, and the target area here refers to the area that is suspected to be a face in the fourth face image. In the process of binarizing the image with the skin color feature of the face, the The gray value of the pixel point in the suspected face area is set to 1, and the gray value of other pixels is set to 0, then the target area corresponds to the whitening area in the fourth face image (that is, the gray value of the pixel point is 1). area).
步骤S203,获取各个目标区域的像素点数量。Step S203, acquiring the number of pixels of each target area.
本步骤可以统计第四人脸图像中各个目标区域的像素点数量,即统计第四人脸图像中疑似人脸的区域的像素点数量,若目标区域的像素点灰度值被设置为1,其他像素点的灰度值设置为0,则可以统计第四人脸图像中的白化区域的像素点数量。In this step, the number of pixels in each target area in the fourth face image can be counted, that is, the number of pixels in the suspected face area in the fourth face image. If the pixel gray value of the target area is set to 1, If the gray value of other pixels is set to 0, the number of pixels in the whitening area in the fourth face image can be counted.
步骤S204,若像素点数量小于设定的阈值,则在第四人脸图像中去除目标区域,得到所述第一人脸图像。Step S204, if the number of pixels is less than the set threshold, remove the target area in the fourth face image to obtain the first face image.
可以将目标区域的像素点数量与设定的阈值进行比较,如果目标区域的像素点数量小于该阈值,则可以在第四人脸图像中去除该目标区域,其中,该阈值可以根据标准人脸图像的像素点数量进行设定,若目标区域的像素点的数量太少(如小于1000个),则可以认为该目标区域不是人脸图像所在区域,因此可以将该目标区域进行去除,若该目标区域的像素点灰度值设为1,则去除该目标区域的方式可以是将该目标区域的像素点灰度值设为0,从而得到第一人脸图像。进一步的,还可以在将目标区域的像素点数量与设定的阈值进行比较之前,将第四人脸图像进行球状腐蚀图像处理,再对球状腐蚀图像处理后的第四人脸图像进行自适应中值滤波,达到平滑效果,进一步提高人脸图像识别的准确性。The number of pixels in the target area can be compared with a set threshold, and if the number of pixels in the target area is less than the threshold, the target area can be removed from the fourth face image, where the threshold can be based on the standard human face. The number of pixels of the image is set. If the number of pixels in the target area is too small (for example, less than 1000), it can be considered that the target area is not the area where the face image is located, so the target area can be removed. If the gray value of the pixel point of the target area is set to 1, the way to remove the target area may be to set the gray value of the pixel point of the target area to 0, so as to obtain the first face image. Further, before comparing the number of pixels in the target area with the set threshold, the fourth face image can be subjected to spherical erosion image processing, and then the fourth face image processed by the spherical erosion image can be adaptively processed. Median filtering achieves a smoothing effect and further improves the accuracy of face image recognition.
本实施例可以通过统计第四人脸图像中疑似人脸区域的像素点的数量,从第四人脸图像中排除非人脸区域得到第一人脸图像,进一步提高对人脸图像进行提取的准确性,更有效地排除背景噪声对提取人脸图像的干扰。In this embodiment, the number of pixels in the suspected face area in the fourth face image can be counted, and the non-face area can be excluded from the fourth face image to obtain the first face image, which further improves the extraction efficiency of the face image. Accuracy, more effectively eliminate the interference of background noise on the extracted face image.
在一个实施例中,在根据重叠区域提取图像中的第三人脸图像的步骤之后,还可以包括:In one embodiment, after the step of extracting the third face image in the image according to the overlapping area, the method may further include:
对第三人脸图像进行二值化处理;对二值化处理后的第三人脸图像进行计数,确定图像中的人数。Perform binarization processing on the third face image; count the third face image after the binarization processing to determine the number of people in the image.
本实施例主要是对第三人脸图像进行二值化处理,可以将第三人脸图像中的人脸区域进行分割标记出来进行二值化计数,即将人脸区域的像素点灰度值设置为1,非人脸区域的像素点灰度值设置为0,通过统计像素点灰度值为1的区域的数量即可得到各张图像中的人物数量。这种方式能够对图像中的人物数量进行快速且准确地统计,便于对如实训课堂或实训室的到场实训人员进行统计。This embodiment mainly performs binarization processing on the third face image, and the face area in the third face image can be segmented and marked for binarization counting, that is, the gray value of the pixel point of the face area is set. is 1, the pixel gray value of the non-face area is set to 0, and the number of people in each image can be obtained by counting the number of areas with a pixel gray value of 1. In this way, the number of characters in the image can be quickly and accurately counted, which is convenient for statistics on the training personnel present in the training classroom or training room.
在一个实施例中,在根据重叠区域提取图像中的第三人脸图像的步骤之后,还可以包括:In one embodiment, after the step of extracting the third face image in the image according to the overlapping area, the method may further include:
获取人脸图像数据库;其中,该人脸图像数据库记录多张人脸图像以及与人脸图像相对应的人物身份;将第三人脸图像与人脸图像数据库中的人脸图像进行匹配,确定图像中的人物身份。Obtain a face image database; wherein, the face image database records multiple face images and the identity of the person corresponding to the face image; the third face image is matched with the face image in the face image database to determine The identity of the person in the image.
本实施例主要是将第三人脸图像与人脸图像数据库中的人脸图像进行匹配分析,从而确定各张图像中的人物的身份。具体的,可以将第三人脸图像中的人脸区域进行分割标记,将该人脸区域与后台预存的如全体实训学员的人脸图像数据库进行人脸匹配对比,确定到场实训的实训学员的身份信息,还可以确定缺勤的实训人员。This embodiment mainly performs matching analysis between the third face image and the face image in the face image database, so as to determine the identity of the person in each image. Specifically, the face area in the third face image can be segmented and marked, and the face area can be matched and compared with the face image database pre-stored in the background, such as the face image database of all the trainees, to determine the actual training experience. The identity information of the trainees can also be determined, and the trainees who are absent can also be determined.
在一个实施例中,在根据重叠区域提取图像中的第三人脸图像的步骤之后,还可以包括:In one embodiment, after the step of extracting the third face image in the image according to the overlapping area, the method may further include:
确定多种标准人脸姿态;根据多种标准人脸姿态对第三人脸图像进行姿态分析,确定图像中的人脸姿态。Determine a variety of standard face poses; perform pose analysis on the third face image according to the multiple standard face poses to determine the face pose in the image.
本实施例可以获取多种标准人脸姿态,并将该多种标准人脸姿态与从第三人脸图像中分割标记出来的人脸区域的人脸姿态进行姿态比对分析,可以通过标准人脸姿态面积与第三人脸图像中的人脸姿态面积进行对比,从而确定各张图像中的人物的人脸姿态。在实训教学场景当中,本实施例可以对实训人员的人脸姿态进行识别,而操作存在困难的实训学员通常具有标准的人脸姿态,所以本实施例的方案能够识别出操作存在困难的实训学员并及时向实训教师提供预警提示,将实训学员的实训状态向实训教师发送预警提示。In this embodiment, a variety of standard face poses can be obtained, and the pose comparison analysis can be performed between the multiple standard face poses and the face poses of the face region segmented and marked from the third face image. The face pose area is compared with the face pose area in the third face image, so as to determine the face pose of the person in each image. In the training teaching scenario, this embodiment can recognize the face posture of the trainee, and the trainee who has difficulty in operation usually has a standard face posture, so the solution of this embodiment can identify the difficulty in operation and provide early warning prompts to the training teachers in a timely manner, and send early warning prompts to the training teachers about the training status of the trainees.
在一个实施例中,提供了一种人脸图像的提取装置,参考图2,图2为一个实施例中人脸图像的提取装置的结构框图,该人脸图像的提取装置可以包括:In one embodiment, an apparatus for extracting a human face image is provided. Referring to FIG. 2, FIG. 2 is a structural block diagram of an apparatus for extracting a human face image in one embodiment. The apparatus for extracting a human face image may include:
获取模块101,用于获取多目摄像头拍摄的多张图像;an
第一提取模块102,用于根据人脸肤色特征从图像中提取第一人脸图像;The
确定模块103,用于根据标准人脸图像的欧拉数在第一人脸图像中确定第二人脸图像;Determining
第二提取模块104,用于获取各张图像之间的第二人脸图像的重叠区域;根据重叠区域提取图像中的第三人脸图像。The
在一个实施例中,第一提取模块102进一步用于:In one embodiment, the
根据人脸肤色特征对图像进行二值化,得到第四人脸图像;确定第四人脸图像中的多个目标区域;获取各个目标区域的像素点数量;若像素点数量小于设定的阈值,则在第四人脸图像中去除目标区域,得到所述第一人脸图像。Binarize the image according to the skin color feature of the face to obtain a fourth face image; determine multiple target areas in the fourth face image; obtain the number of pixels in each target area; if the number of pixels is less than the set threshold , the target area is removed from the fourth face image to obtain the first face image.
在一个实施例中,还可以包括:In one embodiment, it can also include:
数量确定单元,用于第三人脸图像进行二值化处理;对二值化处理后的第三人脸图像进行计数,确定图像中的人数。The number determination unit is used for binarizing the third face image; counting the third face image after the binarization processing to determine the number of people in the image.
在一个实施例中,还可以包括:In one embodiment, it can also include:
身份确定单元,用于获取人脸图像数据库;其中,该人脸图像数据库记录多张人脸图像以及与人脸图像相对应的人物身份;将第三人脸图像与人脸图像数据库中的人脸图像进行匹配,确定图像中的人物身份。An identity determination unit is used to obtain a face image database; wherein, the face image database records a plurality of face images and the person identities corresponding to the face images; Face images are matched to determine the identity of the person in the image.
在一个实施例中,还可以包括:In one embodiment, it can also include:
姿态确定单元,用于确定多种标准人脸姿态;根据多种标准人脸姿态对第三人脸图像进行姿态分析,确定图像中的人脸姿态。The posture determination unit is used to determine various standard face postures; perform posture analysis on the third human face image according to the various standard human face postures, and determine the human face posture in the image.
本发明的人脸图像的提取装置与本发明的人脸图像的提取方法一一对应,关于人脸图像的提取装置的具体限定可以参见上文中对于人脸图像的提取方法的限定,在上述人脸图像的提取方法的实施例阐述的技术特征及其有益效果均适用于人脸图像的提取装置的实施例中,在此不再赘述。上述人脸图像的提取装置中的各个模块可全部或部分通过软件、硬件及其组合来实现。上述各模块可以硬件形式内嵌于或独立于计算机设备中的处理器中,也可以以软件形式存储于计算机设备中的存储器中,以便于处理器调用执行以上各个模块对应的操作。The apparatus for extracting a face image of the present invention corresponds to the method for extracting a face image of the present invention. For the specific limitation of the apparatus for extracting a face image, please refer to the limitation on the method for extracting a face image above. The technical features and beneficial effects described in the embodiments of the face image extraction method are all applicable to the embodiments of the face image extraction apparatus, and will not be repeated here. Each module in the above-mentioned apparatus for extracting a face image may be implemented in whole or in part by software, hardware and combinations thereof. The above modules can be embedded in or independent of the processor in the computer device in the form of hardware, or stored in the memory in the computer device in the form of software, so that the processor can call and execute the operations corresponding to the above modules.
在一个实施例中,提供了一种嵌入式设备的实训系统,参考图3,图3为一个实施例中嵌入式设备的实训系统的结构示意图,该嵌入式设备的实训系统可以包括:In one embodiment, a training system for embedded devices is provided. Referring to FIG. 3 , FIG. 3 is a schematic structural diagram of the training system for embedded devices in one embodiment. The training system for embedded devices may include: :
嵌入式设备300、用于对该嵌入式设备300进行编程的编程主机400、嵌入式设备的插线平台100和嵌入式设备的多个扩展模块200,以及双目摄像头800和导播装置700;其中,An embedded
嵌入式设备300通过插线平台100与多个扩展模块200电连接,用于实训人员进行实训操作;The embedded
双目摄像头800,用于采集实训场景图像,并将该实训场景图像发送给导播装置700;其中,该实训场景图像携带实训人员的人脸图像;The
导播装置700,用于根据如上任一项实施例所述的人脸图像的提取方法,从实训场景图像中提取实训人员的人脸图像。The
本实施例中,嵌入式设备300可以放置插线平台100上,该嵌入式设备300可以通过该插线平台与插设于插线平台100上的多个扩展模块进行电连接,其中,嵌入式设备可以是Arduino嵌入式设备,该Arduino嵌入式设备可以应用于编程教学当中,嵌入式设备可以搭载不同的扩展模块,扩展模块可以包括但不限于:LED灯模块、交通灯模块、激光头传感器模块、温湿度传感器模块、PS2摇杆模块、继电器模块、避障光电传感模块、手指侦测心跳模块、高感度麦克风传感器模块、触摸传感器模块、火焰传感器模块、全彩LED模块、寻线传感器模块、霍尔传感器模块、旋转编码器模块、蜂鸣器模块、土壤传感器模块、水分传感器模块、水银开光模块、气体传感器模块、光敏电阻模块和震动开关模块,这样通过编写相应的程序使得该嵌入式设备基于不同的扩展模块实现相应的功能。In this embodiment, the embedded
编程主机400可以通过USB数据线等连接线与嵌入式设备300进行信号连接,该编程主机400具备编程和调试程序功能,当编程主机400与嵌入式设备300连接成功后,实训学员可以通过编程主机400向嵌入式设备300写入程序,调试嵌入式设备300的硬件和软件。The
双目摄像头800可以用于采集携带实训人员的人脸图像的实训场景图像,将该实训场景图像发送至导播装置700,使得该导播装置700可以从该实训场景图像中准确识别出实训人员的人脸图像,并基于该人脸图像对实训人员进行分析,而导播装置700可以对实训人员进行人脸识别分析和脸部姿势分析,对操作存在困难的学生及时向教师提供预警提示,以便教师及时进行辅导解答,使得该嵌入式设备的实训系统集嵌入式设备的教学、教学视频录制、导播和课堂监控分析于一体,有利于提高嵌入式设备的实训效果,便于嵌入式设备的教学和学生训练。The
在一个实施例中,插线平台上开设有多个插孔;插孔的内表面上设有第一磁性区域和第一导电区域;该扩展模块设有多个与插孔相匹配的引脚;所述引脚的外表面上设有第二磁性区域和第二导电区域;其中,扩展模块通过引脚插设于插线平台的插孔时,第二磁性区域与第一磁性区域通过磁性相吸,第二导电区域与第一导电区域导电接触。In one embodiment, the plug-in platform is provided with a plurality of sockets; the inner surface of the sockets is provided with a first magnetic area and a first conductive area; the expansion module is provided with a plurality of pins matching the sockets The outer surface of the pin is provided with a second magnetic area and a second conductive area; wherein, when the extension module is inserted into the jack of the plug-in platform through the pin, the second magnetic area and the first magnetic area pass through the magnetic Attraction, the second conductive area is in conductive contact with the first conductive area.
本实施例中,该插线平台100上开设有多个插孔110,该插孔是与扩展模块的引脚相匹配的,也就是说插孔的形状、大小等属性参数均与引脚相匹配,使得扩展模块的引脚可以插设于该插孔之中。该插孔110的内表面上设有第一磁性区域和第一导电区域,该第一磁性区域用于吸附相应磁性的部件,例如当具有相应磁性的引脚插入到该插孔时,可以通过第一磁性区域将该引脚吸附牢固,该第一导电区域主要用于与其他导电的部件进行导电接触,例如当可导电的引脚插入到该插孔时,第一导电区域与该引脚进行导电接触,能够相互传导电流。其中,在插线平台100上开设插孔110的方式可以包括多种,插孔110可以直接开设在插线平台100上,也可以通过安装在插线平台100上的插座120进行开设。In this embodiment, the plug-in
以安装在插线平台100上的插座120为例对插孔110的开设方式进行说明,参考图4,图4为一个实施例中插座的结构示意图,该插座120可以通过焊接、一体成型连接等方式安装在插线平台100上,可以在该插座120上开设通孔作为插孔110,该插孔110的内表面为侧面111,可以在该侧面111上设置第一导电区域和第一磁性区域,而在插孔的内表面设置导电区域和磁性区域的方式可以包括多种,例如可以在插孔的内表面涂设磁性材料和导电材料,也可以在插孔的内表面贴设磁性贴片和导电贴片。具体的,可以在插孔的内表面贴设磁性导电金属的贴片,由于该磁性导电金属同时具有磁性和导电性,因此该磁性导电金属在内表面贴设的位置上会同时形成第一磁性区域和第一导电区域,这样,当引脚插设到该插孔时,引脚的相应磁性区域会与该磁性导电金属进行吸合,并且该磁性导电金属会与引脚的相应导电区域进行导电接触,使得引脚与插孔能够更紧密配合,不易脱落,导电的可靠性也更高。Taking the
在一个实施例中,开设于插座上的插孔的数量可以为多个,各个插孔的内表面上的第一导电区域相互连通。插座本体上可以设有多个插孔,各个插孔的内表面上的第一导电区域相互连通。具体的,参考图5,图5为另一个实施例中插座的结构示意图,插座130上设有第一插孔131、第二插孔132和第三插孔133,其中,第一插孔131、第二插孔132和第三插孔133的内表面可以相互连通,第一插孔131、第二插孔132和第三插孔133的内表面上分别设有第一导电区域,各个插孔的第一导电区域相互连通,使得插入到第一插孔131的第一引脚可以与插入到第二插孔132或第三插孔133的第二引脚进行导电接触,使得各个插孔传导的电流能够与其他插孔进行互通,而且这种插座的结构更加紧凑,便于将多个扩展模块的引脚同时进行导电连接。In one embodiment, the number of sockets provided on the socket may be multiple, and the first conductive areas on the inner surfaces of the sockets are communicated with each other. The socket body may be provided with a plurality of sockets, and the first conductive areas on the inner surfaces of the sockets communicate with each other. Specifically, referring to FIG. 5 , FIG. 5 is a schematic structural diagram of a socket in another embodiment. The
在一个实施例中,进一步的,插座的形状可以是立方体。In one embodiment, further, the shape of the socket may be a cube.
本实施例中,插座本体的形状为立方体,采用立方体作为插座的形状,有利于使得该插座能够更平稳地安装在插线平台上,还可以在该插座的六个面均开设插孔,使得各个插孔内表面的第一导电区域相互连通,该插座本体的六个面上开设的插孔均可以连接不同扩展模块的引脚,还有利于提高插线平台的利用率。In this embodiment, the shape of the socket body is a cube, and the cube is used as the shape of the socket, which is conducive to making the socket more stably installed on the plug-in platform. The first conductive areas on the inner surface of each socket are connected with each other, and the sockets provided on the six surfaces of the socket body can be connected to pins of different expansion modules, which is also beneficial to improve the utilization rate of the plug-in platform.
扩展模块200上设有多个与插线平台100的插孔110相匹配的引脚210,该引脚210与插孔110相匹配,即引脚210的形状、大小等属性参数均与插孔相匹配,使得扩展模块200可以通过其引脚210可以插设于插孔110当中,该引脚210的外表面设有第二磁性区域和第二导电区域,该第二磁性区域用于与插孔的相应磁性区域进行吸附,例如当该引脚210插入到具有相应磁性区域的插孔110的时候,可以通过该第二磁性区域与插孔进行牢固吸附;该第二导电区域主要用于与插孔110的相应导电区域进行导电接触,例如当该引脚210插入到具有相应导电区域的插孔110时,第二导电区域与该插孔进行导电接触,能够相互传导电流,而在插孔的内表面上设置该第一磁性区域还能够避免杂碎的磁性物质对该插孔进行污染而影响与插柱进行接触时的牢固性。The
其中,在引脚210的外表面上设置导电区域和磁性区域的方式可以包括多种,例如可以在引脚210的外表面涂设磁性材料和导电材料,也可以在引脚210的外表面贴设磁性贴片和导电贴片。There are various ways to set the conductive area and the magnetic area on the outer surface of the
具体的,参考图6,图6为一个实施例中引脚的结构示意图,可以在引脚210的外表面211贴设磁性导电金属的贴片,由于该磁性导电金属同时具有磁性和导电性,因此该磁性导电金属在该外表面贴设的位置上会同时形成第二磁性区域和第二导电区域,这样,当引脚210插设到插孔110时,该磁性导电金属会与插孔110内表面的第一磁性区域进行吸合,并且该磁性导电金属会与插孔内表面的第一导电区域进行导电接触,使得引脚210与插孔110能够更紧密配合,不易脱落,导电的可靠性也更高。Specifically, referring to FIG. 6, FIG. 6 is a schematic diagram of the structure of a pin in an embodiment. A magnetic conductive metal patch can be attached to the
插线平台100的插孔110可以与扩展模块200的引脚210配合使用,当扩展模块200通过其引脚210插设于插线平台100的插孔110时,引脚210的第二磁性区域与插孔110的第一磁性区域通过磁性相吸,引脚210的第二导电区域与插孔110的第一导电区域导电接触,使得引脚210和插孔110能够通过磁性稳固接触,使得扩展模块200不易从插线平台脱落,并且插孔110的第一导电区域与引脚210的第二导电区域进行导电接触能够保证扩展模块200和插线平台的电流能够相互导通。The
上述实施例,嵌入式设备的插线平台和多个扩展模块,该嵌入式设备的插线平台上开设有多个内表面上设有第一磁性区域和第一导电区域的插孔,扩展模块设有多个引脚,该引脚的外表面上设有第二磁性区域和第二导电区域,该引脚与插线平台上的插孔相匹配,当扩展模块通过其引脚插设于插孔时,第二磁性区域与第一磁性区域通过磁性相吸,且第二导电区域与第一导电区域导电接触,实现了插线平台与扩展模块进行导电连接的同时还能够通过相应的磁性区域进行吸合,使得插线平台与扩展模块接触稳固,不易脱落,避免插线平台与扩展模块的电路接触不良。In the above-mentioned embodiment, the plug-in platform of the embedded device and a plurality of expansion modules, the plug-in platform of the embedded device is provided with a plurality of jacks with a first magnetic area and a first conductive area on the inner surface, and the expansion module A plurality of pins are provided, and the outer surface of the pins is provided with a second magnetic area and a second conductive area. The pins are matched with the jacks on the plug-in platform. When the extension module is inserted into the socket through its pins When the socket is inserted, the second magnetic area and the first magnetic area are magnetically attracted, and the second conductive area is in conductive contact with the first conductive area. The area is pulled together, so that the plug-in platform and the expansion module are in stable contact, and it is not easy to fall off, so as to avoid poor circuit contact between the plug-in platform and the expansion module.
在一个实施例中,插线平台的插孔的内表面上贴设磁性导电金属;扩展模块的引脚采用磁性导电金属。In one embodiment, magnetic conductive metal is attached to the inner surface of the jack of the plug-in platform; the pins of the extension module are made of magnetic conductive metal.
本实施例中,可以在插线平台100的插孔110的内表面上贴设磁性导电金属的贴片,由于该磁性导电金属同时具有磁性和导电性,因此该磁性导电金属的贴片在内表面贴设的位置上会同时形成第一磁性区域和第一导电区域;扩展模块200的引脚210则可以采用磁性导电金属,由于该磁性导电金属同时具有磁性和导电性,在该引脚210上会同时形成第二磁性区域和第二导电区域。这样,当扩展模块200的引脚210插设到插线平台100的插孔110时,引脚210的外表面会与插孔110的内表面通过磁性相吸,且引脚210外表面会与插孔110内表面进行导电接触,实现了在扩展模块的引脚与插线平台的插孔内表面进行导电连接的同时还能够通过相应的磁性区域将该引脚和插孔内表面进行吸合,使得扩展模块与插座接触稳固,不易脱落,避免电路接触不良。In this embodiment, a magnetic conductive metal patch can be attached to the inner surface of the
在一个实施例中,进一步的,插孔和引脚的形状均为六棱柱状。In one embodiment, further, the shapes of the sockets and the pins are hexagonal prisms.
本实施例中,插线平台的插孔的形状可以为六棱柱状,相应的,扩展模块的引脚的形状也可以是六棱柱状。在引脚与插孔进行配合的时候,能够更紧密贴合,还能够避免传统技术在引脚与插孔连接的情况下引脚容易与插孔发生相对转动而影响导电性能的问题,进一步提高了导电的可靠性。进一步的,该六棱柱状的插孔的内表面贴设有磁性导电金属的贴片,这样能够使得扩展模块的引脚插入到该插孔时,通过磁性导电金属的贴片进行六面接触,保证导电连接的可靠性。In this embodiment, the shape of the jack of the plug-in platform may be a hexagonal prism, and correspondingly, the shape of the pins of the expansion module may also be a hexagonal prism. When the pin is matched with the jack, it can fit more closely, and it can also avoid the problem that the pin is easy to rotate relative to the jack when the pin is connected to the jack in the traditional technology, which affects the electrical conductivity. reliability of conduction. Further, a magnetic conductive metal patch is attached to the inner surface of the hexagonal column-shaped socket, so that when the pins of the expansion module are inserted into the socket, the magnetic conductive metal patch is used for six-sided contact. Ensure the reliability of the conductive connection.
在一个实施例中,插孔之间可以通过插孔连接线进行连接。In one embodiment, the jacks can be connected by jack connecting wires.
本实施例中,如图3所示的各个插孔110之间可以通过插孔连接线进行导电连接。其中,插线平台100的背面可以设有多个如背插孔141、背插孔142等背插孔,这些背插孔分别与插线平台100的上表面的插孔相互电导通,如插线平台100的上表面的插孔110与背插孔141相导通,即插设与插孔110的引脚可以通过其相应的背插孔141与其他插孔如背插孔142进行导电连接,而本实施例的插孔连接线能够实现不同插孔之间的导电连接。In this embodiment, the
具体的,参考图7,图7为一个实施例中插孔连接线的结构示意图,该插孔连接线可以包括与插线平台的插孔110相匹配的第一引脚221和第二引脚222,第一引脚221和第二引脚222之间通过导线20进行导电连接,导线20的一端与第一引脚221外表面上的第二导电区域进行导电连接,导线20的另一端与第二引脚222外表面上的第二导电区域进行导电连接,从而通过导线20实现第一引脚221与第二引脚222的导电连接,该插孔连接线可以用于将不同的插孔进行导电连接,提高插孔电连接的可靠性和灵活性。需要说明的是,对该第一引脚221和第二引脚222的具体限定可以参考上述实施例对扩展模块的引脚210进行限定的内容,在此不再赘述。Specifically, referring to FIG. 7 , FIG. 7 is a schematic structural diagram of a jack connecting line in an embodiment, and the jack connecting line may include a
在一个实施例中,还可以包括:第一图像采集装置500和投影装置600。In one embodiment, it may further include: a first
其中,第一图像采集装置500,用于采集实训人员对嵌入式设备的插线平台和扩展模块进行操作的视频图像,发送至导播装置700,该导播装置700可以接收视频图像,并通过投影装置600将视频图像进行投影。Among them, the first
本实施例中,第一图像采集装置500可以设于嵌入式设备的插线平台的上方,该第一图像采集装置500可以包括摄像头510和多个设于其周围的辅助灯520,该辅助灯520可以在光线不足的时候提供辅助灯光,使得摄像头510能够拍摄清晰的视频图像。第一图像采集装置500可以采集实训人员对嵌入式设备的插线平台和扩展模块进行操作的视频图像,例如录制教师的教学演示操作视频图像或采集学员的操作视频图像,然后将该视频图像发送给导播装置700,该导播装置700可以内置有智能录制和导播软件,能够用于教学视频的录制和导播,通过第一图像采集装置500可以录制教师在嵌入式设备的插线平台、扩展模块和编程主机上硬件连线操作和编程操作等视频图像,录制后的视频图像可以通过智能导播软件后台数据管理软件导入数据库,然后实现点播。导播装置700可以设有触摸屏幕,实训人员可以直接在触摸屏幕上通过触摸操作实现对教学视频和学习课件的选择和点播,而点播的视频或课件则通过投影装置600投影到幕布上,该投影装置600可以用于点播的视频或课件的播放显示,包括嵌入式设备的实训教学或学习操作。In this embodiment, the first
上述实施例可以通过第一图像采集装置采集实训人员对嵌入式设备及其插线平台和扩展模块的操作视频,并通过导播装置和投影装置进行点播和投影,便于嵌入式设备的教学实训,提高嵌入式设备的教学实训质量。In the above-mentioned embodiment, the operation video of the embedded device, the plug-in platform and the expansion module of the training personnel can be collected by the first image acquisition device, and the video-on-demand and projection can be performed through the broadcast director and the projection device, which is convenient for the teaching and training of the embedded device. , to improve the teaching and training quality of embedded equipment.
在一个实施例中,还可以包括:工作台。In one embodiment, it may further include: a workbench.
本实施例中,嵌入式设备的实训系统还可以包括工作台10,该工作台10可以用于放置编程主机400和导播装置700,便于实训人员在该工作台10上对编程主机400和导播装置700进行操作,也便于教师对实训学员的教学和课堂监控。In this embodiment, the training system of the embedded device may further include a
在一个实施例中,还可以包括第一伸缩杆;该第一伸缩杆的一端连接工作台,第一伸缩杆的另一端连接投影装置和双目摄像头。In one embodiment, a first telescopic rod may also be included; one end of the first telescopic rod is connected to the workbench, and the other end of the first telescopic rod is connected to the projection device and the binocular camera.
本实施例中,嵌入式设备的实训系统还可以包括第一伸缩杆910,该第一伸缩杆910的一端可以与工作台10固定连接或可拆卸连接,另一端可以连接投影装置600和双目摄像头800,该双目摄像头800可以设于投影装置600的背面,实现投影装置600和双目摄像头800与第一伸缩杆910进行连接。本实施例可以通过调节第一伸缩杆910的伸缩状态,在使用投影装置600或双目摄像头800时将第一伸缩杆910调整为伸长状态,而第一伸缩杆910的具体长度可以根据投影或图像采集需要进行调节,而在不需要使用时可以将第一伸缩杆910调整为收缩状态,节约使用空间。In this embodiment, the training system of the embedded device may further include a first
在一个实施例中,还可以包括:第二伸缩杆;该第二伸缩杆的一端设于第一伸缩杆上,第二伸缩杆的另一端连接第一图像采集装置。In one embodiment, it may further include: a second telescopic rod; one end of the second telescopic rod is arranged on the first telescopic rod, and the other end of the second telescopic rod is connected to the first image acquisition device.
本实施例中,嵌入式设备的实训系统还可以包括第二伸缩杆920,该第二伸缩杆920的一端可以与第一伸缩杆910进行固定连接或可拆卸连接,另一端则连接第一图像采集装置500,使得该第一图像采集装置500能够采集到实训人员对嵌入式设备的插线平台和扩展模块进行操作的视频图像。本实施例可以通过调节第二伸缩杆920的伸缩状态,在使用第一图像采集装置500时将第二伸缩杆920调整为伸长状态,具体长度可以根据嵌入式设备的插线平台和扩展模块的位置进行调节,而在不使用第一图像采集装置500时,可以将第二伸缩杆920调整为收缩状态,而在不使用第一图像采集装置500、投影装置600和双目摄像头800时可以同时将第一伸缩杆910和第二伸缩杆920调整为收缩状态,节约使用空间。In this embodiment, the training system of the embedded device may further include a second
在一个实施例中,还可以包括:用于控制导播装置的移动控制器。In one embodiment, it may further include: a mobile controller for controlling the broadcasting guide device.
本实施例中,嵌入式设备的实训系统还可以包括移动控制器30,该移动控制器30可以用于控制导播装置700,其中,移动控制装置30通过WIFI或蓝牙与导播装置700连接,这样,实训人员如教师就可以使用该移动控制装置30实现在课堂或实训室随意移动的过程中对导播装置700进行控制,该移动控制装置30可以内置导播控制软件,通过WIFI或蓝牙等方式与导播装置700进行连接,以实现对学习视频的选择和点播功能。In this embodiment, the training system of the embedded device may further include a
在一个实施例中,提供了一种计算机设备,该计算机设备应用于如上任一项实施例所属的导播装置当中,其内部结构图可以如图8所示,图8为一个实施例中计算机设备的内部结构图。该计算机设备包括通过系统总线连接的处理器、存储器、网络接口、显示屏和输入装置。其中,该计算机设备的处理器用于提供计算和控制能力。该计算机设备的存储器包括非易失性存储介质、内存储器。该非易失性存储介质存储有操作系统和计算机程序。该内存储器为非易失性存储介质中的操作系统和计算机程序的运行提供环境。该计算机设备的网络接口用于与外部的终端通过网络连接通信。该计算机程序被处理器执行时以实现一种人脸图像的提取方法。该计算机设备的显示屏可以是液晶显示屏或者电子墨水显示屏,该计算机设备的输入装置可以是显示屏上覆盖的触摸层,也可以是计算机设备外壳上设置的按键、轨迹球或触控板,还可以是外接的键盘、触控板或鼠标等。In one embodiment, a computer device is provided, and the computer device is applied to the broadcasting device according to any of the above embodiments, and its internal structure diagram may be shown in FIG. 8 , which is the computer device in one embodiment. internal structure diagram. The computer equipment includes a processor, memory, a network interface, a display screen, and an input device connected by a system bus. Among them, the processor of the computer device is used to provide computing and control capabilities. The memory of the computer device includes a non-volatile storage medium, an internal memory. The nonvolatile storage medium stores an operating system and a computer program. The internal memory provides an environment for the execution of the operating system and computer programs in the non-volatile storage medium. The network interface of the computer device is used to communicate with an external terminal through a network connection. When the computer program is executed by the processor, a method for extracting a face image is realized. The display screen of the computer equipment may be a liquid crystal display screen or an electronic ink display screen, and the input device of the computer equipment may be a touch layer covered on the display screen, or a button, a trackball or a touchpad set on the shell of the computer equipment , or an external keyboard, trackpad, or mouse.
本领域技术人员可以理解,图8中示出的结构,仅仅是与本发明方案相关的部分结构的框图,并不构成对本发明方案所应用于其上的计算机设备的限定,具体的计算机设备可以包括比图中所示更多或更少的部件,或者组合某些部件,或者具有不同的部件布置。Those skilled in the art can understand that the structure shown in FIG. 8 is only a block diagram of a partial structure related to the solution of the present invention, and does not constitute a limitation on the computer equipment to which the solution of the present invention is applied. Include more or fewer components than shown in the figures, or combine certain components, or have a different arrangement of components.
在一个实施例中,提供了一种计算机设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,处理器执行计算机程序时实现以下步骤:In one embodiment, a computer device is provided, comprising a memory, a processor, and a computer program stored on the memory and running on the processor, and the processor implements the following steps when executing the computer program:
获取多目摄像头拍摄的多张图像;根据人脸肤色特征从图像中提取第一人脸图像;根据标准人脸图像的欧拉数在所述第一人脸图像中确定第二人脸图像;获取各张图像之间的第二人脸图像的重叠区域;根据重叠区域提取图像中的第三人脸图像。Obtaining multiple images captured by a multi-eye camera; extracting a first face image from the image according to the skin color feature of the face; determining a second face image in the first face image according to the Euler number of the standard face image; Obtain the overlapping area of the second face image between the images; extract the third face image in the images according to the overlapping area.
在一个实施例中,处理器执行计算机程序时还实现以下步骤:In one embodiment, the processor further implements the following steps when executing the computer program:
根据人脸肤色特征对图像进行二值化,得到第四人脸图像;确定第四人脸图像中的多个目标区域;获取各个目标区域的像素点数量;若像素点数量小于设定的阈值,则在第四人脸图像中去除目标区域,得到所述第一人脸图像。Binarize the image according to the skin color feature of the face to obtain a fourth face image; determine multiple target areas in the fourth face image; obtain the number of pixels in each target area; if the number of pixels is less than the set threshold , the target area is removed from the fourth face image to obtain the first face image.
在一个实施例中,处理器执行计算机程序时还实现以下步骤:In one embodiment, the processor further implements the following steps when executing the computer program:
对第三人脸图像进行二值化处理;对二值化处理后的第三人脸图像进行计数,确定图像中的人数。Perform binarization processing on the third face image; count the third face image after the binarization processing to determine the number of people in the image.
在一个实施例中,处理器执行计算机程序时还实现以下步骤:In one embodiment, the processor further implements the following steps when executing the computer program:
获取人脸图像数据库;其中,该人脸图像数据库记录多张人脸图像以及与人脸图像相对应的人物身份;将第三人脸图像与人脸图像数据库中的人脸图像进行匹配,确定图像中的人物身份。Obtain a face image database; wherein, the face image database records multiple face images and the identity of the person corresponding to the face image; the third face image is matched with the face image in the face image database to determine The identity of the person in the image.
在一个实施例中,处理器执行计算机程序时还实现以下步骤:In one embodiment, the processor further implements the following steps when executing the computer program:
确定多种标准人脸姿态;根据多种标准人脸姿态对第三人脸图像进行姿态分析,确定图像中的人脸姿态。Determine a variety of standard face poses; perform pose analysis on the third face image according to the multiple standard face poses to determine the face pose in the image.
上述计算机设备,通过所述处理器上运行的计算机程序,提高了提取人脸图像的准确性,而且应用到嵌入式设备的实训系统当中,能够从实训场景图像中准确地提取出实训学员的人脸图像,便于对实训人员进行统计分析。The above computer equipment, through the computer program running on the processor, improves the accuracy of extracting face images, and is applied to the training system of the embedded equipment, which can accurately extract the training scene images from the training scene images. The face images of the trainees are convenient for statistical analysis of the trainees.
本领域普通技术人员可以理解实现如上任一项实施例所述的人脸图像的提取方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的计算机程序可存储于一非易失性计算机可读取存储介质中,该计算机程序在执行时,可包括如上述各方法的实施例的流程。其中,本发明所提供的各实施例中所使用的对存储器、存储、数据库或其它介质的任何引用,均可包括非易失性和/或易失性存储器。非易失性存储器可包括只读存储器(ROM)、可编程ROM(PROM)、电可编程ROM(EPROM)、电可擦除可编程ROM(EEPROM)或闪存。易失性存储器可包括随机存取存储器(RAM)或者外部高速缓冲存储器。作为说明而非局限,RAM以多种形式可得,诸如静态RAM(SRAM)、动态RAM(DRAM)、同步DRAM(SDRAM)、双数据率SDRAM(DDRSDRAM)、增强型SDRAM(ESDRAM)、同步链路(Synchlink)DRAM(SLDRAM)、存储器总线(Rambus)直接RAM(RDRAM)、直接存储器总线动态RAM(DRDRAM)、以及存储器总线动态RAM(RDRAM)等。Those of ordinary skill in the art can understand that all or part of the process in the method for extracting a face image described in any of the above embodiments can be completed by instructing the relevant hardware through a computer program, and the computer program can store In a non-volatile computer-readable storage medium, when the computer program is executed, it may include the processes of the above-mentioned method embodiments. Wherein, any reference to memory, storage, database or other medium used in the various embodiments provided by the present invention may include non-volatile and/or volatile memory. Nonvolatile memory may include read only memory (ROM), programmable ROM (PROM), electrically programmable ROM (EPROM), electrically erasable programmable ROM (EEPROM), or flash memory. Volatile memory may include random access memory (RAM) or external cache memory. By way of illustration and not limitation, RAM is available in various forms such as static RAM (SRAM), dynamic RAM (DRAM), synchronous DRAM (SDRAM), double data rate SDRAM (DDRSDRAM), enhanced SDRAM (ESDRAM), synchronous chain Road (Synchlink) DRAM (SLDRAM), memory bus (Rambus) direct RAM (RDRAM), direct memory bus dynamic RAM (DRDRAM), and memory bus dynamic RAM (RDRAM), etc.
据此,在一个实施例中提供了一种计算机可读存储介质,其上存储有计算机程序,计算机程序被处理器执行时实现以下步骤:Accordingly, in one embodiment, a computer-readable storage medium is provided on which a computer program is stored, and when the computer program is executed by a processor, the following steps are implemented:
获取多目摄像头拍摄的多张图像;根据人脸肤色特征从图像中提取第一人脸图像;根据标准人脸图像的欧拉数在所述第一人脸图像中确定第二人脸图像;获取各张图像之间的第二人脸图像的重叠区域;根据重叠区域提取图像中的第三人脸图像。Obtaining multiple images captured by a multi-eye camera; extracting a first face image from the image according to the skin color feature of the face; determining a second face image in the first face image according to the Euler number of the standard face image; Obtain the overlapping area of the second face image between the images; extract the third face image in the images according to the overlapping area.
在一个实施例中,计算机程序被处理器执行时还实现以下步骤:In one embodiment, the computer program further implements the following steps when executed by the processor:
根据人脸肤色特征对图像进行二值化,得到第四人脸图像;确定第四人脸图像中的多个目标区域;获取各个目标区域的像素点数量;若像素点数量小于设定的阈值,则在第四人脸图像中去除目标区域,得到所述第一人脸图像。Binarize the image according to the skin color feature of the face to obtain a fourth face image; determine multiple target areas in the fourth face image; obtain the number of pixels in each target area; if the number of pixels is less than the set threshold , the target area is removed from the fourth face image to obtain the first face image.
在一个实施例中,计算机程序被处理器执行时还实现以下步骤:In one embodiment, the computer program further implements the following steps when executed by the processor:
对第三人脸图像进行二值化处理;对二值化处理后的第三人脸图像进行计数,确定图像中的人数。Perform binarization processing on the third face image; count the third face image after the binarization processing to determine the number of people in the image.
在一个实施例中,计算机程序被处理器执行时还实现以下步骤:In one embodiment, the computer program further implements the following steps when executed by the processor:
获取人脸图像数据库;其中,该人脸图像数据库记录多张人脸图像以及与人脸图像相对应的人物身份;将第三人脸图像与人脸图像数据库中的人脸图像进行匹配,确定图像中的人物身份。Obtain a face image database; wherein, the face image database records multiple face images and the identity of the person corresponding to the face image; the third face image is matched with the face image in the face image database to determine The identity of the person in the image.
在一个实施例中,计算机程序被处理器执行时还实现以下步骤:In one embodiment, the computer program further implements the following steps when executed by the processor:
确定多种标准人脸姿态;根据多种标准人脸姿态对第三人脸图像进行姿态分析,确定图像中的人脸姿态。Determine a variety of standard face poses; perform pose analysis on the third face image according to the multiple standard face poses to determine the face pose in the image.
上述计算机可读存储介质,通过其存储的计算机程序,提高了提取人脸图像的准确性,而且应用到嵌入式设备的实训系统当中,能够从实训场景图像中准确地提取出实训学员的人脸图像,便于对实训人员进行统计分析。The above-mentioned computer-readable storage medium, through the computer program stored therein, improves the accuracy of extracting face images, and is applied to the training system of embedded devices, so that the training students can be accurately extracted from the training scene images. face images, which is convenient for statistical analysis of trainees.
以上实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。The technical features of the above embodiments can be combined arbitrarily. In order to make the description simple, all possible combinations of the technical features in the above embodiments are not described. However, as long as there is no contradiction in the combination of these technical features It is considered to be the range described in this specification.
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。The above-mentioned embodiments only represent several embodiments of the present invention, and the descriptions thereof are specific and detailed, but should not be construed as a limitation on the scope of the invention patent. It should be pointed out that for those of ordinary skill in the art, without departing from the concept of the present invention, several modifications and improvements can also be made, which all belong to the protection scope of the present invention. Therefore, the protection scope of the patent of the present invention should be subject to the appended claims.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811347342.5A CN109558812B (en) | 2018-11-13 | 2018-11-13 | Face image extraction method and device, training system and storage medium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811347342.5A CN109558812B (en) | 2018-11-13 | 2018-11-13 | Face image extraction method and device, training system and storage medium |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109558812A CN109558812A (en) | 2019-04-02 |
CN109558812B true CN109558812B (en) | 2021-07-23 |
Family
ID=65865989
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201811347342.5A Active CN109558812B (en) | 2018-11-13 | 2018-11-13 | Face image extraction method and device, training system and storage medium |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109558812B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111062293B (en) * | 2019-12-10 | 2022-09-09 | 太原理工大学 | Unmanned aerial vehicle forest flame identification method based on deep learning |
CN116311383B (en) * | 2023-05-16 | 2023-07-25 | 成都航空职业技术学院 | Intelligent building power consumption management system based on image processing |
CN119110106A (en) * | 2023-11-29 | 2024-12-10 | 南京邦喏乐智能科技有限公司 | Special effects live broadcast strategy analysis system for human face |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101452582A (en) * | 2008-12-18 | 2009-06-10 | 北京中星微电子有限公司 | Method and device for implementing three-dimensional video specific action |
CN101706872A (en) * | 2009-11-26 | 2010-05-12 | 上海交通大学 | Universal open type face identification system |
CN102063607A (en) * | 2009-11-16 | 2011-05-18 | 日电(中国)有限公司 | Method and system for acquiring human face image |
CN203118326U (en) * | 2013-01-18 | 2013-08-07 | 北京新大陆时代教育科技有限公司 | A teaching practical training integrated platform device based on an internet of things |
CN104933145A (en) * | 2015-06-19 | 2015-09-23 | 深圳天珑无线科技有限公司 | Photograph processing method and device and mobile terminal |
CN207743420U (en) * | 2018-01-24 | 2018-08-17 | 深圳阿凡达智控有限公司 | Multi-function jack |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7050607B2 (en) * | 2001-12-08 | 2006-05-23 | Microsoft Corp. | System and method for multi-view face detection |
KR100866792B1 (en) * | 2007-01-10 | 2008-11-04 | 삼성전자주식회사 | Method and apparatus for generating face descriptor using extended local binary pattern and method and apparatus for face recognition using same |
US20090290791A1 (en) * | 2008-05-20 | 2009-11-26 | Holub Alex David | Automatic tracking of people and bodies in video |
CN101667245B (en) * | 2009-09-25 | 2011-08-24 | 西安电子科技大学 | Face Detection Method Based on Support Vector Novelty Detection Classifier Cascade |
CN101872431B (en) * | 2010-02-10 | 2014-04-09 | 杭州海康威视数字技术股份有限公司 | People flow rate statistical method and system applicable to multi-angle application scenes |
KR101189043B1 (en) * | 2011-04-27 | 2012-10-08 | 강준규 | Service and method for video call, server and terminal thereof |
CN102509070A (en) * | 2011-10-12 | 2012-06-20 | 西安理工大学 | Video-based human face area tracking method for counting people paying close attention to advertisement |
CN103632132B (en) * | 2012-12-11 | 2017-02-15 | 广西科技大学 | Face detection and recognition method based on skin color segmentation and template matching |
CN103927520B (en) * | 2014-04-14 | 2018-04-27 | 中国华戎控股有限公司 | A kind of backlight environment servant's face detecting method |
CN104268536B (en) * | 2014-10-11 | 2017-07-18 | 南京烽火软件科技有限公司 | A kind of image method for detecting human face |
CN104715244A (en) * | 2015-04-01 | 2015-06-17 | 华中科技大学 | Multi-viewing-angle face detection method based on skin color segmentation and machine learning |
CN105205480B (en) * | 2015-10-31 | 2018-12-25 | 潍坊学院 | Human-eye positioning method and system in a kind of complex scene |
CN107229887A (en) * | 2016-03-24 | 2017-10-03 | 北京亮亮视野科技有限公司 | Multi-code scanning device and multi-code scan method |
CN107507277B (en) * | 2017-07-31 | 2021-04-06 | 北京康邦科技有限公司 | Three-dimensional point cloud reconstruction method and device, server and readable storage medium |
CN107609512A (en) * | 2017-09-12 | 2018-01-19 | 上海敏识网络科技有限公司 | A kind of video human face method for catching based on neutral net |
-
2018
- 2018-11-13 CN CN201811347342.5A patent/CN109558812B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101452582A (en) * | 2008-12-18 | 2009-06-10 | 北京中星微电子有限公司 | Method and device for implementing three-dimensional video specific action |
CN102063607A (en) * | 2009-11-16 | 2011-05-18 | 日电(中国)有限公司 | Method and system for acquiring human face image |
CN101706872A (en) * | 2009-11-26 | 2010-05-12 | 上海交通大学 | Universal open type face identification system |
CN203118326U (en) * | 2013-01-18 | 2013-08-07 | 北京新大陆时代教育科技有限公司 | A teaching practical training integrated platform device based on an internet of things |
CN104933145A (en) * | 2015-06-19 | 2015-09-23 | 深圳天珑无线科技有限公司 | Photograph processing method and device and mobile terminal |
CN207743420U (en) * | 2018-01-24 | 2018-08-17 | 深圳阿凡达智控有限公司 | Multi-function jack |
Non-Patent Citations (1)
Title |
---|
基于肤色信息和模板匹配的人脸检测与提取;邵虹 等;《计算机技术与发展》;20161130;第26卷(第11期);第49-53页 * |
Also Published As
Publication number | Publication date |
---|---|
CN109558812A (en) | 2019-04-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109558812B (en) | Face image extraction method and device, training system and storage medium | |
CN205334563U (en) | Student classroom participation detecting system | |
WO2020000912A1 (en) | Behavior detection method and apparatus, and electronic device and storage medium | |
US20180239984A1 (en) | System for counting quantity of game tokens | |
WO2020073709A1 (en) | Multi-camera multi-face video continuous acquisition device and method | |
CN108875667B (en) | Target identification method and device, terminal equipment and storage medium | |
CN110969045B (en) | Behavior detection method and device, electronic equipment and storage medium | |
CN107241572B (en) | Training video tracking evaluation system for students | |
CN111814587A (en) | Human behavior detection method, teacher behavior detection method, and related system and device | |
CN111368808A (en) | Method, device, system and teaching equipment for collecting question answering data | |
CN109462067B (en) | Auxiliary devices and training systems for embedded equipment | |
CN113822907B (en) | Image processing method and device | |
CN113052127A (en) | Behavior detection method, behavior detection system, computer equipment and machine readable medium | |
CN109697389B (en) | Identity recognition method and device | |
WO2018078862A1 (en) | Image analysis system, image analysis method, and program | |
CN108898134B (en) | Number identification method and device, terminal equipment and storage medium | |
CN106846302B (en) | Detection method for correctly taking tool and examination table based on method | |
CN106650656A (en) | User identification device and robot | |
CN116993654B (en) | Camera module defect detection method, device, equipment, storage medium and product | |
CN116868912A (en) | Device and method for detecting social obstacle behaviors of animals, electronic equipment and medium | |
CN111563465B (en) | An automatic analysis system of animal behavior | |
CN216824742U (en) | Running examination system | |
CN205581903U (en) | Examination verification system based on face identification | |
CN118781525B (en) | Method and device for identifying target object behaviors | |
CN107067468B (en) | Information processing method and electronic equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |