Nothing Special   »   [go: up one dir, main page]

CN109467681B - 一种高分子热活化延迟荧光材料及其制备方法 - Google Patents

一种高分子热活化延迟荧光材料及其制备方法 Download PDF

Info

Publication number
CN109467681B
CN109467681B CN201811181588.XA CN201811181588A CN109467681B CN 109467681 B CN109467681 B CN 109467681B CN 201811181588 A CN201811181588 A CN 201811181588A CN 109467681 B CN109467681 B CN 109467681B
Authority
CN
China
Prior art keywords
monomer compound
delayed fluorescence
fluorescence material
polymer
high molecular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811181588.XA
Other languages
English (en)
Other versions
CN109467681A (zh
Inventor
罗佳佳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan China Star Optoelectronics Semiconductor Display Technology Co Ltd
Original Assignee
Wuhan China Star Optoelectronics Semiconductor Display Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan China Star Optoelectronics Semiconductor Display Technology Co Ltd filed Critical Wuhan China Star Optoelectronics Semiconductor Display Technology Co Ltd
Priority to CN201811181588.XA priority Critical patent/CN109467681B/zh
Priority to US16/463,382 priority patent/US11201289B2/en
Priority to PCT/CN2018/125102 priority patent/WO2020073527A1/zh
Publication of CN109467681A publication Critical patent/CN109467681A/zh
Application granted granted Critical
Publication of CN109467681B publication Critical patent/CN109467681B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/02Polyamines
    • C08G73/0273Polyamines containing heterocyclic moieties in the main chain
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/0622Polycondensates containing six-membered rings, not condensed with other rings, with nitrogen atoms as the only ring hetero atoms
    • C08G73/0633Polycondensates containing six-membered rings, not condensed with other rings, with nitrogen atoms as the only ring hetero atoms with only two nitrogen atoms in the ring
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/12Copolymers
    • C08G2261/124Copolymers alternating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/141Side-chains having aliphatic units
    • C08G2261/1412Saturated aliphatic units
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/324Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed
    • C08G2261/3241Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed containing one or more nitrogen atoms as the only heteroatom, e.g. carbazole
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/50Physical properties
    • C08G2261/52Luminescence
    • C08G2261/522Luminescence fluorescent
    • C08G2261/5222Luminescence fluorescent electrofluorescent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/50Physical properties
    • C08G2261/64Solubility
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/90Applications
    • C08G2261/95Use in organic luminescent diodes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/14Macromolecular compounds
    • C09K2211/1408Carbocyclic compounds
    • C09K2211/1425Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/14Macromolecular compounds
    • C09K2211/1441Heterocyclic
    • C09K2211/1466Heterocyclic containing nitrogen as the only heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/20Delayed fluorescence emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/30Highest occupied molecular orbital [HOMO], lowest unoccupied molecular orbital [LUMO] or Fermi energy values
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本发明提供了一种高分子热活化延迟荧光(Thermally Activated Delayed Fluorescence,TADF)材料,其是以主链聚合TADF分子结构,侧链连接烷基链,这种结构的TADF高分子材料具有优良的TADF特性以及溶解性。进一步的,本发明涉及的所述材料可使用溶液加工的方式来制备电致发光器件,并能取得良好的器件效果。

Description

一种高分子热活化延迟荧光材料及其制备方法
技术领域
本发明涉及可用于平面显示器件的材料领域,尤其是,其中的一种高分子热活化延迟荧光材料及其制备方法。
背景技术
已知,有机发光二极管(OLEDs)在显示、照明等领域的光电器件中的应用方面,具有非常大的潜在应用价值。其中光电转换效率是评估OLED的重要参数之一,自有机发光二极管问世以来,为提高有机发光二极管的发光效率,各种基于荧光、磷光的发光材料体系被开发出来。
其中基于荧光材料的OLED虽然具有稳定性高的特点,但受限于量子统计学定律,在电激活作用下,产生的单重激发态激子和三重激发态激子的比例为1∶3,因此,荧光材料的内部电致发光量子效率被限制在25%。
而磷光材料由于具有重原子的旋轨耦合作用,可同时利用单重激发态激子和三重激发态激子,其理论内电子发光量子效率能够达到100%。但基于磷光的OLED材料多需要采用贵重金属,相应的提高了产品的成本高,同时也不环保。
为了克服这上述两种材料的缺点,Adachi等提出了利用三重激发态激子通过热活化回到单重态,再辐射跃迁回到基态发光,也可以使得理论内量子效率达到100%。这样便可利用不含有重金属原子的有机化合物实现可与磷光OLED相匹配的高效率,具体内容可参见C.Adachi,et.al.,Nature,Vol 492,234,(2012)。目前大部分研究都集中在蒸镀型材料,但这会使得器件的制作成本变得很高。
进一步的,高分子热活化延迟荧光(Thermally Activated DelayedFluorescence,TADF)材料由于良好的成膜性,在湿法加工方面具有明显的优势。但是如何使得热活化延迟荧光高分子保持高的光致发光量子产率以及较大的反向系间窜越常数仍然没有得到解决,这也是目前高分子热活化延迟荧光材料制备的器件外量子效率比较低的原因。
虽然如此,但热活化延迟荧光材料仍以其独特的优势吸引了许多科研人员的关注,这其中基于小分子的TADF材料的热蒸镀器件的性能已经能够媲美基于磷光重金属配合物的器件。但是,可应用旋涂工艺制备电致发光器件的TADF材料屈指可数,尤其是其中的高分子TADF聚合物更是寥寥无几。
因此,设计合成新型的高分子TADF聚合物对于开拓TADF材料的广泛应用,具有十分重要的意义。
发明内容
本发明的的一个方面在于提供一种高分子热活化延迟荧光(ThermallyActivated Delayed Fluorescence,TADF)材料,其具有优良的TADF特性以及溶解性,可使用溶液加工的方式制备电致发光器件。进一步的,将本发明涉及的这种高分子材料应用于显示器件中,所述显示器件能够取得良好的器件效果。
其中本发明采用的技术方案如下:
一种高分子热活化延迟荧光材料,其结构式如下:
Figure BDA0001825163570000021
其中在有机电致发光器件中,起主导作用的为发光层,发光材料的性能是决定器件性能的关键因素。对于现有的小分子掺杂器件,其发光层的主客体采用简单的物理掺杂,不可避免的会存在相分离,且容易形成电荷转移复合物以及激基复合物,进而影响器件的性能。而聚合物发光材料则是是以主链作为主体,侧链连接发光客体的方式形成的发光体系,能够有效地避免相分离。同时,聚合物具有良好的热力学稳定性和成膜性,并且可通过成本较低的溶液加工的方式制备器件。
而本发明涉及的这种能够发射橙光的热活化延迟荧光高分子材料,其是以主链聚合TADF分子结构,侧链连接烷基链,这种结构的TADF高分子材料具有优良的TADF特性以及溶解性。相应的,其可使用溶液加工的方式来制备电致发光器件,并能取得良好的器件效果。
进一步的,在不同实施方式中,其是由单体化合物A和单体化合物B合成,其中所述单体化合物A和B的结构式分别为:
Figure BDA0001825163570000031
进一步的,在不同实施方式中,其中所述单体化合物A和单体化合物B是通过下述合成路线合成出所述高分子热活化延迟荧光材料
Figure BDA0001825163570000032
进一步的,在不同实施方式中,其中所述单体化合物A是通过下述合成路线合成出
Figure BDA0001825163570000033
进一步的,在不同实施方式中,其中所述单体化合物B是通过下述合成路线合成出
Figure BDA0001825163570000041
本发明的又一方面是提供了一种制备本发明涉及的所述高分子热活化延迟荧光材料的制备方法,其包括以下步骤:
向高压反应瓶中加入所述单体化合物A和所述单体化合物B;
加入无水甲苯,在80~120℃反应40~60小时,冷却至室温;
使用甲醇和丙酮的混合溶剂中对上述反应产物进行沉降,得到的高分子产物;
将所述高分子产物放置在正己烷和丙酮中抽提,然后干燥得到本发明涉及的所述高分子热活化延迟荧光材料。
进一步的,在不同实施方式中,其中涉及使用的所述混合溶剂中,所述甲醇和丙酮的混合比例为(7-9)∶1。
进一步的,在不同实施方式中,其中所述单体化合物A的合成方法包括以下步骤:
向反应瓶中加入3,4-二已基邻氨基苯酚、乙酸酐,然后在100~135℃反应回流20~30小时;
待反应冷却至室温,将反应液倒入冰水中,抽滤得固体,然后用二氯甲烷溶解,旋成硅胶,柱层析分离纯化,得到目标单体化合物A。
进一步的,在不同实施方式中,其中所述单体化合物B的合成方法包括以下步骤:
向反应瓶中加入对溴苯甲醛和催化剂,在100~120℃下反应20~30小时;
冷却至室温,将反应液倒入冰水中,使用二氯甲烷进行萃取,合并有机相,旋成硅胶,柱层析分离纯化,得到所述目标单体化合物B。
进一步的,在不同实施方式中,其中所述催化剂包括钯/碳。
进一步的,本发明的又一方面提供了一种显示器件,其包括发光层。其中所述发光层的材料是本发明涉及的所述高分子热活化延迟荧光材料。
进一步的,本发明涉及所述高分子热活化延迟荧光材料作为发光层的电致热激活延迟荧光器件,其可包括玻璃和导电玻璃(ITO)衬底层,空穴传输和注入层、所述发光层、电子传输层以及阴极层。
相对于现有技术,本发明的有益效果是:本发明涉及的一种高分子热活化延迟荧光材料,具有优良的TADF特性以及溶解性,可使用溶液加工的方式制备电致发光器件。
进一步的,将本发明涉及的这种高分子材料应用于电致发光器件中的发光层中,通过所述器件的检测数据可知,其能够取得良好的器件效果。
附图说明
图1是本发明涉及的一个实施方式提供的一种高分子热活化延迟荧光材料,经过理论计算得出的其最高电子占据轨道(HOMO)的分布图;
图2是本发明涉及的一个实施方式提供的一种高分子热活化延迟荧光材料,经过理论计算得出的其最低电子未占据轨道(LUMO)的分布图;
图3是本发明涉及的一个实施方式提供的一种高分子热活化延迟荧光材料,在室温下,其高分子在所在薄膜中的光致发光光谱;
图4是本发明涉及的一个实施方式提供的一种高分子热活化延迟荧光材料,在室温下,其高分子在所在薄膜中的瞬态光致发光光谱。
具体实施方式
以下将结合附图和实施例,对本发明涉及的一种高分子热活化延迟荧光材料及其制备方法的技术方案作进一步的详细描述。
本发明的一个实施方式提供了一种高分子热活化延迟荧光材料,其结构式如下:
其中在有机电致发光器件中,起主导作用的为发光层,发光材料的性能是决定器件性能的关键因素。对于现有的小分子掺杂器件,其发光层的主客体采用简单的物理掺杂,不可避免的会存在相分离,且容易形成电荷转移复合物以及激基复合物,进而影响器件的性能。而聚合物发光材料则是是以主链作为主体,侧链连接发光客体的方式形成的发光体系,能够有效地避免相分离。同时,聚合物具有良好的热力学稳定性和成膜性,并且可通过成本较低的溶液加工的方式制备器件。
而本发明涉及的这种能够发射橙光的热活化延迟荧光高分子材料,其是以主链聚合TADF分子结构,侧链连接烷基链,这种结构的TADF高分子材料具有优良的TADF特性以及溶解性。相应的,其可使用溶液加工的方式来制备电致发光器件,并能取得良好的器件效果。
其中请参阅图1和2所示,其图示了,本发明涉及的一个实施方式提供的一种高分子热活化延迟荧光材料,经过理论计算得出的其最高电子占据轨道(HOMO)的分布,以及其最低电子未占据轨道(LUMO)的分布。
进一步的,所述高分子热活化延迟荧光材料的分子中,其最低单重态(S1)和最低三重态能级(T1),电化学能级如下表所示:
Figure BDA0001825163570000062
请参阅图3所示,其图示了本发明涉及的一个实施方式提供的一种高分子热活化延迟荧光材料,在室温下,其高分子在所在薄膜中的光致发光光谱。
请参阅图4所示,其图示了本发明涉及的一个实施方式提供的一种高分子热活化延迟荧光材料,在室温下,其高分子在所在薄膜中的瞬态光致发光光谱。
其中在一个实施方式中,本发明涉及的所述高分子热活化延迟荧光材料,其是由单体化合物A和单体化合物B合成,其中所述单体化合物A和B的结构式分别为:
Figure BDA0001825163570000071
其中所述单体化合物A是以下述合成路线获得的
Figure BDA0001825163570000072
具体的,在一个实施方式中,其可以是包括以下步骤。
向100mL二口瓶中加入3,4-二已基邻氨基苯酚(2.77g,10mmol),乙酸酐(50mL),然后在温度120℃下反应回流24小时;
待反应冷却至室温,将反应液倒入500mL冰水中,抽滤得灰白色固体,用二氯甲烷溶解,旋成硅胶,柱层析(二氯甲烷∶正己烷,v∶v,1∶3)分离纯化,得蓝白色粉末2.1g,产率81%。
其中所述单体化合物B是以下述合成路线获得的
Figure BDA0001825163570000081
具体的,在一个实施方式中,其可以是包括以下步骤。
向100mL二口瓶中加入对溴苯甲醛(1.83g,10mmol),钯/碳(90mg,催化量)和抽通,在温度110℃下反应24小时;
冷却至室温,将反应液倒入50mL冰水中,二氯甲烷萃取三次,合并有机相,旋成硅胶,柱层析(二氯甲烷∶正己烷,v∶v,1∶5)分离纯化,得淡蓝色粉末1.0g,产率55%。
在得到所述单体化合物A和单体化合物B后,其可以通过以下合成路线合成出本发明涉及的所述高分子热活化延迟荧光材料
Figure BDA0001825163570000082
具体的,在一个实施方式中,其可以是包括以下步骤。
向200mL的高压反应瓶中加入单体化合物A(1.04g,2mmol)和单体化合物B(0.73g,0.2mmol),抽通三次,加入50m1无水甲苯,在温度100℃下反应48小时;
冷却至室温,用250mL甲醇和30mL丙酮混合溶剂沉降,得到的高分子在正己烷里面抽提三天,接着在丙酮里抽提三天,真空干燥,得到白色的絮状所述高分子0.66g,产率37%。
其中获得的所述高分子的数均分子量为21.3kg/mol,重均分子量为35.2g/mol,PDI为1.65。
进一步的,本发明涉及的所述高分子热活化延迟荧光材料可以用于构成电致热激活延迟荧光器件中的发光层。
其中在一个具体实施方式中,所述电致热激活延迟荧光器件包括衬底层、空穴传输和注入层、发光层、电子传输层和阴极层。
具体的,其中所述衬底层材料可以是玻璃和/或导电玻璃(ITO),所述空穴传输和注入层材料可以是聚3,4-乙撑二氧噻吩、聚苯乙烯磺酸盐和PEDOT:PSS中的一种;所述电子传输层的材料可以是1,3,5-三(3-(3-吡啶基)苯基)苯/TmPyPB;所述阴极层的材料可以是氟化锂/铝。
进一步的,在一个上述电致发光器件的具体制备方式中,其可以是在经过清洗的导电玻璃(ITO)衬底上依次旋涂PESOT:PSS材料和所述高分子活化延迟荧光材料以分别依次形成所述空穴传输和注入层以及发光层,然后在高真空条件下依次蒸镀TmPyPB、1nm的LiF和100nm的Al,以依次分别形成所述电子传输层和阴极层。
具体的,在一个实施方式中,所述电致发光器件的结构如下:
ITO/PEDOT:PSS(50nm)/所述高分子聚合物(40nm)/TmPyPB(40nm)/LiF(1nm)/Al(100nm)。
进一步的,对上述电致发光器件进行性能测量,其中所述器件的电流-亮度-电压特性是由带有校正过的硅光电二极管的Keithley源测量系统(Keithley2400Sourcemeter、Keithley 2000Currentmeter)完成的,电致发光光谱是由法国JY公司SPEX CCD3000光谱仪测量的,所有测量均在室温大气中完成。其中所述器件的性能数据如下:
最高亮度(cd/m<sup>2</sup>) 启动电压(V) CIE 最大外量子效率(%)
4123 5.6 (0.58,0.36) 11.2
本发明的技术范围不仅仅局限于上述说明中的内容,本领域技术人员可以在不脱离本发明技术思想的前提下,对上述实施例进行多种变形和修改,而这些变形和修改均应当属于本发明的范围内。

Claims (10)

1.一种高分子热活化延迟荧光材料;其特征在于,其结构式如下:
Figure FDA0002275340660000011
2.根据权利要求1所述的一种高分子热活化延迟荧光材料,其特征在于,其是由单体化合物A和单体化合物B合成,其中所述单体化合物A和B的结构式分别为:
3.根据权利要求2所述的一种高分子热活化延迟荧光材料,其特征在于,其是由所述单体化合物A和单体化合物B通过下述合成路线合成出:
Figure FDA0002275340660000013
4.根据权利要求2所述的一种高分子热活化延迟荧光材料,其特征在于,其中所述单体化合物A是通过下述合成路线合成出:
Figure FDA0002275340660000021
5.根据权利要求2所述的一种高分子热活化延迟荧光材料,其特征在于,其中所述单体化合物B是通过下述合成路线合成出:
6.一种制备权利要求1所述的一种高分子热活化延迟荧光材料的制备方法,其特征在于,包括以下步骤:
向高压反应瓶中加入所述单体化合物A和所述单体化合物B ,其中所述单体化合物A和单体化合物B分别采用以下的结构通式:
Figure FDA0002275340660000023
加入无水甲苯,在80~120℃反应40~60小时,冷却至室温;
使用甲醇和丙酮的混合溶剂中对上述反应产物进行沉降,得到的高分子产物;
将所述高分子产物放置在正己烷和丙酮中抽提,然后干燥得到根据权利要求1所述的高分子热活化延迟荧光材料。
7.根据权利要求6所述的一种制备方法,其特征在于,其中所述混合溶剂中,所述甲醇和丙酮的体积混合比例为(7-9)∶1。
8.根据权利要求6所述的一种制备方法,其特征在于,其中所述单体化合物A的合成方法包括以下步骤:
向反应瓶中加入3,4-二己基邻氨基苯酚、乙酸酐,然后在100~135℃反应回流20~30小时;
待反应冷却至室温,将反应液倒入冰水中,抽滤得固体,然后用二氯甲烷溶解,旋成硅胶,柱层析分离纯化,得到目标单体化合物A。
9.根据权利要求6所述的一种制备方法,其特征在于,其中所述单体化合物B的合成方法包括以下步骤:
向反应瓶中加入对溴苯甲醛和催化剂,在100~120℃下反应20~30小时;
冷却至室温,将反应液倒入冰水中,使用二氯甲烷进行萃取,合并有机相,旋成硅胶,柱层析分离纯化,得到所述目标单体化合物B。
10.一种显示器件,其包括发光层;其特征在于,其中所述发光层采用的材料包括权利要求1~5中任一项所述的高分子热活化延迟荧光材料。
CN201811181588.XA 2018-10-11 2018-10-11 一种高分子热活化延迟荧光材料及其制备方法 Active CN109467681B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201811181588.XA CN109467681B (zh) 2018-10-11 2018-10-11 一种高分子热活化延迟荧光材料及其制备方法
US16/463,382 US11201289B2 (en) 2018-10-11 2018-12-28 Thermally activated delayed fluorescence polymeric material and preparing method of same
PCT/CN2018/125102 WO2020073527A1 (zh) 2018-10-11 2018-12-28 一种高分子热活化延迟荧光材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811181588.XA CN109467681B (zh) 2018-10-11 2018-10-11 一种高分子热活化延迟荧光材料及其制备方法

Publications (2)

Publication Number Publication Date
CN109467681A CN109467681A (zh) 2019-03-15
CN109467681B true CN109467681B (zh) 2020-02-18

Family

ID=65664810

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811181588.XA Active CN109467681B (zh) 2018-10-11 2018-10-11 一种高分子热活化延迟荧光材料及其制备方法

Country Status (3)

Country Link
US (1) US11201289B2 (zh)
CN (1) CN109467681B (zh)
WO (1) WO2020073527A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109456276A (zh) 2018-10-22 2019-03-12 武汉华星光电半导体显示技术有限公司 深红光热活化延迟荧光材料及其合成方法、电致发光器件
CN110396195B (zh) * 2019-08-08 2021-11-16 吉林大学 一种含有还原酚嗪结构的聚芳砜类聚合物及其制备方法
US11430959B2 (en) * 2019-11-22 2022-08-30 Wuhan China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Thermally activated delayed fluorescence material and organic light-emitting diode prepared using same
CN116948638B (zh) * 2023-05-17 2024-05-07 北京师范大学 多色高量子产率可溶液加工的热活化延迟荧光类洋葱状碳量子点及其制备和应用

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105176520B (zh) * 2015-09-01 2017-06-20 华南理工大学 一种基于4,4′‑取代苯偶酰核的发光和主体材料的制备与应用
CN106008501B (zh) * 2016-06-20 2018-03-13 武汉大学 含有吡啶并吡嗪单元的双极性化合物及其制备方法和应用
CN106047337B (zh) * 2016-06-20 2018-11-23 武汉大学 一种含有喹喔啉单元的有机热致延迟荧光材料及其应用
CN106117524B (zh) * 2016-07-28 2019-04-09 华南理工大学 一种侧链含砜基基团的热活化延迟荧光共轭聚合物发光材料及其制备方法与应用
CN106589324B (zh) * 2016-11-30 2018-08-21 武汉大学 一种热激活延迟荧光高分子化合物及其制备方法和应用
CN107118334B (zh) * 2017-06-05 2019-06-04 盐城工学院 单一白光聚合物及有机电致发光材料和有机电致发光器件及其制备方法

Also Published As

Publication number Publication date
US11201289B2 (en) 2021-12-14
WO2020073527A1 (zh) 2020-04-16
CN109467681A (zh) 2019-03-15
US20200136048A1 (en) 2020-04-30

Similar Documents

Publication Publication Date Title
Huang et al. Benzene-cored fluorophors with TPE peripheries: facile synthesis, crystallization-induced blue-shifted emission, and efficient blue luminogens for non-doped OLEDs
CN109467681B (zh) 一种高分子热活化延迟荧光材料及其制备方法
Wang et al. A solution-processable deep red molecular emitter for non-doped organic red-light-emitting diodes
CN112645968A (zh) 一种含有两个硼原子和两个氧族原子的稠环化合物及有机电致发光器件
US10851292B2 (en) Dark blue light thermally activated delayed fluorescence (TADF) material and application thereof
Chen et al. Synthesis and characterization of a new series of blue fluorescent 2, 6-linked 9, 10-diphenylanthrylenephenylene copolymers and their application for polymer light-emitting diodes
CN109369652B (zh) 一种蓝光热活化延迟荧光材料及其应用
JP2024518728A (ja) 1,8-置換カルバゾールによる高放射率白金錯体及びその使用
CN107814916B (zh) 一种聚合物、发光材料及器件、显示装置
CN109535420B (zh) 一种热活化延迟荧光深红光高分子材料及其制备方法
CN101397365B (zh) 1,8-咔唑类聚合物光电材料及其制备和应用方法
Huang et al. Construction of deep-blue AIE luminogens with TPE and oxadiazole units
Liu et al. A quinoxaline-based charge-transfer compound for efficient deep-red organic light emitting diodes
CN103319695B (zh) 含4,9-二氮杂芘的共轭聚合物及其制备方法与应用
CN107759774B (zh) 主链含s,s-二氧-二苯并噻吩的d-a型聚合物及其制备方法与应用
CN111454435B (zh) 一类基于菲并咪唑单元的电致发光聚合物及其制备方法与应用
Ma et al. Cyclohexane-cored dendritic host materials with high triplet energy for efficient solution-processed blue thermally activated delayed fluorescence OLEDs
Zhang et al. Bipolar fluorene-cored derivatives containing carbazole-benzothiazole hybrids as non-doped emitters for deep-blue electroluminescence
CN110511177B (zh) 一种d-a型tadf材料及其制备方法和应用
Zhou et al. Orange-emitting supramolecular phosphorescent polymer with different counterions for polymer light-emitting diodes
CN112679732B (zh) 一类发光聚合物及其无金属催化剂聚合方法与应用
Zhang et al. A supramolecular large band gap host for phosphorescent organic light-emitting diodes
CN108070073B (zh) 聚螺芴及有机电致发光器件
CN112661887B (zh) 高激子利用率非共轭型电致发光聚合物及其制备方法与应用
CN110358059B (zh) 一种含poss磷光聚合物材料的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant