Nothing Special   »   [go: up one dir, main page]

CN108424534A - 一种能够溶解聚乙二醇的低共熔溶剂及其溶解方法 - Google Patents

一种能够溶解聚乙二醇的低共熔溶剂及其溶解方法 Download PDF

Info

Publication number
CN108424534A
CN108424534A CN201810310561.XA CN201810310561A CN108424534A CN 108424534 A CN108424534 A CN 108424534A CN 201810310561 A CN201810310561 A CN 201810310561A CN 108424534 A CN108424534 A CN 108424534A
Authority
CN
China
Prior art keywords
polyethylene glycol
eutectic solvent
zinc chloride
ethylene glycol
glycol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810310561.XA
Other languages
English (en)
Other versions
CN108424534B (zh
Inventor
刘昆
刘训伟
程震
蒲明东
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hefei University of Technology
Original Assignee
Hefei University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hefei University of Technology filed Critical Hefei University of Technology
Priority to CN201810310561.XA priority Critical patent/CN108424534B/zh
Publication of CN108424534A publication Critical patent/CN108424534A/zh
Application granted granted Critical
Publication of CN108424534B publication Critical patent/CN108424534B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/09Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in organic liquids
    • C08J3/091Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in organic liquids characterised by the chemical constitution of the organic liquid
    • C08J3/095Oxygen containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2371/00Characterised by the use of polyethers obtained by reactions forming an ether link in the main chain; Derivatives of such polymers
    • C08J2371/02Polyalkylene oxides

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Preparation (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本发明公开了一种能够溶解聚乙二醇的低共熔溶剂及其溶解方法,其中低共熔溶剂是以氯化锌作为氢键受体、乙二醇作为氢键供体。本发明低共熔溶剂可以在无水环境下以较大的溶解度溶解聚乙二醇。本发明低共熔溶剂原料价廉易得、无毒无害;溶解方法简单高效、绿色环保;聚乙二醇‑氯化锌‑乙二醇溶液体系在催化、相转移、电化学等方面具有良好的应用前景,尤其适合要求无水条件下的应用。

Description

一种能够溶解聚乙二醇的低共熔溶剂及其溶解方法
技术领域
本发明涉及一种能够溶解高分子的新型绿色溶剂,特别涉及一种能够溶解聚乙二醇的低共熔溶剂及其溶解方法。
背景技术
能够溶解高分子聚合物的溶剂是聚合物材料溶液加工的基础。绿色溶剂中的聚合物加工是材料加工领域的一个重要发展方向。
近年来出现的一种绿色溶剂-低共熔溶剂具有合成简单、性质可调、不挥发、性质稳定、毒性低和可再生等优点正在逐渐成为聚合物材料溶液加工中一个重要的溶剂选择。然而,关于能够溶解合成聚合物的低共熔溶剂的公开报道寥寥无几,严重阻碍了该领域的发展。陈正飞等人报道了聚乙二醇溶解在烷基溴化铵盐与甘油或者乙二醇形成的低共熔溶剂中。然而,烷基溴化铵盐合成过程复杂,原料有毒,且成本较贵。张红梅等人报道了四丁基氯化铵、四丁基溴化铵、四乙基氯化铵和四乙基溴化铵与分子量为200-4000的聚乙二醇形成低共熔溶剂用于双水相高效分离RNA,但是该低共熔溶剂的合成过程需要加入少量去离子水。经过对高分子聚合物和低共熔溶剂的大规模筛选,我们发现由氯化锌和乙二醇组成的低共熔溶剂对分子量范围在200-20000的聚乙二醇具有优良的溶解能力。在333.15K温度下,氯化锌-乙二醇低共熔溶剂能够溶解约30wt%的分子量为20000的聚乙二醇。
目前,聚乙二醇(Polyethylene glycol或PEG)在催化、相转移、电化学等方面具有重要的作用。而且该聚乙二醇-氯化锌-乙二醇溶液体系具有无水的特点,特别适合于要求无水条件下的应用。聚乙二醇是一种良好的相转移剂,而且该氯化锌-乙二醇低共熔溶剂对于金属和金属氧化物具有较高的溶解度,由此可以设计出优化的新型催化剂-相转移反应。另外,聚乙二醇在氯化锌-乙二醇低共熔溶剂中的优良的溶解性也可以作为基于该低共熔溶剂的乳液稳定表面活性剂设计与开发的出发点与依据。
发明内容
本发明的目的在于提供一种能够溶解聚乙二醇的低共熔溶剂及其溶解方法。使用该低共熔溶剂和溶解方法能够在无水环境下大量溶解聚乙二醇,具有操作简单,过程绿色清洁无污染等优点;而且该聚乙二醇-低共熔溶剂体系在催化、相转移、电化学和基于低共熔溶剂的乳液等领域具有较好应用前景。
本发明中,能够溶解聚乙二醇的低共熔溶剂是以氯化锌作为氢键受体、以乙二醇作为氢键供体获得的。该低共熔溶剂能够在无水环境下溶解聚乙二醇。
利用本发明低共熔溶剂溶解聚乙二醇的方法,包括如下步骤:
步骤1:氯化锌、乙二醇和聚乙二醇分别通过真空干燥箱进行干燥;
步骤2:称取氯化锌和乙二醇并混合,置于373.15K下搅拌直至形成透明的均一溶液,即得低共熔溶剂;
步骤3:向步骤2所得低共熔溶剂中加入聚乙二醇,置于333.15K下搅拌直至形成透明的均一溶液即可。
步骤2中,氯化锌与乙二醇的摩尔比为1:2~1:8。
步骤3中,聚乙二醇的分子量为200-20000。
对于聚乙二醇-氯化锌-乙二醇溶液体系的表征:密度测定使用25mL比重瓶(国药化学试剂);电导率测定使用EC-1800TDS电导率仪(冀申科技);粘度测定使用NDJ-5S旋转粘度计(上海昌吉地质仪器);熔点测定使用Q2000差示扫描量热法(TA);功能组测定使用Nicolet67傅里叶红外光谱仪分析(美国Thermo Nicolet)。
表征结果包括:对于聚乙二醇-氯化锌-乙二醇溶液体系的密度随温度的升高而线性降低,随聚乙二醇的质量含量增加而降低;电导率和粘度与温度的关系符合阿伦尼乌斯公式,随聚乙二醇的质量含量增大,电导率减小,粘度增大;DSC结果表明聚乙二醇-氯化锌-乙二醇溶液体系的熔点比各个纯组分的熔点都低,说明聚乙二醇溶解在氯化锌-乙二醇低共熔溶剂中形成了三元低共熔溶剂;红外光谱测试结果表明体系内无新的相互作用形成,这可能是因为氢键作用相互“掩盖”的结果。
本发明在氯化锌-乙二醇低共熔溶剂中,加入不同质量分数和分子量的聚乙二醇,形成均相溶液体系,并进行相关的表征。本发明的原料价廉易得,溶解方法简单,能够替代传统的有毒有害的有机溶剂。本发明寻找到一种能够溶解高分子的新型绿色溶剂,对于高分子的溶液加工具有重要作用。此外,聚乙二醇还是一种良好的相转移剂,而低共熔溶剂对一些金属及金属氧化物具有良好的溶解作用,所以该聚乙二醇-氯化锌-乙二醇体系在催化、相转移、电化学等方面也具有良好的应用前景。
本发明与现有技术相比,有益效果体现在:
1、该低共熔溶剂的原料氯化锌和乙二醇价廉易得且无毒无害,相比现有技术具有更好的“绿色”特性。
2、本发明的聚乙二醇-氯化锌-乙二醇溶液属于无水体系,特别适合于要求无水条件下的应用。
3、与有机溶剂相比,该低共熔溶剂性质具有性质稳定、挥发低、毒性低、且性质可调等优点。
附图说明
图1是本发明实施例1-4,在温度为333.15K时,氯化锌与乙二醇在不同摩尔比(1:8、1:6、1:4、1:2)时对PEG(Mw=20000、6000、1000)的溶解度。
具体实施方式
实施例1:聚乙二醇(Mw=200/1000/6000/20000)溶解于摩尔比为1:2的氯化锌-乙二醇低共熔溶剂
按氯化锌-乙二醇的摩尔比为1:2称取一定量的药品加入到100mL的螺口瓶中,将螺口瓶放置在373.15K的烘箱中,直至形成均一澄清透明的液体,即为低共熔溶剂;待冷却后,向所形成的低共熔溶剂中分别加入不同质量分数和分子量的聚乙二醇,在333.15K的烘箱中持续加热,适当摇动螺口瓶,直到均一透明的溶液形成,室温下溶液性质稳定。聚乙二醇(Mw=200)可以与氯化锌-乙二醇(1:2)任意比互溶,可溶解聚乙二醇(Mw=1000)40wt%,聚乙二醇(Mw=6000)34wt%,聚乙二醇(Mw=20000)30wt%。
实施例2:聚乙二醇(Mw=200/1000/6000/20000)溶解于摩尔比为1:4的氯化锌-乙二醇低共熔溶剂
按氯化锌-乙二醇的摩尔比为1:4称取一定量的药品加入到100mL的螺口瓶中。将螺口瓶放置在373.15K的烘箱中,直至形成均一澄清透明的液体,即为低共熔溶剂;待冷却后,向所形成的低共熔溶剂中分别加入不同质量分数和分子量的聚乙二醇,在333.15K的烘箱中持续加热,适当摇动螺口瓶,直到均一透明的溶液形成,室温下溶液性质稳定。聚乙二醇(Mw=200)可以与氯化锌-乙二醇(1:4)任意比互溶,可溶解聚乙二醇(Mw=1000)22wt%,聚乙二醇(Mw=6000)16wt%,聚乙二醇(Mw=20000)13wt%。
实施例3:聚乙二醇(Mw=200/1000/6000/20000)溶解于摩尔比为1:6的氯化锌-乙二醇低共熔溶剂
按氯化锌-乙二醇的摩尔比为1:6称取一定量的药品加入到100mL的螺口瓶中,将螺口瓶放置在373.15K的烘箱中,直至形成均一澄清透明的液体,即为低共熔溶剂;待冷却后,向所形成的低共熔溶剂中分别加入不同质量分数和分子量的聚乙二醇,在333.15K的烘箱中持续加热,适当摇动螺口瓶,直到均一透明的溶液形成,室温下溶液性质稳定。聚乙二醇(Mw=200)可以与氯化锌-乙二醇(1:6)任意比互溶,可溶解聚乙二醇(Mw=1000)11wt%,聚乙二醇(Mw=6000)6wt%,聚乙二醇(Mw=20000)5wt%。
实施例4:聚乙二醇(Mw=200/1000/6000/20000)溶解于摩尔比为1:8的氯化锌-乙二醇低共熔溶剂
按氯化锌-乙二醇的摩尔比为1:8称取一定量的药品加入到100mL的螺口瓶中,将螺口瓶放置在373.15K的烘箱中,直至形成均一澄清透明的液体,即为低共熔溶剂;待冷却后,向所形成的低共熔溶剂中分别加入不同质量分数和分子量的聚乙二醇,在333.15K的烘箱中持续加热,适当摇动螺口瓶,直到均一透明的溶液形成,室温下溶液性质稳定。聚乙二醇(Mw=200)可以与氯化锌-乙二醇(1:8)任意比互溶,可溶解聚乙二醇(Mw=1000)7wt%,聚乙二醇(Mw=6000)4wt%,聚乙二醇(Mw=20000)2wt%。

Claims (4)

1.一种能够溶解聚乙二醇的低共熔溶剂,其特征在于:所述溶解聚乙二醇的低共熔溶剂是以氯化锌作为氢键受体、乙二醇作为氢键供体。
2.一种利用权利要求1所述的低共熔溶剂溶解聚乙二醇的方法,其特征在于包括如下步骤:
步骤1:氯化锌、乙二醇和聚乙二醇分别通过真空干燥箱进行干燥;
步骤2:称取氯化锌和乙二醇并混合,置于373.15K下搅拌直至形成透明的均一溶液,即得低共熔溶剂;
步骤3:向步骤2所得低共熔溶剂中加入聚乙二醇,置于333.15K下搅拌直至形成透明的均一溶液即可。
3.根据权利要求2所述的方法,其特征在于:
步骤2中,氯化锌与乙二醇的摩尔比为1:2~1:8。
4.根据权利要求2所述的方法,其特征在于:
步骤3中,聚乙二醇的分子量为200-20000。
CN201810310561.XA 2018-04-09 2018-04-09 一种能够溶解聚乙二醇的低共熔溶剂及其溶解方法 Expired - Fee Related CN108424534B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810310561.XA CN108424534B (zh) 2018-04-09 2018-04-09 一种能够溶解聚乙二醇的低共熔溶剂及其溶解方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810310561.XA CN108424534B (zh) 2018-04-09 2018-04-09 一种能够溶解聚乙二醇的低共熔溶剂及其溶解方法

Publications (2)

Publication Number Publication Date
CN108424534A true CN108424534A (zh) 2018-08-21
CN108424534B CN108424534B (zh) 2020-10-23

Family

ID=63160612

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810310561.XA Expired - Fee Related CN108424534B (zh) 2018-04-09 2018-04-09 一种能够溶解聚乙二醇的低共熔溶剂及其溶解方法

Country Status (1)

Country Link
CN (1) CN108424534B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109851821A (zh) * 2019-03-19 2019-06-07 合肥工业大学 一种能够有效溶解超支化聚酯的低共熔溶剂及其溶解方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090117628A1 (en) * 2007-09-21 2009-05-07 Gorke Johnathan T Enzymatic processing in deep eutectic solvents
CN103193711A (zh) * 2013-04-08 2013-07-10 东华大学 一种三组分低共熔型离子液体及其制备方法
CN104437651A (zh) * 2014-11-04 2015-03-25 中国科学院过程工程研究所 尿素基低共熔离子液体快速高效催化醇解聚对苯二甲酸乙二醇酯的方法
CN105037062A (zh) * 2015-06-18 2015-11-11 天津理工大学 一种基于醇基的三元低共熔溶剂及其制备方法
WO2017201124A2 (en) * 2016-05-17 2017-11-23 Eos Energy Storage, Llc Zinc-halide battery using a deep eutectic solvent-based electrolyte

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090117628A1 (en) * 2007-09-21 2009-05-07 Gorke Johnathan T Enzymatic processing in deep eutectic solvents
CN103193711A (zh) * 2013-04-08 2013-07-10 东华大学 一种三组分低共熔型离子液体及其制备方法
CN104437651A (zh) * 2014-11-04 2015-03-25 中国科学院过程工程研究所 尿素基低共熔离子液体快速高效催化醇解聚对苯二甲酸乙二醇酯的方法
CN105037062A (zh) * 2015-06-18 2015-11-11 天津理工大学 一种基于醇基的三元低共熔溶剂及其制备方法
WO2017201124A2 (en) * 2016-05-17 2017-11-23 Eos Energy Storage, Llc Zinc-halide battery using a deep eutectic solvent-based electrolyte

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ANDREW P. ABBOTT等: ""Eutectic-Based Ionic Liquids with Metal-Containing Anions and Cations"", 《CHEM. EUR. J.》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109851821A (zh) * 2019-03-19 2019-06-07 合肥工业大学 一种能够有效溶解超支化聚酯的低共熔溶剂及其溶解方法
CN109851821B (zh) * 2019-03-19 2021-08-13 合肥工业大学 一种能够有效溶解超支化聚酯的低共熔溶剂及其溶解方法

Also Published As

Publication number Publication date
CN108424534B (zh) 2020-10-23

Similar Documents

Publication Publication Date Title
CN101115783B (zh) 制备区域规整聚合物的方法
CN104910598A (zh) 超韧高耐热的聚乳酸/弹性体共混材料或制品及其制备方法
CN108424534A (zh) 一种能够溶解聚乙二醇的低共熔溶剂及其溶解方法
CN102725313A (zh) 乙酰化纤维素醚及包含其的制品
Zuo et al. Effect of structure on the properties of ambient-cured coating films prepared via a Michael addition reaction based on an acetoacetate-modified castor oil prepared by thiol-ene coupling
CN106255715A (zh) 氢氧化物稳定的紫罗烯
CN101531756A (zh) 一种水溶性聚乙二醇/聚乳酸多嵌段聚碳酸酯的制备方法
CN109851821B (zh) 一种能够有效溶解超支化聚酯的低共熔溶剂及其溶解方法
Zhong et al. Synthesis and solution properties of an associative polymer with excellent salt‐thickening
Fahrländer et al. Rheological properties of dibenzylidene sorbitol networks in poly (propylene oxide) matrices
Bischoff et al. Unraveling the rheology of inverse vulcanized polymers
Gabriele et al. Understanding the role of temperature in structural changes of choline chloride/glycols deep eutectic solvents
CN107129654B (zh) 一种内增塑抗静电聚甲醛材料及其制备方法
Zhong et al. Characterization, solution properties, and morphologies of a hydrophobically associating cationic terpolymer
CN105132000A (zh) 一种溶解高成熟度焦沥青的溶剂及其使用方法
Wan et al. Synthesis and solution properties of hydrophobically associative polyacrylamides by microemulsion polymerization
Hayashi et al. Fluorescent additive for estimation of compatibility of polyester blend by imipramine-containing polymer
CN109851784A (zh) 一种钌配合物催化制备1,4-立构规整聚三唑的方法
Horinaka et al. Rheological properties of concentrated solutions of gellan in an ionic liquid
Wan et al. Synthesis and characterization of a novel polytriazole
CN101239933B (zh) 低分子量有机凝胶及其制备方法
Chen et al. Novel application of a classical side-chain liquid crystalline polymer as a gelator for common solvents
CN101440162A (zh) 一种甲壳素溶致液晶的制备方法
CN107382720A (zh) 一种稠油降粘剂、制备方法及应用
Hayashi Preparation of Dibenzazepine-containing Polymers and Use as Fluorescent Functional Additives for Estimating Plastic Blend

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20201023