CN108875710A - Elevator door speed of service estimation method based on energy threshold algorithm - Google Patents
Elevator door speed of service estimation method based on energy threshold algorithm Download PDFInfo
- Publication number
- CN108875710A CN108875710A CN201810817721.XA CN201810817721A CN108875710A CN 108875710 A CN108875710 A CN 108875710A CN 201810817721 A CN201810817721 A CN 201810817721A CN 108875710 A CN108875710 A CN 108875710A
- Authority
- CN
- China
- Prior art keywords
- signal
- fourier transform
- acceleration signal
- elevator door
- acceleration
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 21
- 230000001133 acceleration Effects 0.000 claims abstract description 95
- 238000012545 processing Methods 0.000 claims abstract description 28
- 238000001914 filtration Methods 0.000 claims abstract description 16
- 238000005070 sampling Methods 0.000 claims description 26
- 238000010606 normalization Methods 0.000 claims description 13
- 238000004364 calculation method Methods 0.000 claims description 11
- 230000010354 integration Effects 0.000 claims description 9
- 230000009466 transformation Effects 0.000 claims description 7
- 108010076504 Protein Sorting Signals Proteins 0.000 claims description 6
- 238000005316 response function Methods 0.000 claims description 6
- 238000003379 elimination reaction Methods 0.000 claims description 3
- 238000005259 measurement Methods 0.000 claims description 3
- 238000012546 transfer Methods 0.000 claims description 3
- 238000010586 diagram Methods 0.000 description 9
- 238000012423 maintenance Methods 0.000 description 5
- 238000012544 monitoring process Methods 0.000 description 5
- 230000008030 elimination Effects 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2218/00—Aspects of pattern recognition specially adapted for signal processing
- G06F2218/02—Preprocessing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B66—HOISTING; LIFTING; HAULING
- B66B—ELEVATORS; ESCALATORS OR MOVING WALKWAYS
- B66B5/00—Applications of checking, fault-correcting, or safety devices in elevators
- B66B5/0006—Monitoring devices or performance analysers
- B66B5/0018—Devices monitoring the operating condition of the elevator system
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/10—Complex mathematical operations
- G06F17/11—Complex mathematical operations for solving equations, e.g. nonlinear equations, general mathematical optimization problems
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/10—Complex mathematical operations
- G06F17/15—Correlation function computation including computation of convolution operations
- G06F17/156—Correlation function computation including computation of convolution operations using a domain transform, e.g. Fourier transform, polynomial transform, number theoretic transform
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2218/00—Aspects of pattern recognition specially adapted for signal processing
- G06F2218/08—Feature extraction
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- Theoretical Computer Science (AREA)
- Data Mining & Analysis (AREA)
- Computational Mathematics (AREA)
- Mathematical Analysis (AREA)
- Mathematical Optimization (AREA)
- Pure & Applied Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Algebra (AREA)
- Software Systems (AREA)
- Databases & Information Systems (AREA)
- Operations Research (AREA)
- Artificial Intelligence (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Signal Processing (AREA)
- Computing Systems (AREA)
- Maintenance And Inspection Apparatuses For Elevators (AREA)
- Elevator Door Apparatuses (AREA)
Abstract
本发明公开了一种基于能量阈值算法的电梯门实时运行速度估计方法。本发明包括如下步骤:步骤1、通过加速度传感器获取原始电梯门运行的加速度信号;步骤2、对获得的加速度信号进行去趋势项处理;步骤3、通过快速傅里叶变换转换为频域,滤波去噪;步骤4、对滤波后的频域信号进行傅里叶逆变换,计算加速度信号的能量;步骤5、对电梯的运行阶段设定阈值,去除抖动噪声信号;步骤6、对最终加速度信号q(t)进行积分处理,得到相对应的实时速度信号。本发明去除电梯开关门瞬间及开关门间隙存在的抖动干扰信号,同时还能保证减少有用信号的损失,积分得到速度信号。
The invention discloses a method for estimating the real-time running speed of an elevator door based on an energy threshold algorithm. The present invention comprises the following steps: step 1, obtaining the acceleration signal of the original elevator door operation through an acceleration sensor; step 2, performing detrending item processing on the obtained acceleration signal; step 3, converting it into frequency domain by fast Fourier transform, and filtering Denoising; step 4, perform Fourier inverse transform on the filtered frequency domain signal, and calculate the energy of the acceleration signal; step 5, set the threshold value for the running phase of the elevator, and remove the jitter noise signal; step 6, the final acceleration signal q(t) is integrally processed to obtain the corresponding real-time speed signal. The invention removes the jitter interference signal existing at the moment of opening and closing of the elevator door and in the gap between the opening and closing of the door, and at the same time ensures that the loss of useful signals is reduced, and the speed signal is obtained by integrating.
Description
技术领域technical field
本发明属于电气控制和数字信号处理领域,涉及一种基于能量阈值算法的电梯门实时运行速度估计方法。The invention belongs to the field of electrical control and digital signal processing, and relates to a method for estimating the real-time running speed of an elevator door based on an energy threshold algorithm.
背景技术Background technique
电梯作为一种公共交通工具,最基础最本质的功能便是能保证把人或货物平稳安全地送达至目的楼层,但长期以来,我国因电梯事故而造成人员伤亡的情况屡有发生,如何能保证电梯安全运行,最大限度减少损失,成为政府监管部门、电梯制造商、电梯供应商等部门需要亟待解决的头等大事。As a means of public transportation, the most basic and essential function of an elevator is to ensure that people or goods are delivered to the destination floor smoothly and safely. Ensuring the safe operation of elevators and minimizing losses has become a top priority for government regulators, elevator manufacturers, elevator suppliers and other departments to urgently solve.
在电梯的安全运行中,门的开关及运行速度是衡量电梯是否正常运行的重要指标之一。电梯门的加速度信号能很好的用于计算和估计其实时运行速度,但加速度传感器在现场采集过程中伴随着各种噪声和干扰,导致在加速度信号处理的过程中,积分后的速度信号有很大的误差,以及二次积分后的结果存在较严重的失真。同时采用频域滤波之后,电梯门在开关间隙门的静止状态以及开关门瞬间,都存在着小幅值的抖动信号。因此,电梯门的加速度信号的准确处理算法是估计其实时速度值和运行状态的核心部分。In the safe operation of the elevator, the door switch and running speed are one of the important indicators to measure whether the elevator is running normally. The acceleration signal of the elevator door can be used to calculate and estimate its real-time running speed very well, but the acceleration sensor is accompanied by various noises and interferences during the on-site acquisition process, resulting in the integrated speed signal in the process of acceleration signal processing. The error is large, and the result after the second integration is seriously distorted. At the same time, after frequency domain filtering is adopted, there are small-amplitude jitter signals in the static state of the elevator door in the opening and closing gap and at the moment of opening and closing the door. Therefore, the accurate processing algorithm of the acceleration signal of the elevator door is the core part of estimating its real-time speed value and running state.
本专利提出一种基于能量阈值算法与时域频域滤波算法相结合的电梯门实时运行速度估计方法,该算法能较准确地估计电梯门实时运行中的加速度值、速度值以及运行状态。这些参数都将作为电梯正常运行、安全监测以及保养维护中的重要指标。This patent proposes a method for estimating the real-time running speed of the elevator door based on the combination of the energy threshold algorithm and the time-domain and frequency-domain filtering algorithm. The algorithm can more accurately estimate the acceleration value, speed value and running state of the real-time running elevator door. These parameters will be used as important indicators in the normal operation, safety monitoring and maintenance of the elevator.
发明内容Contents of the invention
本发明通过一系列信号处理算法对采集到的电梯门加速度信号进行处理,拟得到较为精确的电梯门运行加速度及速度值,以便于了解电梯是否安全运行,为电梯运行的准确判断、减小事故发生的概率、提高监控以及运维的效率、减少人力成本提供保证。The present invention processes the collected elevator door acceleration signals through a series of signal processing algorithms, and intends to obtain relatively accurate elevator door running acceleration and speed values, so as to know whether the elevator is running safely, provide accurate judgment of elevator operation, and reduce accidents. The probability of occurrence, improving the efficiency of monitoring and operation and maintenance, and reducing labor costs provide guarantees.
本专利算法主要实现流程如下:首先,对实测的电梯门开关加速度信号数据进行去趋势项处理;并通过快速傅里叶变换将时域信号转换到频域,进行频域滤波;然后,经过傅里叶逆变换,对变换后的时域信号采用能量阈值算法处理,滤除电梯开关门瞬间以及开关门间隙存在的抖动干扰信号;最后,对处理后的加速度信号进行积分,得到电梯门的实时速度信号。The main implementation process of the patented algorithm is as follows: firstly, the detrending item processing is performed on the measured acceleration signal data of the elevator door switch; Liye inverse transformation, using the energy threshold algorithm to process the transformed time domain signal to filter out the jitter interference signal at the moment of elevator opening and closing and the gap between opening and closing doors; finally, integrate the processed acceleration signal to obtain the real-time speed signal.
本发明主要包括如下步骤:The present invention mainly comprises the steps:
步骤1、通过加速度传感器获取原始电梯门运行的加速度信号;Step 1, obtain the acceleration signal of the original elevator door operation through the acceleration sensor;
1-1、将加速度传感器水平放置在电梯门的一侧;1-1. Place the acceleration sensor horizontally on one side of the elevator door;
1-2、人为控制电梯门的开关,通过加速度传感器记录电梯门每一次开门和关门时加速度信号数据。1-2. Manually control the switch of the elevator door, and record the acceleration signal data when the elevator door is opened and closed every time through the acceleration sensor.
步骤2、对获得的加速度信号进行去趋势项处理;Step 2, performing detrending item processing on the obtained acceleration signal;
2-1、对获取的加速度信号数据,计算其趋势项;2-1. For the acquired acceleration signal data, calculate its trend item;
实测获取的电梯门加速度信号的采样数据为{xk}(k=1,2,3,...,n),n为采样数据的长度,为了便于计算,将采样数据长度扩展为N,且使N=2L,L为使N≥n的最小整数,令采样时间间隔Δt=1,设一个多项式函数:The sampling data of the elevator door acceleration signal obtained by actual measurement is {x k } (k=1,2,3,...,n), n is the length of the sampling data, for the convenience of calculation, the length of the sampling data is extended to N, And let N=2 L , L is the smallest integer that makes N≥n, let the sampling time interval Δt=1, set a polynomial function:
确定多项式函数的各待定系数aj(j=0,1,...,m),使得多项式函数与采样数据xk的误差平方和E最小,即determine the polynomial function The undetermined coefficients a j (j=0,1,...,m) of each such that the polynomial function The sum of squared errors E with the sampled data x k is the smallest, that is
满足E有极值的条件为:The condition that satisfies the extremum value of E is:
依次取E对ai求偏导,产生一个m+1元线性方程组:Take E in turn to find the partial derivative of a i , and generate an m+1 element linear equation system:
解方程组,求出m+1个待定系数aj(j=0,1,...,m)。以上各式中,j为设定的多项式阶次,其值范围为0≤j≤m。Solve the equation system to obtain m+1 undetermined coefficients a j (j=0,1,...,m). In the above formulas, j is the set polynomial order, and its value range is 0≤j≤m.
2-2、获得消除线性趋势项后的加速度信号。2-2. Obtain the acceleration signal after the linear trend item is eliminated.
消除线性趋势项的计算公式为:The calculation formula for eliminating the linear trend item is:
m≥2时为曲线趋势项。在实际电梯门加速度信号处理中,通常取m=1,2,3。对采样数据进行多项式趋势项消除的处理后得到yk。When m≥2, it is the trend item of the curve. In actual elevator door acceleration signal processing, m=1, 2, 3 are usually taken. After processing the sampled data with polynomial trend item elimination, y k is obtained.
步骤3、通过快速傅里叶变换转换为频域,滤波去噪;Step 3, convert to frequency domain by fast Fourier transform, filter and denoise;
3-1、离散傅里叶变换(DFT);3-1. Discrete Fourier transform (DFT);
由于实际采样信号是离散的并且时间T内采样信号的样本长度N是有限的,将去趋势项处理后的{yk}(k=1,2,3,...,n)作为N点序列y(r)(r=0,1,2,...N-1),在对电梯门加速度信号进行傅里叶变换时需要采用傅里叶变换的离散算法,离散傅里叶变换(DFT)的表达式为:Since the actual sampled signal is discrete and the sample length N of the sampled signal in time T is limited, the {y k } (k=1,2,3,...,n) processed by the detrending term is taken as N points Sequence y(r)(r=0,1,2,...N-1), needs to adopt the discrete algorithm of Fourier transform when carrying out Fourier transform to elevator door acceleration signal, discrete Fourier transform ( DFT) is expressed as:
式中:Y(k1)等效于Y(k1·Δf),采样频率 In the formula: Y(k1) is equivalent to Y(k1·Δf), sampling frequency
3-2、快速傅里叶变换(FFT);3-2. Fast Fourier Transform (FFT);
3-2-1.由于受采样信号的长度以及计算成本的限制,采用快速傅里叶变换对去趋势项的信号y(r)进行处理:3-2-1. Due to the limitation of the length of the sampling signal and the calculation cost, the signal y(r) of the detrending item is processed by fast Fourier transform:
N点序列y(r)的N点离散傅里叶变换可表示成:The N-point discrete Fourier transform of the N-point sequence y(r) can be expressed as:
其中,W=e-j2π/N Among them, W=e -j2π/N
利用傅里叶变化系数W(k1)r的周期性,即Using the periodicity of the Fourier variation coefficient W (k1)r , that is
W(k1)r=Wk1(r+N)=W(k1+N)r W (k1)r = W k1(r+N) = W (k1+N)r
利用其对称性,即Taking advantage of its symmetry, that is
W(k1)r+N/2=-W(k1)r W (k1)r+N/2 = -W (k1)r
3-2-2.根据其周期性可将长序列的离散傅里叶变换分解为短序列的离散傅里叶变换。3-2-2. According to its periodicity, the discrete Fourier transform of the long sequence can be decomposed into the discrete Fourier transform of the short sequence.
将样本长度N=2L的经过去趋势项处理的序列y(r)(r=0,1,2,...,N-1),先按r的奇偶分成两组:The sequence y(r) (r=0,1,2,...,N-1) processed by the detrending item with a sample length of N=2 L is first divided into two groups according to the parity of r:
分别求其点的离散傅里叶变化,得到前半部分为:ask for it separately The discrete Fourier transform of the point, the first half is obtained as:
后半部分为:The second half is:
3-2-3.重复步骤3-2-2,即可得到y(r)的FFT变换结果d(r)(r=0,1,2,...N-1)。3-2-3. Repeat step 3-2-2 to obtain the FFT transformation result d(r) of y(r) (r=0,1,2,...N-1).
3-3、对幅频信号进行频域滤波。3-3. Perform frequency domain filtering on the amplitude-frequency signal.
采用有限冲激响应FIR数字滤波器,FIR滤波器的差分方程形式可表示为:Using a finite impulse response FIR digital filter, the difference equation of the FIR filter can be expressed as:
式中:d(n1)和p(n1)分别为经过快速傅里叶变换的输入时域信号序列和经过频域滤波的输出频域信号序列;bk3为滤波系数,n1≥0,k3=0,1,2,...N-1。In the formula: d(n1) and p(n1) are the input time-domain signal sequence after fast Fourier transform and the output frequency-domain signal sequence after frequency-domain filtering; b k3 is the filter coefficient, n1≥0, k3= 0,1,2,...N-1.
FIR滤波器的冲激响应函数h(n)的z变换为系统传递函数,可表示为:The z transformation of the impulse response function h(n) of the FIR filter is the system transfer function, which can be expressed as:
则其冲激响应函数为:Then its impulse response function is:
步骤4、对滤波后的频域信号进行傅里叶逆变换,计算加速度信号的能量;Step 4, performing an inverse Fourier transform on the filtered frequency domain signal to calculate the energy of the acceleration signal;
4-1、频域信号的傅里叶逆变换;4-1. Inverse Fourier transform of frequency domain signals;
式中:f(r)等效于f(rΔt),采样时间间隔Δt=1,r=0,1,2...N-1。In the formula: f(r) is equivalent to f(rΔt), sampling time interval Δt=1, r=0,1,2...N-1.
4-2、对加速度信号进行归一化;4-2. Normalize the acceleration signal;
首先对幅值小于设定阈值A的加速度信号进行归一化,通过归一化处理后再滤除抖动干扰噪声;一般情况下,抖动干扰噪声的幅值均小于归一化系数C,而其他有用信号大于C。因此,对加速度信号,除以预设的归一化系数后可以有效的作进一步处理区分干扰信号和有用信号。First, normalize the acceleration signal whose amplitude is less than the set threshold A, and then filter out the jitter interference noise after normalization processing; generally, the amplitude of the jitter interference noise is smaller than the normalization coefficient C, while other The useful signal is greater than C. Therefore, after the acceleration signal is divided by the preset normalization coefficient, further processing can be effectively performed to distinguish the interference signal from the useful signal.
其中,f(t)=f(r·Δt)。Among them, f(t)=f(r·Δt).
对归一化处理后的加速度信号g(t)平方得到其能量波形,这使得抖动信号和有用信号的差异更大,更有利于设定阈值B去除大部分抖动信号。The normalized acceleration signal g(t) is squared to obtain its energy waveform, which makes the difference between the jitter signal and the useful signal larger, and it is more conducive to setting the threshold B to remove most of the jitter signals.
4-3、加速度信号的能量计算。4-3. Energy calculation of acceleration signal.
加速度信号f(t)的能量E1定义为:The energy E1 of the acceleration signal f(t) is defined as:
对傅里叶逆变换后的信号的幅值作平方处理。Square the magnitude of the signal after the inverse Fourier transform.
步骤5、对电梯的运行阶段设定阈值,去除抖动噪声信号;Step 5, set the threshold for the running stage of the elevator, and remove the jitter noise signal;
5-1、将低幅值的抖动和高幅值的有用信号运行段进行区分,确定信号的运行段,最大程度上的减少有用信号的损失。对作平方处理后的波形设置准确的阈值B,并进行判断,大于阈值的波形保留,小于阈值的波形归零:5-1. Distinguish low-amplitude jitter and high-amplitude useful signal operating segments, determine the signal operating segment, and minimize the loss of useful signals. Set an accurate threshold B for the squared waveform and make a judgment. The waveform greater than the threshold is retained, and the waveform smaller than the threshold is reset to zero:
并将判断后的波形命名为能量信号幅值u(t);And named the judged waveform as energy signal amplitude u(t);
5-2、将能量信号幅值与归一化系数相乘,获取最终加速度信号q(t)具体如下:5-2. Multiply the amplitude of the energy signal by the normalization coefficient to obtain the final acceleration signal q(t) as follows:
q(t)=u(t)·Cq(t)=u(t)·C
步骤6、对最终加速度信号q(t)进行积分处理,得到相对应的实时速度信号r(k5):Step 6. Integrate the final acceleration signal q(t) to obtain the corresponding real-time speed signal r(k5):
最终加速度信号q(t)的采样数据为{qk5}(k5=1,2,3,...,n),数值积分中取采样时间步长Δt为积分步长,梯形数值求积公式为:The sampling data of the final acceleration signal q(t) is {q k5 }(k5=1,2,3,...,n), the sampling time step Δt is taken as the integration step in the numerical integration, and the trapezoidal numerical quadrature formula for:
本发明有益效果如下:The beneficial effects of the present invention are as follows:
本发明通过一系列信号处理算法对采集到的电梯门加速度信号进行处理,拟得到较为精确的电梯门运行加速度及速度值,以便于了解电梯是否安全运行,为电梯运行的准确判断、减小事故发生的概率、提高监控以及运维的效率、减少人力成本提供保证。The present invention processes the collected elevator door acceleration signals through a series of signal processing algorithms, and intends to obtain relatively accurate elevator door running acceleration and speed values, so as to know whether the elevator is running safely, provide accurate judgment of elevator operation, and reduce accidents. The probability of occurrence, improving the efficiency of monitoring and operation and maintenance, and reducing labor costs provide guarantees.
本发明对得到的复杂原始信号进行去趋势项预处理,快速傅里叶变换为频域并滤波,再傅里叶逆变换为时域,根据信号的能量确定运行段,设定阈值,去除难点问题——电梯开关门瞬间及开关门间隙存在的抖动干扰信号,同时还能保证减少有用信号的损失,积分得到速度信号。The present invention preprocesses the obtained complex original signal by detrending items, fast Fourier transforms it into the frequency domain and filters it, then inverse Fourier transforms it into the time domain, determines the running section according to the energy of the signal, sets the threshold, and removes the difficulty Problem - The jitter interference signal at the moment of opening and closing of the elevator door and the gap between the opening and closing of the door can also ensure that the loss of useful signals is reduced, and the speed signal can be obtained by integrating.
本发明是对现场实测信号的处理判断,具有复杂情况下较强的抗干扰能力,那么针对理想状态下的加速度信号处理将具有更好的适应性和准确率,精确的速度信号将对电梯门正常运行、维护保养、安全监测提供巨大的帮助。The present invention is for processing and judging the field measured signals, and has strong anti-interference ability in complex situations, so it will have better adaptability and accuracy for the acceleration signal processing under the ideal state, and the accurate speed signal will have a greater impact on the elevator door. Normal operation, maintenance, safety monitoring provide great help.
附图说明Description of drawings
图1为电梯门加速度原始信号图;Fig. 1 is the original signal diagram of elevator door acceleration;
图2为电梯门加速度原始信号去趋势项后的图;Fig. 2 is the figure after the original signal of the elevator door acceleration is removed from the trend item;
图3为电梯门加速度信号去趋势项处理后频域图;Fig. 3 is the frequency domain diagram after the elevator door acceleration signal is detrended;
图4为电梯门加速度信号去趋势项后经频域滤波后的图;Fig. 4 is the figure after frequency domain filtering after the elevator door acceleration signal goes trend item;
图5为电梯门加速度信号频域滤波以后转为时域图;Fig. 5 is converted into a time-domain diagram after frequency-domain filtering of the elevator door acceleration signal;
图6为电梯门加速度信号时域经过能量阈值算法后的图;Fig. 6 is the figure after the energy threshold algorithm is passed through the time domain of the elevator door acceleration signal;
图7为电梯门加速度信号时域积分得到的速度图。Fig. 7 is a speed diagram obtained by time-domain integration of the elevator door acceleration signal.
具体实施方式Detailed ways
下面结合附图和实例对本发明作进一步说明。The present invention will be further described below in conjunction with accompanying drawing and example.
如图1-7所示,本发明是通过对实测电梯门加速度信号处理,采用一种时域去趋势项、快速傅里叶变换为频域滤波、傅里叶逆变换为时域并采取能量阈值算法去噪,积分得到精确的速度信号的算法,提出了一种基于能量阈值算法的电梯门实时运行速度估计方法。As shown in Figures 1-7, the present invention uses a time-domain detrending term, fast Fourier transform to frequency-domain filtering, and inverse Fourier transform to time-domain and takes energy by processing the measured elevator door acceleration signal. Threshold algorithm denoises, integrates to obtain accurate speed signal algorithm, and proposes a real-time elevator door speed estimation method based on energy threshold algorithm.
本发明首先通过现场实测得到图1杂乱无序的电梯门加速度原始信号。图2是对加速度原始信号进行去趋势项处理后的时域图,经过去趋势项处理后的图像整体平移到了水平线上,意味着消除了大量的直流分量噪声;图3是图2经过快速傅里叶变换为频域,分析其频谱特征,设置滤波器参数;图4是对图3采用FIR等波纹滤波法设置通带8HZ,阻带35HZ频域滤波后的图;图5是图4经过傅里叶逆变换的时域图;图6对图5采用了能量阈值算法,对电梯门在开关间隙门的静止状态以及门关上时存在的小幅值的抖动信号,进行归零处理后得到的准确的加速度信号图;图7是对加速度信号图时域积分后得到的速度信号图。The present invention firstly obtains the original signal of the elevator door acceleration in disorder and disorder in Fig. 1 through on-site measurement. Figure 2 is the time-domain diagram of the original acceleration signal after the detrending term processing. The image after the detrending term processing is shifted to the horizontal line as a whole, which means that a large amount of DC component noise is eliminated; Lie transform into frequency domain, analyze its spectral characteristics, and set filter parameters; Figure 4 is the figure after setting the passband 8HZ and stopband 35HZ frequency domain filtering for Figure 3 by using FIR and other ripple filtering methods; Figure 5 is the figure after the frequency domain filtering of Figure 4 The time-domain diagram of the inverse Fourier transform; Figure 6 uses the energy threshold algorithm for Figure 5, and performs zero-return processing on the static state of the elevator door in the opening and closing of the door and the small-amplitude jitter signal that exists when the door is closed. Accurate acceleration signal diagram; Figure 7 is the speed signal diagram obtained after time domain integration of the acceleration signal diagram.
本发明通过一系列信号处理算法对采集到的电梯门加速度信号进行处理,拟得到较为精确的电梯门运行加速度及速度值,作为电梯正常运行、安全监测以及保养维护中的重要指标。The present invention processes the collected elevator door acceleration signals through a series of signal processing algorithms, and intends to obtain relatively accurate elevator door running acceleration and speed values, which are used as important indicators in elevator normal operation, safety monitoring and maintenance.
具体实现方法如下所示:The specific implementation method is as follows:
步骤1、通过加速度传感器获取原始的电梯门运行加速度信号Step 1. Obtain the original elevator door running acceleration signal through the acceleration sensor
1-1、将加速度传感器水平放置在电梯门的一侧;1-1. Place the acceleration sensor horizontally on one side of the elevator door;
1-2、人为控制电梯门的开关,通过加速度传感器记录电梯门每一次开门和关门时加速度信号的数据,如图一所示。1-2. Manually control the switch of the elevator door, and record the data of the acceleration signal when the elevator door is opened and closed each time through the acceleration sensor, as shown in Figure 1.
步骤2、对获得的加速度信号进行去趋势项处理Step 2. Perform detrending item processing on the obtained acceleration signal
2-1、获取原始加速度信号数据,计算趋势项;2-1. Obtain the original acceleration signal data and calculate the trend item;
实测电梯门加速度信号的采样数据为{xk}(k=1,2,3,...,n),n为采样数据的长度,为了便于计算,将采样数据长度扩展为N(使N=2L,L为整数且N≥n),令采样时间间隔Δt=1,设一个多项式函数:The sampling data of the actual measured elevator door acceleration signal is {x k } (k=1,2,3,...,n), n is the length of the sampling data, for the convenience of calculation, the length of the sampling data is extended to N (make N =2 L , L is an integer and N≥n), let the sampling time interval Δt=1, set a polynomial function:
确定函数的各待定系数aj(j=0,1,...,m),使得函数与离散数据xk的误差平方和E最小,即determine function The undetermined coefficients a j (j=0,1,...,m) of each, so that the function The sum of squared errors E with the discrete data x k is the smallest, that is
满足E有极值的条件为:The condition that satisfies the extremum value of E is:
依次取E对ai求偏导,可以产生一个m+1元线性方程组:Taking E in turn to calculate the partial derivative of a i can generate a system of linear equations with m+1 elements:
解方程组,求出m+1个待定系数aj(j=0,1,...,m)。以上各式中,j为设定的多项式阶次,其值范围为0≤j≤m。Solve the equation system to obtain m+1 undetermined coefficients a j (j=0,1,...,m). In the above formulas, j is the set polynomial order, and its value range is 0≤j≤m.
2-2、获得消除线性趋势项的加速度信号。2-2. Obtain the acceleration signal that eliminates the linear trend item.
消除线性趋势项的计算公式为:The calculation formula for eliminating the linear trend item is:
m≥2时为曲线趋势项,通常取m=1,2,3。对采样数据进行多项式趋势项消除的处理后得到yk。When m≥2, it is the trend item of the curve, usually m=1, 2, 3. After processing the sampled data with polynomial trend item elimination, y k is obtained.
步骤3、通过快速傅里叶变换转换为频域,滤波去噪Step 3. Convert to frequency domain by fast Fourier transform, filter and denoise
3-1、离散傅里叶变换(DFT);3-1. Discrete Fourier transform (DFT);
将去趋势项处理后的{yk}(k=1,2,3,...,n)作为N点序列y(r)(r=0,1,2,...N-1),对电梯门加速度信号进行傅里叶变换时需要采用傅里叶变换的离散算法,离散傅里叶变换(DFT)的表达式为:Treat {y k }(k=1,2,3,...,n) after detrending item processing as N-point sequence y(r)(r=0,1,2,...N-1) , when performing Fourier transform on the elevator door acceleration signal, the discrete algorithm of Fourier transform needs to be adopted, and the expression of discrete Fourier transform (DFT) is:
式中:Y(k1)等效于Y(k1·Δf),采样频率 In the formula: Y(k1) is equivalent to Y(k1·Δf), sampling frequency
3-2、快速傅里叶变换(FFT);3-2. Fast Fourier Transform (FFT);
3-2-1.本专利采用快速傅里叶变换对去趋势项信号进行处理:3-2-1. This patent uses fast Fourier transform to process the detrending signal:
N点序列y(r)的N点离散傅里叶变换可表示成:The N-point discrete Fourier transform of the N-point sequence y(r) can be expressed as:
其中,W=e-j2π/N Among them, W=e -j2π/N
利用傅里叶变化系数W(k1)r的周期性,即Using the periodicity of the Fourier variation coefficient W (k1)r , that is
W(k1)r=Wk1(r+N)=W(k1+N)r W (k1)r = W k1(r+N) = W (k1+N)r
利用其对称性,即Taking advantage of its symmetry, that is
W(k1)r+N/2=-W(k1)r W (k1)r+N/2 = -W (k1)r
3-2-2.根据其周期性可将长序列的离散傅里叶变换分解为短序列的离散傅里叶变换。3-2-2. According to its periodicity, the discrete Fourier transform of the long sequence can be decomposed into the discrete Fourier transform of the short sequence.
将样本长度N=2L的经过去趋势项处理的序列y(r)(r=0,1,2,...,N-1),先按r的奇偶分成两组:The sequence y(r) (r=0,1,2,...,N-1) processed by the detrending item with a sample length of N=2 L is first divided into two groups according to the parity of r:
分别求其点的离散傅里叶变化,得到前半部分为:ask for it separately The discrete Fourier transform of the point, the first half is obtained as:
后半部分为:The second half is:
3-2-3.重复步骤3-2-2,即可得到y(r)的FFT变换结果d(r)(r=0,1,2,...N-1)。3-2-3. Repeat step 3-2-2 to obtain the FFT transformation result d(r) of y(r) (r=0,1,2,...N-1).
3-3、对幅频信号进行频域滤波。3-3. Perform frequency domain filtering on the amplitude-frequency signal.
采用有限冲激响应FIR数字滤波器,FIR滤波器的差分方程为:Using a finite impulse response FIR digital filter, the difference equation of the FIR filter is:
式中:d(n1)和p(n1)分别为经过快速傅里叶变换的输入时域信号序列和经过频域滤波的输出频域信号序列;bk3为滤波系数,n1≥0,k3=0,1,2,...N-1。In the formula: d(n1) and p(n1) are the input time-domain signal sequence after fast Fourier transform and the output frequency-domain signal sequence after frequency-domain filtering; b k3 is the filter coefficient, n1≥0, k3= 0,1,2,...N-1.
FIR滤波器的冲激响应函数h(n)的z变换为系统传递函数:The z transformation of the impulse response function h(n) of the FIR filter is the system transfer function:
则其冲激响应函数为:Then its impulse response function is:
步骤4、对滤波后的频域信号进行傅里叶逆变换,计算加速度信号的能量Step 4. Perform inverse Fourier transform on the filtered frequency domain signal to calculate the energy of the acceleration signal
4-1、频域信号的傅里叶逆变换;4-1. Inverse Fourier transform of frequency domain signals;
式中:f(r)等效于f(rΔt),采样时间间隔Δt=1,r=0,1,2...N-1。In the formula: f(r) is equivalent to f(rΔt), sampling time interval Δt=1, r=0,1,2...N-1.
4-2、对加速度信号进行归一化;4-2. Normalize the acceleration signal;
首先对幅值小于设定阈值A的加速度信号进行归一化,通过归一化处理后再滤除抖动干扰噪声;一般情况下,抖动干扰噪声的幅值均小于归一化系数C,而其他有用信号大于C。因此,对加速度信号,除以预设的归一化系数后可以有效的作进一步处理区分干扰信号和有用信号。First, normalize the acceleration signal whose amplitude is less than the set threshold A, and then filter out the jitter interference noise after normalization processing; in general, the amplitude of the jitter interference noise is smaller than the normalization coefficient C, while other The useful signal is greater than C. Therefore, after the acceleration signal is divided by the preset normalization coefficient, further processing can be effectively performed to distinguish the interference signal from the useful signal.
其中,f(t)=f(r·Δt)。Among them, f(t)=f(r·Δt).
对归一化处理后的加速度信号g(t)平方得到其能量波形,这使得抖动信号和有用信号的差异更大,更有利于设定阈值B去除大部分抖动信号。The normalized acceleration signal g(t) is squared to obtain its energy waveform, which makes the difference between the jitter signal and the useful signal larger, and it is more conducive to setting the threshold B to remove most of the jitter signals.
4-3、加速度信号的能量计算。4-3. Energy calculation of acceleration signal.
加速度信号f(t)的能量E1定义为:The energy E1 of the acceleration signal f(t) is defined as:
对傅里叶逆变换后的信号的幅值作平方处理。Square the magnitude of the signal after the inverse Fourier transform.
步骤5、确定电梯的运行阶段设定阈值,去除抖动噪声信号Step 5. Determine the operating stage of the elevator and set the threshold to remove the jitter noise signal
5-1、将低幅值的抖动和高幅值的有用信号运行段进行区分,确定信号的运行段,最大程度上的减少有用信号的损失。根据波形设置准确的阈值B,大于阈值的波形保留,小于阈值的波形归零:5-1. Distinguish low-amplitude jitter and high-amplitude useful signal operating segments, determine the signal operating segment, and minimize the loss of useful signals. Set an accurate threshold B according to the waveform, keep the waveforms greater than the threshold, and reset the waveforms smaller than the threshold to zero:
并将判断后的波形命名为能量信号幅值u(t);And named the judged waveform as energy signal amplitude u(t);
5-2、将能量信号幅值与归一化系数相乘,获取最终加速度信号q(t)具体如下:5-2. Multiply the amplitude of the energy signal by the normalization coefficient to obtain the final acceleration signal q(t) as follows:
q(t)=u(t)·Cq(t)=u(t)·C
步骤6、对最终加速度信号q(t)进行积分处理,得到相对应的实时速度信号r(k5)。Step 6. Integrate the final acceleration signal q(t) to obtain a corresponding real-time speed signal r(k5).
6-1、最终加速度信号q(t)的采样数据为{qk5}(k5=1,2,3,...,n),数值积分中取采样时间步长Δt为积分步长,梯形数值求积公式为:6-1. The sampling data of the final acceleration signal q(t) is {q k5 }(k5=1,2,3,...,n), and the sampling time step Δt is taken as the integration step in the numerical integration, trapezoidal The numerical quadrature formula is:
步骤4、5中需要注意如下:Note the following in steps 4 and 5:
归一化系数C和阈值B的设置需要根据抖动波形的幅值来判断,根据实际情况进行选择,并以滤波的效果反馈来进行调整。The setting of the normalization coefficient C and the threshold B needs to be judged according to the amplitude of the jitter waveform, selected according to the actual situation, and adjusted with the feedback of the filtering effect.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810817721.XA CN108875710B (en) | 2018-07-24 | 2018-07-24 | Estimation method of elevator door running speed based on energy threshold algorithm |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810817721.XA CN108875710B (en) | 2018-07-24 | 2018-07-24 | Estimation method of elevator door running speed based on energy threshold algorithm |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108875710A true CN108875710A (en) | 2018-11-23 |
CN108875710B CN108875710B (en) | 2021-10-08 |
Family
ID=64304457
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810817721.XA Active CN108875710B (en) | 2018-07-24 | 2018-07-24 | Estimation method of elevator door running speed based on energy threshold algorithm |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108875710B (en) |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109684937A (en) * | 2018-12-06 | 2019-04-26 | 国电南瑞科技股份有限公司 | A kind of signal antinoise method and device based on FFT and Mathematical Morphology method |
CN110642110A (en) * | 2019-09-23 | 2020-01-03 | 猫岐智能科技(上海)有限公司 | Method for accurately acquiring door opening and closing time of elevator |
CN111259721A (en) * | 2019-11-25 | 2020-06-09 | 中国电力科学研究院有限公司 | Method and system for side-on/off damping controller of prime mover of power system |
WO2020147711A1 (en) * | 2019-01-18 | 2020-07-23 | 西人马帝言(北京)科技有限公司 | Elevator operation status monitoring method and device |
CN111611832A (en) * | 2019-02-26 | 2020-09-01 | 上汽通用汽车有限公司 | Method and system for obtaining vehicle response displacement based on acceleration signal |
WO2020192281A1 (en) * | 2019-03-22 | 2020-10-01 | 西人马(西安)测控科技有限公司 | Elevator brake fault monitoring method, device and system |
CN112146678A (en) * | 2019-06-27 | 2020-12-29 | 华为技术有限公司 | Method for determining calibration parameters and electronic equipment |
CN112357713A (en) * | 2020-11-27 | 2021-02-12 | 杭州电子科技大学 | Multifunctional elevator safety protection system and method |
CN112466322A (en) * | 2020-11-27 | 2021-03-09 | 华侨大学 | Electromechanical device noise signal feature extraction method |
CN112472074A (en) * | 2020-11-27 | 2021-03-12 | 吉林农业科技学院 | Sitting gait data acquisition and analysis system based on acceleration sensor |
CN113184651A (en) * | 2021-04-08 | 2021-07-30 | 浙江理工大学 | Method for preprocessing elevator running state signal and extracting characteristic quantity |
CN113213297A (en) * | 2021-05-08 | 2021-08-06 | 浙江工业大学 | Displacement sensor data processing method applied to elevator safety detection system |
CN113392511A (en) * | 2021-05-28 | 2021-09-14 | 广西电网有限责任公司电力科学研究院 | On-load tap-changer mechanical state monitoring method based on frequency spectrum envelope symbol entropy |
CN115097161A (en) * | 2022-06-14 | 2022-09-23 | 上海交通大学 | Real-time running speed calculation method and system of elevator car based on inertial sensor |
CN116662937A (en) * | 2023-07-31 | 2023-08-29 | 西安交通大学城市学院 | Method for monitoring and evaluating air data safety of aircraft |
CN118582662A (en) * | 2024-08-07 | 2024-09-03 | 山东鑫海矿业技术装备股份有限公司 | A method and system for intelligent management of gas storage tanks based on air pressure monitoring |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6029930A (en) * | 1997-07-04 | 2000-02-29 | Finmeccanica S.P.A. | Method of monitoring a transmission assembly of a vehicle equipped with acceleration sensors, in particular a helicopter |
CN101113936A (en) * | 2007-07-20 | 2008-01-30 | 广州市计量检测技术研究院 | Virtual oscillating table detection signal processing method and equipment thereof |
CN102346809A (en) * | 2011-06-30 | 2012-02-08 | 中国人民解放军理工大学工程兵工程学院 | Method for converting blasting-vibration acceleration into velocity |
US20150203211A1 (en) * | 2013-07-24 | 2015-07-23 | Air China Limited | System and method for detecting an aircraft jitter |
CN106323451A (en) * | 2015-06-26 | 2017-01-11 | 陕西重型汽车有限公司 | Method and apparatus for acquiring displacement signal by acceleration signal |
-
2018
- 2018-07-24 CN CN201810817721.XA patent/CN108875710B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6029930A (en) * | 1997-07-04 | 2000-02-29 | Finmeccanica S.P.A. | Method of monitoring a transmission assembly of a vehicle equipped with acceleration sensors, in particular a helicopter |
CN101113936A (en) * | 2007-07-20 | 2008-01-30 | 广州市计量检测技术研究院 | Virtual oscillating table detection signal processing method and equipment thereof |
CN102346809A (en) * | 2011-06-30 | 2012-02-08 | 中国人民解放军理工大学工程兵工程学院 | Method for converting blasting-vibration acceleration into velocity |
US20150203211A1 (en) * | 2013-07-24 | 2015-07-23 | Air China Limited | System and method for detecting an aircraft jitter |
CN106323451A (en) * | 2015-06-26 | 2017-01-11 | 陕西重型汽车有限公司 | Method and apparatus for acquiring displacement signal by acceleration signal |
Non-Patent Citations (2)
Title |
---|
何鹏举, 冯亮: "加速度信号随机噪声及趋势项实时消除方法研究", 《电子设计工程》 * |
翟朝朝: "DSP控制的电梯门机系统", 《中国优秀硕士学位论文全文数据库 信息科技辑》 * |
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109684937B (en) * | 2018-12-06 | 2022-08-26 | 国电南瑞科技股份有限公司 | Signal denoising method and device based on FFT and mathematical morphology method |
CN109684937A (en) * | 2018-12-06 | 2019-04-26 | 国电南瑞科技股份有限公司 | A kind of signal antinoise method and device based on FFT and Mathematical Morphology method |
WO2020147711A1 (en) * | 2019-01-18 | 2020-07-23 | 西人马帝言(北京)科技有限公司 | Elevator operation status monitoring method and device |
CN111611832B (en) * | 2019-02-26 | 2023-11-17 | 上汽通用汽车有限公司 | Method and system for acquiring vehicle response displacement based on acceleration signal |
CN111611832A (en) * | 2019-02-26 | 2020-09-01 | 上汽通用汽车有限公司 | Method and system for obtaining vehicle response displacement based on acceleration signal |
WO2020192281A1 (en) * | 2019-03-22 | 2020-10-01 | 西人马(西安)测控科技有限公司 | Elevator brake fault monitoring method, device and system |
CN112146678B (en) * | 2019-06-27 | 2022-10-11 | 华为技术有限公司 | Method for determining calibration parameters and electronic equipment |
CN112146678A (en) * | 2019-06-27 | 2020-12-29 | 华为技术有限公司 | Method for determining calibration parameters and electronic equipment |
CN110642110A (en) * | 2019-09-23 | 2020-01-03 | 猫岐智能科技(上海)有限公司 | Method for accurately acquiring door opening and closing time of elevator |
CN111259721A (en) * | 2019-11-25 | 2020-06-09 | 中国电力科学研究院有限公司 | Method and system for side-on/off damping controller of prime mover of power system |
CN112466322B (en) * | 2020-11-27 | 2023-06-20 | 华侨大学 | Noise signal feature extraction method for electromechanical equipment |
CN112472074A (en) * | 2020-11-27 | 2021-03-12 | 吉林农业科技学院 | Sitting gait data acquisition and analysis system based on acceleration sensor |
CN112357713A (en) * | 2020-11-27 | 2021-02-12 | 杭州电子科技大学 | Multifunctional elevator safety protection system and method |
CN112466322A (en) * | 2020-11-27 | 2021-03-09 | 华侨大学 | Electromechanical device noise signal feature extraction method |
CN113184651A (en) * | 2021-04-08 | 2021-07-30 | 浙江理工大学 | Method for preprocessing elevator running state signal and extracting characteristic quantity |
CN113213297A (en) * | 2021-05-08 | 2021-08-06 | 浙江工业大学 | Displacement sensor data processing method applied to elevator safety detection system |
CN113392511A (en) * | 2021-05-28 | 2021-09-14 | 广西电网有限责任公司电力科学研究院 | On-load tap-changer mechanical state monitoring method based on frequency spectrum envelope symbol entropy |
CN115097161A (en) * | 2022-06-14 | 2022-09-23 | 上海交通大学 | Real-time running speed calculation method and system of elevator car based on inertial sensor |
CN116662937A (en) * | 2023-07-31 | 2023-08-29 | 西安交通大学城市学院 | Method for monitoring and evaluating air data safety of aircraft |
CN116662937B (en) * | 2023-07-31 | 2023-10-20 | 西安交通大学城市学院 | Method for monitoring and evaluating air data safety of aircraft |
CN118582662A (en) * | 2024-08-07 | 2024-09-03 | 山东鑫海矿业技术装备股份有限公司 | A method and system for intelligent management of gas storage tanks based on air pressure monitoring |
CN118582662B (en) * | 2024-08-07 | 2024-10-29 | 山东鑫海矿业技术装备股份有限公司 | A method and system for intelligent management of gas storage tanks based on air pressure monitoring |
Also Published As
Publication number | Publication date |
---|---|
CN108875710B (en) | 2021-10-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108875710B (en) | Estimation method of elevator door running speed based on energy threshold algorithm | |
CN107403139B (en) | A method for detecting flat scars of urban rail train wheels | |
CN104597376A (en) | Method for measuring fault location of HVDC (High Voltage Direct Current) transmission line under consideration of measured wave velocity | |
CN112101174A (en) | LOF-Kurtogram-based mechanical fault diagnosis method | |
CN104698325B (en) | A kind of method of discrimination of the low-frequency oscillation of power system negative damping mechanism and forced oscillation | |
CN113213297B (en) | A Displacement Sensor Data Processing Method Applied to Elevator Safety Detection System | |
CN108764073A (en) | A kind of acceleration filter of combination spectrum energy form fitting is made an uproar and integration method | |
CN106845334A (en) | A kind of innovative noise extracting method based on mathematical morphology | |
CN105403820A (en) | On-line detection method of partial discharging signal of generator stator winding | |
CN115809399A (en) | Adaptive Signal Denoising Decomposition Method for Compound Fault Identification of Mechanical Transmission System | |
CN105699082A (en) | Sparse maximum signal-to-noise ratio deconvolution method | |
CN110287853B (en) | Transient signal denoising method based on wavelet decomposition | |
CN102305661A (en) | Denoising processing method for inhaul cable vibration signal of cable-stayed bridge | |
CN113568032B (en) | Negative index nuclear pulse signal processing method and system based on z transformation | |
CN109062051B (en) | Method for improving robot dynamics parameter identification precision | |
CN104950215B (en) | A kind of Microcomputer Protection method | |
Yang et al. | Resampling technique-based demodulation analysis for planet bearing cage fault diagnosis under nonstationary conditions | |
CN108334822B (en) | Kalman Sum Modified Wavelet Transform Filtering Method Based on Nonlinear Load Characteristics of Electric Vehicle Charging | |
CN113670605A (en) | VGSET time-frequency analysis method, device, equipment and storage medium for bearing fault signal | |
CN108090270A (en) | A kind of transient oscillation parameter identification method based on morphologic filtering and blind source separating | |
CN103560509B (en) | Voltage sag detection device based on wavelet analysis and control method of the device | |
CN105137198A (en) | Novel dielectric loss measurement method based on Nuttall window - five-point converting FFT | |
CN110208364B (en) | Steel wire rope defect positioning method without position sensor | |
CN107576892A (en) | A kind of noise-reduction method for partial discharge pulse's measurement | |
CN114297579A (en) | Blind source separation method based on cyclostationary measure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |