CN108410911B - 基于CRISPR/Cas9技术构建的LMNA基因敲除的细胞系 - Google Patents
基于CRISPR/Cas9技术构建的LMNA基因敲除的细胞系 Download PDFInfo
- Publication number
- CN108410911B CN108410911B CN201810193932.0A CN201810193932A CN108410911B CN 108410911 B CN108410911 B CN 108410911B CN 201810193932 A CN201810193932 A CN 201810193932A CN 108410911 B CN108410911 B CN 108410911B
- Authority
- CN
- China
- Prior art keywords
- cell line
- seq
- lmna gene
- gene knockout
- pairs
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/87—Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
- C12N15/90—Stable introduction of foreign DNA into chromosome
- C12N15/902—Stable introduction of foreign DNA into chromosome using homologous recombination
- C12N15/907—Stable introduction of foreign DNA into chromosome using homologous recombination in mammalian cells
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/85—Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/06—Animal cells or tissues; Human cells or tissues
- C12N5/0602—Vertebrate cells
- C12N5/0693—Tumour cells; Cancer cells
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2510/00—Genetically modified cells
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2800/00—Nucleic acids vectors
- C12N2800/80—Vectors containing sites for inducing double-stranded breaks, e.g. meganuclease restriction sites
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2810/00—Vectors comprising a targeting moiety
- C12N2810/10—Vectors comprising a non-peptidic targeting moiety
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Genetics & Genomics (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Biotechnology (AREA)
- Zoology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Wood Science & Technology (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Biochemistry (AREA)
- Microbiology (AREA)
- Physics & Mathematics (AREA)
- Plant Pathology (AREA)
- Biophysics (AREA)
- Cell Biology (AREA)
- Mycology (AREA)
- Oncology (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
本发明公开了LMNA基因敲除的细胞系,所述细胞系为293T细胞系或HePG2肿瘤细胞系。所述细胞系是基于crispr‑cas9技术利用SEQ ID NO.1‑4所示的两对gRNA或SEQ ID NO.7‑10所示的两对gRNA构建的质粒载体转染待敲除细胞,经抗性筛选得到。所述LMNA基因敲除的细胞系可以用于扩心病、脂肪代谢障碍综合征、早衰综合征等疾病干预药物筛选细胞模型。
Description
技术领域
本发明涉及生物技术领域,具体涉及基于CRISPR/Cas9技术构建的LMNA基因敲除的细胞系及其构建方法。
背景技术
近几年发展起来的 CRISPR/Cas9 基因组定向编辑技术能够实现对基因组的特异性和精确敲除。基因组定向编辑技术可以导致目标位点的缺失、插入或替换。继 ZFN 和TALEN 技术之后,CRISPR/Cas9 系统已经迅速发展为第 3 代基因组编辑技术。CRISPR/Cas9 系统是 CRISPR/Cas 系统Ⅱ经过改造而成。与 ZFN 和 TALEN 技术相比,CRISPR/Cas9 系统在设计、合成和筛选上都非常简便,而且易于操作、成本低、构建周期短并且可以实现同时对多个基因的编辑,成倍的提高对基因编辑的效率。
LMNA 基因位于染色体的 1q21.2-q21.3,基因组序列全长 56.7 kb,含有 12 个外显子,在 10 号外显子上选择性剪接产生 2 种 mRNA,分别编码 lamin A 和 lamin C蛋白。这两种蛋白与LMNB 基因编码的 Lamin B 蛋白共同组成细胞的核纤层(nuclearlamin)。核纤层紧贴于内层核膜(inner nuclear membrance)的内表面,它与中等纤维蛋白家族具有高度的同源性,在维持核膜完整性、提供染色体锚着位点、调节细胞的分化及核周期性的解体和重组装过程中发挥重要作用。Lamin A 能与特定的结构蛋白相互作用,从而在核膜处形成复杂而牢固的网络结构,进一步增强了细胞核的稳定性。Lamin 还能够与众多转录因子相互作用,共同参与细胞内信号通路和转录的调控,对细胞的增殖、分化和凋亡等生命过程起重要的调控作用。近年来的研究表明,LMNA 基因突变与人类一系列疾病密切相关,这类疾病统称为核纤层病(laminopathy)。LMNA 基因突变主要导致以神经和肌肉症状为主要特征的疾病。Worman 和 Bonne 报道了人 LMNA 基因突变与扩张性心肌病、脂肪代谢障碍综合征、早衰综合征等疾病有关。
目前对于LMNA基因与疾病的关系的研究仍然不够充分,并且缺少相应的基因敲除细胞系,因此有必要提供LMNA基因敲除的细胞模型,从而为科研提供必要的工具。
发明内容
本发明一方面提供一种LMNA基因敲除的细胞系。在一个实施方式中,该LMNA基因敲除的细胞系是293T细胞。在一个实施方式中,该LMNA基因敲除的细胞系是HePG2肿瘤细胞。
本发明另一方面提供构建LMNA基因敲除的细胞系的方法,所述方法基于crispr-cas9技术利用SEQ ID NO. 1-4所示的两对gRNA或SEQ ID NO. 7-10所示的两对gRNA构建的质粒载体转染待敲除细胞,经抗性筛选得到所述LMNA基因敲除的细胞系。
本发明另一方面提供一种质粒载体,其包含SEQ ID NO. 1-4所示的两对gRNA或SEQ ID NO. 7-10所示的两对gRNA。
本发明再一方面提供所述质粒载体的应用,其用于基于crispr-cas9技术构建LMNA基因敲除的细胞系。
本发明利用发明人设计的gRNA成对引物能够精确且高效地敲除LMNA基因,所提供的LMNA基因敲除的细胞系能够为衰老和扩张性心肌病干预药物提供细胞模型,能够为LMNA基因调控的相关基因影响细胞周期和凋亡提供对照细胞模型,并且能够为LMNA基因与肿瘤发生发展和药物干预提供细胞模型。
附图说明
图1是LMNA基因敲除的293T细胞PCR测序结果。
图2是LMNA基因敲除的HePG2细胞PCR测序结果。
图3是蛋白免疫印迹结果:293T WT为293T细胞的野生型,293T KO为293T细胞LMNA基因敲除后的细胞;HePG2 WT为HePG2的野生型,HePG2 KO为HePG2 细胞LMNA基因敲出后的细胞。
具体实施方式
实施例1 LMNA基因敲除的293T细胞系的构建
(a) gRNA的设计
以待敲除的LMNA基因全序列为基础,发明人设计出了两对gRNA引物,分别为:
gRNA7
CACCGGCACGCAGCTCCTGGAAGGGT(SEQ ID NO. 1),
AAACACCCTTCCAGGAGCTGCGTGCC(SEQ ID NO. 2),和
gRNA8
CACCGGCGCCGTCATGAGACCCGAC(SEQ ID NO. 3),
AAACGTCGGGTCTCATGACGGCGCC(SEQ ID NO. 4)。
(b) 载体构建
(b1) 酶切空质粒和凝胶纯化 用限制性内切酶BbsI消化1ug质粒,37℃,30min:
BbSI | 1ul |
PX459 | 1ug |
10xBbSI buffer | 5ul |
灭菌水 | 补至50ul |
QIAquick凝胶提取试剂盒消化过的质粒,凝胶纯化,并在EB中洗脱。
(b2) 磷酸化和退火gRNA 反应体系:
gRNA-F | 1ul |
gRNA-R | 1ul |
10xT4ligation buffer | 1ul |
T4PNK(NEB) | 0.5ul |
DdH<sub>2</sub>O | 6.5ul |
参数设置:37 ℃,30min,95 ℃,5min,以5 ℃/min降至25 ℃
(b3) 质粒重组和转化筛选
质粒重组反应体系:
gRNA | 1ul |
酶切质粒 | 50ng |
T4连接酶 | 1.5ul |
T4 Buffer | 1.5ul |
灭菌水 | 补至15ul |
混匀,室温孵育10min,置于4℃冰箱连接过夜获得重组质粒。
(b4) 转化筛选:重组质粒转入感受态大肠杆菌,并筛选阳性克隆
转化:在50μl新鲜配制的感受态细胞中加入重组质粒 500ng,混匀。冰上放置30min。将管放到42℃循环水浴热冲击90s。取出,迅速冰浴5min。每管加800μl LB液体培养基,37℃,220rpm慢摇复苏1h。将复苏好的菌液6000rpm室温离心3min,吸去700μL上清后,将剩余的上清与沉淀的菌体充分悬浮,然后涂布于含有氨苄青霉素的固体LB培养基上。将平板置于37℃培养箱中培养过夜。
筛选:将阳性克隆挑出,做菌落PCR并进行琼脂糖凝胶电泳,并做平皿培养和LB液体培养,有目的片段的菌液作测序处理进一步验证。①取空白PCR管,编号,加5ul 灭菌ddH20。②用接种针随机挑选转化板上单克隆,放入对应PCR管内,混匀。③接种针在含氨苄霉素抗性的空白LB琼脂糖平板上轻划2-3下,室温培养过夜后,4℃保存。④取扩增产物5ul,电泳检测是否得到目的片断。⑤挑选保种板上编号对应的阳性克隆进一步培养,挑少量菌落置于预先加入5~10ml含氨苄青霉素抗性的LB液体培养基的50ml离心管中,37℃(220rpm)孵育过夜。
菌落PCR反应体系:
试剂 | 体积 |
模版(PCR管菌液) | 已含菌液计为 3.5ul |
引物(上) | 0.2ul |
引物(下) | 0.2 ul |
Taq酶 | 0.1 ul |
1xTaq buffer | 1.5ul |
dNTPs | 0.2ul |
ddH20 | 4.3ul |
总计 | 10ul |
引物(上)gagggcctatttcccatgat(SEQ ID NO. 5),
引物(下)gggcgtacttggcatatgat(SEQ ID NO. 6)
扩增条件:94℃ 5min;94℃30s;55℃ 30s;72℃ 30s;72℃ 5min;16℃ 保温。
(c) 细胞转染
把构建好的载体利用lipofectamine 3000 脂质体转染进目的细胞株。同时转染分别插入gRNA7与gRNA8的px459质粒,以提高剪切效率。10ul脂质体与250ul无血清培养基混匀,室温放置五分钟,5ug重组质粒与250ul无血清培养基混匀,室温静置五分钟,两种液体混匀,室温静置20分钟,加入培养孔。转染6~8小时后换完全培养基,24h后换液,加入嘌呤霉素(2.0ug/ml的筛选浓度),持续筛选3-4天,直到看到只剩下少数细胞贴壁生长。
(d) 挑单克隆:嘌呤霉素筛选,96孔板单个分选
将嘌呤霉素筛选后的细胞用胰酶消化下来,有限稀释法稀释细胞,96孔板每孔加入100ul细胞悬液,显微镜观察,单个细胞的培养孔做好标记,到第五天是更换新鲜培养基,等细胞铺板80%以上消化细胞,一半提取DNA测序验证,一半细胞换六孔板扩大培养。
(e) 测序验证
嘌呤霉素筛选过后的细胞,测序验证。提取细胞基因组以及PCR检测细胞基因组的完整性。阳性测序结果如图1所示。PCR反应体系如下:
试剂 | 体积 |
LA Taq 酶 | 0.5ul |
10*LA Taq buffer | 5ul |
dNTPs | 8ul |
模板DNA | 0.5ug |
Forward primer | 1ul |
Reverse primer | 1ul |
灭菌H<sub>2</sub>O | 补至50ul |
Forward primer TGATGACAGACTTGGGCTGG(SEQ ID NO. 13)
Reverse primer ACCAATCGAGAGCAAGCACC(SEQ ID NO. 14)
(f)蛋白免疫印记
293T的野生型和突变型六孔板铺板24小时候后,ripa加pmsf裂解收集蛋白,聚丙烯酰胺凝胶电泳后转PVDF膜。封闭后,相应一抗4°C孵育过夜,二抗室温1h。凝胶成像系统成像,结果如图3所示,可见敲除后无lamin A蛋白表达。
实施例2 LMNA基因敲除的HePG2细胞系的构建
(a) gRNA引物设计
以待敲除的lmna基因全序列为基础,发明人设计出了两对gRNA引物,分别为:
gRNA 5
CACCGGTTCCGCCAGCAGCCGCCGGC (SEQ ID NO. 7),
AAACGCCGGCGGCTGCTGGCGGAACC (SEQ ID NO. 8);以及
gRNA 6
CACCGGAGCGGGAGATGGCCGAGATG (SEQ ID NO. 9),
AAACCATCTCGGCCATCTCCCGCTCC (SEQ ID NO. 10)。
(b) 载体构建
(b1) 酶切空质粒和凝胶纯化 用限制性内切酶BbsI消化1ug质粒,37℃,30min:
BbSI | 1ul |
PX459 | 1ug |
10xBbSI buffer | 5ul |
灭菌水 | 补至50ul |
QIAquick凝胶提取试剂盒消化过的质粒,凝胶纯化,并在EB中洗脱。
(b2) 磷酸化和退火gRNA 反应体系:
gRNA-F | 1ul |
gRNA-R | 1ul |
10xT4 ligation buffer | 1ul |
T4PNK(NEB) | 0.5ul |
DdH<sub>2</sub>O | 6.5ul |
参数设置:37 ℃,30min, 95 ℃,5min,以5 ℃/min降至25 ℃
(b3) 质粒重组和转化筛选
质粒重组反应体系:
gRNA | 1ul |
酶切质粒 | 50ng |
T4连接酶 | 1.5ul |
T4 Buffer | 1.5ul |
灭菌水 | 补至15ul |
混匀,室温孵育10min,置于4℃冰箱连接过夜获得重组质粒。
(b4)转化筛选:重组质粒转入感受态大肠杆菌,并筛选阳性克隆
转化:在50μl新鲜配制的感受态细胞中加入重组质粒 500ng,混匀。冰上放置30min。将管放到42℃循环水浴热冲击90s。取出,迅速冰浴5min。每管加800μl LB液体培养基,37℃, 220rpm慢摇复苏1h。将复苏好的菌液6000rpm室温离心3min,吸去700μL上清后,将剩余的上清与沉淀的菌体充分悬浮,然后涂布于含有氨苄青霉素的固体LB培养基上。将平板置于37℃培养箱中培养过夜。
筛选:将阳性克隆挑出,做菌落PCR并进行琼脂糖凝胶电泳,并做平皿培养和LB液体培养,有目的片段的菌液作测序处理进一步验证。①取空白PCR管,编号,加5ul 灭菌ddH2O。②用接种针随机挑选转化板上单克隆,放入对应PCR管内,混匀。③接种针在含氨苄霉素抗性的空白LB琼脂糖平板上轻划2-3下,室温培养过夜后,4℃保存。④取扩增产物5ul,电泳检测是否得到目的片断。⑤挑选保种板上编号对应的阳性克隆进一步培养,挑少量菌落置于预先加入5~10ml含氨苄青霉素抗性的LB液体培养基的50ml离心管中,37℃(220rpm)孵育过夜。
菌落PCR反应体系:
试剂 | 体积 |
模版(PCR管菌液) | 已含菌液计为 3.5ul |
引物(上) | 0.2ul |
引物(下) | 0.2 ul |
Taq酶 | 0.1 ul |
1xTaq buffer | 1.5ul |
dNTPs | 0.2ul |
ddH<sub>2</sub>O | 4.3ul |
总计 | 10ul |
引物(上)gagggcctatttcccatgat (SEQ ID NO. 5)
引物(下)gggcgtacttggcatatgat (SEQ ID NO. 6)
扩增条件:94℃ 5min;94℃30s;55℃ 30s;72℃ 30s;72℃ 5min;16℃ 保温。
(c) 细胞转染
把构建好的载体利用lipofectamine 3000 脂质体转染进目的细胞株。同时转染分别插入gRNA5与gRNA6的px459质粒,以提高剪切效率。10ul脂质体与250ul无血清培养基混匀,室温放置五分钟,5ug重组质粒与250ul无血清培养基混匀,室温静置五分钟,两种液体混匀,室温静置20分钟,加入培养孔。转染6~8小时后换完全培养基,24h后换液,加入嘌呤霉素(1.5ug/ml的筛选浓度),持续筛选3-4天,直到看到只剩下少数细胞贴壁生长。
(d) 挑单克隆
嘌呤霉素筛选,96孔板单个分选:将嘌呤霉素筛选后的细胞用胰酶消化下来,有限稀释法稀释细胞,96孔板每孔加入100ul细胞悬液,显微镜观察,单个细胞的培养孔做好标记,到第五天是更换新鲜培养基,等细胞铺板80%以上消化细胞,一半提取DNA测序验证,一半细胞换六孔板扩大培养。
(e) 测序验证
嘌呤霉素筛选过后的细胞,测序验证。提取细胞基因组以及PCR检测细胞基因组的完整性。阳性测序结果如图2所示。PCR反应体系如下:
试剂 | 体积 |
LA Taq 酶 | 0.5ul |
10*LA Taq buffer | 5ul |
dNTPs | 8ul |
模板DNA | 0.5ug |
Forward primer | 1ul |
Reverse primer | 1ul |
灭菌H<sub>2</sub>O | 补至50ul |
Forward primer TCTGGGGAAGCTCTGATTGC(SEQ ID NO. 11)
Reverse primer AGTGGGGGTCTAGTCAAGGC(SEQ ID NO. 12)
(f) 蛋白免疫印记
HePG2的野生型和突变型六孔板铺板24小时候后,ripa加pmsf裂解收集蛋白,聚丙烯酰胺凝胶电泳后转PVDF膜。封闭后,相应一抗4°C孵育过夜,二抗室温1h。凝胶成像系统成像,结果如图3所示,可见敲除后无Lamin A 蛋白表达。
SEQUENCE LISTING
<110> 广西医科大学
<120> 基于CRISPR/Cas9技术构建的LMNA基因敲除的细胞系
<130> 17983CN
<160> 14
<170> PatentIn version 3.5
<210> 1
<211> 26
<212> DNA
<213> 人工序列
<400> 1
caccggcacg cagctcctgg aagggt 26
<210> 2
<211> 26
<212> DNA
<213> 人工序列
<400> 2
aaacaccctt ccaggagctg cgtgcc 26
<210> 3
<211> 25
<212> DNA
<213> 人工序列
<400> 3
caccggcgcc gtcatgagac ccgac 25
<210> 4
<211> 25
<212> DNA
<213> 人工序列
<400> 4
aaacgtcggg tctcatgacg gcgcc 25
<210> 5
<211> 20
<212> DNA
<213> 人工序列
<400> 5
gagggcctat ttcccatgat 20
<210> 6
<211> 20
<212> DNA
<213> 人工序列
<400> 6
gggcgtactt ggcatatgat 20
<210> 7
<211> 26
<212> DNA
<213> 人工序列
<400> 7
caccggttcc gccagcagcc gccggc 26
<210> 8
<211> 26
<212> DNA
<213> 人工序列
<400> 8
aaacgccggc ggctgctggc ggaacc 26
<210> 9
<211> 26
<212> DNA
<213> 人工序列
<400> 9
caccggagcg ggagatggcc gagatg 26
<210> 10
<211> 26
<212> DNA
<213> 人工序列
<400> 10
aaaccatctc ggccatctcc cgctcc 26
<210> 11
<211> 20
<212> DNA
<213> 人工序列
<400> 11
tctggggaag ctctgattgc 20
<210> 12
<211> 20
<212> DNA
<213> 人工序列
<400> 12
agtgggggtc tagtcaaggc 20
<210> 13
<211> 20
<212> DNA
<213> 人工序列
<400> 13
tgatgacaga cttgggctgg 20
<210> 14
<211> 20
<212> DNA
<213> 人工序列
<400> 14
accaatcgag agcaagcacc 20
Claims (4)
1.一种构建LMNA基因敲除的细胞系的方法,所述方法基于crispr-cas9技术利用两对gRNA构建的质粒载体转染待敲除细胞,经抗性筛选得到所述LMNA基因敲除的细胞系,其中,
当细胞系为293T细胞系时,使用SEQ ID NO. 1-4所示的两对gRNA;
当细胞系为HePG2细胞系时,使用SEQ ID NO. 7-10所示的两对gRNA。
2.一种用于转染细胞系的质粒载体,其中,
当细胞系为293T细胞系时,所述质粒载体包含SEQ ID NO. 1-4所示的两对gRNA;
当细胞系为HePG2细胞系时,所述质粒载体包含SEQ ID NO. 7-10所示的两对gRNA。
3.根据权利要求2所述的质粒载体,其中所述质粒载体为PX459质粒载体。
4.权利要求2或3所述的质粒载体在基于crispr-cas9技术构建LMNA基因敲除的细胞系中的应用。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810193932.0A CN108410911B (zh) | 2018-03-09 | 2018-03-09 | 基于CRISPR/Cas9技术构建的LMNA基因敲除的细胞系 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810193932.0A CN108410911B (zh) | 2018-03-09 | 2018-03-09 | 基于CRISPR/Cas9技术构建的LMNA基因敲除的细胞系 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108410911A CN108410911A (zh) | 2018-08-17 |
CN108410911B true CN108410911B (zh) | 2021-08-20 |
Family
ID=63130808
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810193932.0A Expired - Fee Related CN108410911B (zh) | 2018-03-09 | 2018-03-09 | 基于CRISPR/Cas9技术构建的LMNA基因敲除的细胞系 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108410911B (zh) |
Families Citing this family (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU2012333134B2 (en) | 2011-07-22 | 2017-05-25 | John Paul Guilinger | Evaluation and improvement of nuclease cleavage specificity |
US20150044192A1 (en) | 2013-08-09 | 2015-02-12 | President And Fellows Of Harvard College | Methods for identifying a target site of a cas9 nuclease |
US9359599B2 (en) | 2013-08-22 | 2016-06-07 | President And Fellows Of Harvard College | Engineered transcription activator-like effector (TALE) domains and uses thereof |
US9526784B2 (en) | 2013-09-06 | 2016-12-27 | President And Fellows Of Harvard College | Delivery system for functional nucleases |
US9340799B2 (en) | 2013-09-06 | 2016-05-17 | President And Fellows Of Harvard College | MRNA-sensing switchable gRNAs |
US9388430B2 (en) | 2013-09-06 | 2016-07-12 | President And Fellows Of Harvard College | Cas9-recombinase fusion proteins and uses thereof |
US20150165054A1 (en) | 2013-12-12 | 2015-06-18 | President And Fellows Of Harvard College | Methods for correcting caspase-9 point mutations |
AU2015298571B2 (en) | 2014-07-30 | 2020-09-03 | President And Fellows Of Harvard College | Cas9 proteins including ligand-dependent inteins |
IL310721A (en) | 2015-10-23 | 2024-04-01 | Harvard College | Nucleobase editors and their uses |
IL308426A (en) | 2016-08-03 | 2024-01-01 | Harvard College | Adenosine nuclear base editors and their uses |
CA3033327A1 (en) | 2016-08-09 | 2018-02-15 | President And Fellows Of Harvard College | Programmable cas9-recombinase fusion proteins and uses thereof |
US11542509B2 (en) | 2016-08-24 | 2023-01-03 | President And Fellows Of Harvard College | Incorporation of unnatural amino acids into proteins using base editing |
AU2017342543B2 (en) | 2016-10-14 | 2024-06-27 | President And Fellows Of Harvard College | AAV delivery of nucleobase editors |
WO2018119359A1 (en) | 2016-12-23 | 2018-06-28 | President And Fellows Of Harvard College | Editing of ccr5 receptor gene to protect against hiv infection |
US11898179B2 (en) | 2017-03-09 | 2024-02-13 | President And Fellows Of Harvard College | Suppression of pain by gene editing |
JP2020510439A (ja) | 2017-03-10 | 2020-04-09 | プレジデント アンド フェローズ オブ ハーバード カレッジ | シトシンからグアニンへの塩基編集因子 |
IL306092A (en) | 2017-03-23 | 2023-11-01 | Harvard College | Nucleic base editors that include nucleic acid programmable DNA binding proteins |
US11560566B2 (en) | 2017-05-12 | 2023-01-24 | President And Fellows Of Harvard College | Aptazyme-embedded guide RNAs for use with CRISPR-Cas9 in genome editing and transcriptional activation |
CN111801345A (zh) | 2017-07-28 | 2020-10-20 | 哈佛大学的校长及成员们 | 使用噬菌体辅助连续进化(pace)的进化碱基编辑器的方法和组合物 |
WO2019139645A2 (en) | 2017-08-30 | 2019-07-18 | President And Fellows Of Harvard College | High efficiency base editors comprising gam |
AU2018352592A1 (en) | 2017-10-16 | 2020-06-04 | Beam Therapeutics, Inc. | Uses of adenosine base editors |
AU2020242032A1 (en) | 2019-03-19 | 2021-10-07 | Massachusetts Institute Of Technology | Methods and compositions for editing nucleotide sequences |
IL297761A (en) | 2020-05-08 | 2022-12-01 | Broad Inst Inc | Methods and compositions for simultaneously editing two helices of a designated double-helix nucleotide sequence |
CN112522261B (zh) * | 2020-10-28 | 2023-07-25 | 南京启真基因工程有限公司 | 用于制备lmna基因突变的扩张型心肌病克隆猪核供体细胞的crispr系统及其应用 |
CN114990157B (zh) * | 2021-03-01 | 2023-07-21 | 南京启真基因工程有限公司 | 用于构建lmna基因突变的扩张型心肌病模型猪核移植供体细胞的基因编辑系统及其应用 |
WO2023080755A1 (ko) * | 2021-11-08 | 2023-05-11 | 고려대학교 산학협력단 | 크리스퍼 기반 염기교정 기술을 이용하여 줄기세포 유래 심근병증 모델 세포주 제조방법 및 이의 방법으로 제조된 심근병증 세포주 |
CN116497029B (zh) * | 2023-05-06 | 2024-09-17 | 北京实验动物研究中心有限公司 | 小鼠进行基因敲除的方法及构建的lmna基因敲除小鼠模型 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106794125A (zh) * | 2014-04-03 | 2017-05-31 | 剑桥企业有限公司 | 用于治疗或预防核纤层蛋白病、老化和癌症的nat10调节剂 |
-
2018
- 2018-03-09 CN CN201810193932.0A patent/CN108410911B/zh not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106794125A (zh) * | 2014-04-03 | 2017-05-31 | 剑桥企业有限公司 | 用于治疗或预防核纤层蛋白病、老化和癌症的nat10调节剂 |
Non-Patent Citations (1)
Title |
---|
Efficient CRISPR-Cas9 mediated gene disruption in primary erythroid progenitor cells;Li, H. et al.;《Haematologica》;20160311;第101卷(第6期);第1-23页 * |
Also Published As
Publication number | Publication date |
---|---|
CN108410911A (zh) | 2018-08-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108410911B (zh) | 基于CRISPR/Cas9技术构建的LMNA基因敲除的细胞系 | |
CN107502608B (zh) | 用于敲除人ALDH2基因的sgRNA、ALDH2基因缺失细胞株的构建方法及应用 | |
Wang et al. | An improved recombineering approach by adding RecA to λ red recombination | |
Demko et al. | Genetic analysis of DEFECTIVE KERNEL1 loop function in three-dimensional body patterning in Physcomitrella patens | |
Clarke et al. | [27] Selection of specific clones from colony banks by suppression or complementation tests | |
WO2019227640A1 (zh) | 利用碱基编辑修复fbn1t7498c突变的试剂和方法 | |
US20110300632A1 (en) | Method of directing the evolution of an organism | |
CN112501170A (zh) | 一种构建mlh1基因敲除细胞系的方法 | |
CN112481309B (zh) | Ago蛋白的用途及组合物和基因编辑方法 | |
Zhang et al. | Directed evolution rice genes with randomly multiplexed sgRNAs assembly of base editors | |
Hsu et al. | Efficient and economical targeted insertion in plant genomes via protoplast regeneration | |
CN112501169A (zh) | 一种构建msh2基因敲除细胞系的方法 | |
US20070243616A1 (en) | In vivo alteration of cellular dna | |
CN108753814B (zh) | 一种加速物种突变的新育种方法 | |
CN111440823A (zh) | 一种重组载体及其构建方法和应用 | |
CN111549070A (zh) | 对x染色体多拷贝基因进行编辑实现动物性别控制的方法 | |
CN113881678B (zh) | 一种c/ebpz基因启动子及其应用 | |
CN111909956B (zh) | 阻断或减弱水稻OsNAC092基因表达以提高水稻抗旱性的方法 | |
CN114891786B (zh) | 犬Rosa26基因及其应用 | |
CN113564205B (zh) | 一种平衡染色体动物模型的构建方法 | |
US20240052370A1 (en) | Modulating cellular repair mechanisms for genomic editing | |
WO2023169093A1 (zh) | 工程化核酸酶及其应用 | |
CN117859703A (zh) | Anxa11基因的新突变致病位点C104G的敲入小鼠模型及其构建方法与应用 | |
CN116218843A (zh) | 特异性靶向绒山羊安全位点Rosa26的sgRNA及其应用 | |
CN116144652A (zh) | 特异性靶向绒山羊安全位点H11的sgRNA及其应用 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20210820 |
|
CF01 | Termination of patent right due to non-payment of annual fee |