Nothing Special   »   [go: up one dir, main page]

CN108114724A - 一氧化碳水汽变换低温催化剂的制备方法 - Google Patents

一氧化碳水汽变换低温催化剂的制备方法 Download PDF

Info

Publication number
CN108114724A
CN108114724A CN201711403606.XA CN201711403606A CN108114724A CN 108114724 A CN108114724 A CN 108114724A CN 201711403606 A CN201711403606 A CN 201711403606A CN 108114724 A CN108114724 A CN 108114724A
Authority
CN
China
Prior art keywords
catalyst
solution
water
added dropwise
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201711403606.XA
Other languages
English (en)
Other versions
CN108114724B (zh
Inventor
范果红
徐红
伊廷锋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anhui University of Technology AHUT
Original Assignee
Anhui University of Technology AHUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anhui University of Technology AHUT filed Critical Anhui University of Technology AHUT
Priority to CN201711403606.XA priority Critical patent/CN108114724B/zh
Publication of CN108114724A publication Critical patent/CN108114724A/zh
Application granted granted Critical
Publication of CN108114724B publication Critical patent/CN108114724B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/80Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/088Decomposition of a metal salt
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/06Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
    • C01B3/12Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents by reaction of water vapour with carbon monoxide
    • C01B3/16Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents by reaction of water vapour with carbon monoxide using catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0283Processes for making hydrogen or synthesis gas containing a CO-shift step, i.e. a water gas shift step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1076Copper or zinc-based catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)

Abstract

本发明公开一种一氧化碳水汽变换低温催化剂的制备方法,属于催化技术领域。该方法具体内容是:将沉淀剂滴加到含有锌盐和载体γ‑Al2O3的溶液中制备氢氧化锌悬浊液。然后将沉淀剂溶液和铜盐溶液同时滴加到氢氧化锌悬浊液中,调节溶液的pH值并不断搅拌,再经过抽滤、洗涤、干燥、焙烧,得到Cu‑Zn/γ‑Al2O3催化剂;Cu含量为20‑40wt%,铜锌摩尔比为1:1。应用该方法制备的催化剂在典型的重整气中进行水汽变换反应,具有高的活性和稳定性,表现出比传统共沉淀法制备的催化剂更高的反应活性。

Description

一氧化碳水汽变换低温催化剂的制备方法
技术领域:
本发明属于催化技术领域,具体涉及一种一氧化碳水汽变换低温催化剂的制备方法。
背景技术:
随着科技的进步和世界人口的增长,能源短缺问题已引起越来越多的关注。当前化石能源需求量的日益增加而储量日益减少,开发新型的可持续利用的能源迫切成为当今社会中人们最关注的问题之一。氢能作为一种新型能源,具有清洁无污染、燃烧热值高、导热性好、燃烧产物可循环等优点,因此也成为未来最有可能替代现今化石能源的新能源。其中,通过甲醇、天然气等化合物重整制氢用于燃料电池的氢源,一直备受研究者的关注。然而,重整气中通常会含有5%-20%的CO,这会导致质子交换膜燃料电池的铂电极产生中毒现象继而使电池性能严重下降。因此,有必要降低重整气中的CO含量,例如通过水汽变换反应(CO+H2O=CO2+H2)。水汽变换反应在消除CO的同时也产生了相同体积的氢气。另外,水汽变换反应在合成氨、合成甲醇、汽油及调节合成汽油生产中的碳氢比例和城市煤气工业中得到了广泛的应用。商业用的变换催化剂主要分为高温变换催化剂、低温变换催化剂和宽温变换催化剂。低温变换催化剂一般为铜锌系催化剂,这类催化剂反应活性高,但存在热稳定性差、选择性差、接触空气易自然等缺点。目前催化剂主要采用共沉淀法制备,制备过程中的许多因素都会导致催化剂的重复性不高,例如常见的因素有pH值、沉淀剂、沉淀温度、老化时间等。鉴于水汽变化反应在工业过程中的重要性以及在燃料电池电动车上净化原料气氢气的应用前景,世界各国主要从生产工艺和催化剂的制备上进行了广泛的研究,以求合成活性高、稳定性好、重现性高的催化剂。针对现有催化剂的不足,中国专利(CN201510678685.X)中合成了一种具有良好的低温活性、耐热稳定性和长期稳定性的纳米复合结构Cu/ZnAl2O4低温水煤气变换催化剂。由此可见,研制出活性高、稳定性好的水汽变换低温催化剂成为此类型催化剂适用于更广范围的反应系统的关键之一。
发明内容:
本发明的目的在于提供一种良好的低温活性、稳定性的纳米Cu-Zn/γ-Al2O3低温水汽变换催化剂的制备方法。
本发明所提供的一氧化碳水汽变换低温催化剂的制备方法,所述催化剂活性组分为Cu、Zn,载体为γ-Al2O3,Cu含量为20-40wt%,铜锌摩尔比为1:1;通过分布沉淀法制备沉淀物,再经过抽滤、洗涤、干燥、焙烧,制得Cu-Zn/γ-Al2O3催化剂;该制备方法具体步骤如下:
(1)配制一定浓度的沉淀剂溶液,逐滴加入到含有锌盐和载体γ-Al2O3的溶液中并不断搅拌至pH值为9,得到氢氧化锌悬浊液,滴定完成后继续搅拌40min;
(2)配制一定浓度的铜盐溶液,将步骤(1)所述沉淀剂溶液和所述铜盐溶液同时缓慢地滴加到步骤(1)得到的所述氢氧化锌悬浊液中,不断搅拌并保持pH值为8,当铜盐滴加完毕后继续滴加所述沉淀剂溶液至pH值为9,得到的悬浊液在60℃水浴中继续搅拌2-4h,然后抽滤,用蒸馏水洗涤至pH值为7,固体在80℃烘箱中干燥12-24h,即得沉淀物前驱体;
(3)将所述沉淀物前驱体在氧化性气氛中400℃下煅烧2h,制得所述一氧化碳水汽变换低温催化剂Cu-Zn/γ-Al2O3
所述铜盐为Cu(NO3)2·3H2O、CuSO4·5H2O或CuCl2·2H2O,浓度为0.06~0.15mol/L;所述锌盐为Zn(NO3)2·6H2O、ZnSO4·7H2O或ZnCl2,浓度为0.05~0.12mol/L;所述沉淀剂为氨水、碳酸钠、氢氧化钠、及碳酸氢钠中的任意一种,浓度为0.4mol/L;所述氧化性气氛为空气、氧气或氧气与氮气混合气的任意一种
本发明中所使用的具体催化剂评价方法为:评价装置采用固定床反应器;原料气为3%CO,12%H2O,N2平衡。催化剂装填量为0.06g;反应温度为150-300℃,空速为30000mL/(g·h)。反应在常压条件下进行,气体经过催化剂后用气相色谱仪在线检测。
本发明具有以下技术特点:
1、本发明的Cu-Zn/γ-Al2O3催化剂具有纳米复合结构,活性组分为CuO和ZnO。
2、本发明的Cu-Zn/γ-Al2O3催化剂与传统共沉淀法制备的催化剂相比,对水汽变换反应具有良好的低温活性、稳定性,应用前景良好。
附图说明:
图1为本发明分布沉淀法制备的Cu-Zn/γ-Al2O3催化剂和共沉淀法制备的Cu-Zn/γ-Al2O3催化剂在水汽变换反应中的催化活性。
图2为本发明分布沉淀法制备的Cu-Zn/γ-Al2O3催化剂和共沉淀法制备的Cu-Zn/γ-Al2O3催化剂在水汽变换反应中的稳定性。
具体实施方式:
以下结合附图和具体实施例详述本发明,但本发明不局限于下述实施例。
实施例1:
(1)称取4.242g Na2CO3放入100ml容量瓶中,加入蒸馏水摇匀定容,作为沉淀剂备用。称取1.175g Zn(NO3)2·6H2O置于100ml烧杯中,加入50ml蒸馏水溶解,再加入0.103g工业级γ-Al2O3。在室温下将Na2CO3溶液缓慢滴加到上述含有Zn盐溶液中,并不断搅拌至终点为pH=9时停止滴加,得到氢氧化锌悬浊液。滴加完毕后继续搅拌40min。
(2)称取0.947g Cu(NO3)2·3H2O置于100ml烧杯中,加入50ml蒸馏水溶解。将沉淀剂Na2CO3溶液和上述Cu盐溶液同时缓慢滴加到氢氧化锌悬浊液中,在同时滴加的过程中不断搅拌,并控制pH为8左右。当铜盐滴加完毕后继续滴加沉淀剂Na2CO3溶液至pH为9。得到的悬浊液在60℃水浴中继续搅拌2h,然后抽滤,用蒸馏水洗涤至pH为7。固体在80℃烘箱中干燥12-24h,即得沉淀物前驱体。将沉淀物前驱体在空气气氛中400℃下煅烧2h,即得Cu-Zn/γ-Al2O3(SP)催化剂。
实施例2:
(1)称取4.247g Na2CO3放入100ml容量瓶中,加入蒸馏水摇匀定容,作为沉淀剂备用。称取1.155g ZnSO4·7H2O置于100ml烧杯中,加入50ml蒸馏水溶解,再加入0.105g工业级γ-Al2O3。在室温下将Na2CO3溶液缓慢滴加到上述含有Zn盐的溶液中,并不断搅拌至终点为pH=9时停止滴加,得到氢氧化锌悬浊液。滴加完毕后继续搅拌40min。
(2)称取0.945g Cu(NO3)2·3H2O置于100ml烧杯中,加入50ml蒸馏水溶解。将沉淀剂Na2CO3溶液和上述Cu盐溶液同时缓慢滴加到氢氧化锌悬浊液中,在同时滴加的过程中不断搅拌,并控制pH为8左右。当铜盐滴加完毕后继续滴加沉淀剂Na2CO3溶液至pH为9。得到的悬浊液在60℃水浴中继续搅拌2h,然后抽滤,用蒸馏水洗涤至pH为7。固体在80℃烘箱中干燥12-24h,即得沉淀物前驱体。将沉淀物前驱体在空气气氛中400℃下煅烧2h,即得Cu-Zn/γ-Al2O3(SP)催化剂。
实施例3:
(1)称取4.243g Na2CO3放入100ml容量瓶中,加入蒸馏水摇匀定容,作为沉淀剂备用。称取0.688g ZnCl2·2H2O置于100ml烧杯中,加入50ml蒸馏水溶解,再加入0.102g工业级γ-Al2O3。在室温下将Na2CO3溶液缓慢滴加到上述含有Zn盐的溶液中,并不断搅拌至终点为pH=9时停止滴加,得到氢氧化锌悬浊液。滴加完毕后继续搅拌40min。
(2)称取0.941g Cu(NO3)2·3H2O置于100ml烧杯中,加入50ml蒸馏水溶解。将沉淀剂Na2CO3溶液和上述Cu盐溶液同时缓慢滴加到氢氧化锌悬浊液中,在同时滴加的过程中不断搅拌,并控制pH为8左右。当铜盐滴加完毕后继续滴加沉淀剂Na2CO3溶液至pH为9。得到的悬浊液在60℃水浴中继续搅拌2h,然后抽滤,用蒸馏水洗涤至pH为7。固体在80℃烘箱中干燥12-24h,即得沉淀物前驱体。将沉淀物前驱体在空气气氛中400℃下煅烧2h,即得Cu-Zn/γ-Al2O3(SP)催化剂。
实施例4:
(1)称取4.242g Na2CO3放入100ml容量瓶中,加入蒸馏水摇匀定容,作为沉淀剂备用。称取1.178g Zn(NO3)2·6H2O置于100ml烧杯中,加入50ml蒸馏水溶解,再加入0.103g工业级γ-Al2O3。在室温下将Na2CO3溶液缓慢滴加到上述含有Zn盐的溶液中,并不断搅拌至终点为pH=9时停止滴加,得到氢氧化锌悬浊液。滴加完毕后继续搅拌40min。
(2)称取1.003g CuSO4·3H2O置于100ml烧杯中,加入50ml蒸馏水溶解。将沉淀剂Na2CO3溶液和上述Cu盐溶液同时缓慢滴加到氢氧化锌悬浊液中,在同时滴加的过程中不断搅拌,并控制pH为8左右。当铜盐滴加完毕后继续滴加沉淀剂Na2CO3溶液至pH为9。得到的悬浊液在60℃水浴中继续搅拌2h,然后抽滤,用蒸馏水洗涤至pH为7。固体在80℃烘箱中干燥12-24h,即得沉淀物前驱体。将沉淀物前驱体在空气气氛中400℃下煅烧2h,即得Cu-Zn/γ-Al2O3(SP)催化剂。
实施例5:
(1)称取4.240g Na2CO3放入100ml容量瓶中,加入蒸馏水摇匀定容,作为沉淀剂备用。称取1.172g Zn(NO3)2·6H2O置于100ml烧杯中,加入50ml蒸馏水溶解,再加入0.103g工业级γ-Al2O3。在室温下将Na2CO3溶液缓慢滴加到上述含有Zn盐的溶液中,并不断搅拌至终点为pH=9时停止滴加,得到氢氧化锌悬浊液。滴加完毕后继续搅拌40min。
(2)称取0.535g CuCl2·3H2O置于100ml烧杯中,加入50ml蒸馏水溶解。将沉淀剂Na2CO3溶液和上述Cu盐溶液同时缓慢滴加到氢氧化锌悬浊液中,在同时滴加的过程中不断搅拌,并控制pH为8左右。当铜盐滴加完毕后继续滴加沉淀剂Na2CO3溶液至pH为9。得到的悬浊液在60℃水浴中继续搅拌2h,然后抽滤,用蒸馏水洗涤至pH为7。固体在80℃烘箱中干燥12-24h,即得沉淀物前驱体。将沉淀物前驱体在空气气氛中400℃下煅烧2h,即得Cu-Zn/γ-Al2O3(SP)催化剂。
实施例6:
称取4.244g Na2CO3放入100ml容量瓶中,加入蒸馏水摇匀定容,作为沉淀剂备用。分别称取1.168g Zn(NO3)2·6H2O和0.946g Cu(NO3)2·3H2O放入100ml烧杯中,加入50ml蒸馏水溶解,再加入0.106g工业级γ-Al2O3。超声分散均匀后,在室温下用Na2CO3溶液缓慢滴加到上述含有Cu盐和Zn盐的溶液中,并不断搅拌至终点为pH=9时停止滴加。滴定完毕后在60℃的水浴中加热搅拌4h,然后抽滤,用蒸馏水洗涤至pH为7。固体在80℃烘箱中干燥12-24h,然后在在空气气氛中400℃下煅烧2h,即得Cu-Zn/γ-Al2O3(CP)催化剂。
实施例7:
将上述所制得的催化剂进行筛分,称取颗粒度为20-40目的催化剂0.06g,在固定床石英管反应器上进行水汽变换反应性能测试。石英管内径为8mm,反应气空速为30000mL/(g·h)。反应气按体积比组成为:3%CO,12%H2O,85%N2。样品在反应性能测试前,先在30ml/min的空气气氛中从室温升至400℃,并保持2h。之后切换为Ar气氛进行样品的冷却。冷却至150℃以下再切换为反应气进行反应。反应过程中采用程序升温以1℃/min的速率从150℃升至300℃,在此期间采用福立9790气相色谱仪在线检测,TDX-01柱,TCD检测器。催化剂性能测试结果见附图1。采用分布沉淀法制备出的Cu-Zn/γ-Al2O3催化剂在低温时的水汽变换反应活性明显优于传统共沉淀法制备的催化剂。将反应温度固定在220℃进行催化剂的稳定性测试,见附图2。分布沉淀法制备出的Cu-Zn/γ-Al2O3催化剂在50h的稳定性测试中,始终保持90%的CO转化率。传统共沉淀法制备的催化剂在反应初始时的CO转化率为46%左右,随后提高到60%左右,并也可保持接近50h的稳定性。

Claims (2)

1.一种一氧化碳水汽变换低温催化剂的制备方法,其特征在于所述催化剂活性组分为Cu、Zn,载体为γ-Al2O3,Cu含量为20-40wt%,铜锌摩尔比为1:1;通过分布沉淀法制备沉淀物,再经过抽滤、洗涤、干燥、焙烧,制得Cu-Zn/γ-Al2O3催化剂;该制备方法具体步骤如下:
(1)配制一定浓度的沉淀剂溶液,逐滴加入到含有锌盐和载体γ-Al2O3的溶液中并不断搅拌至pH值为9,得到氢氧化锌悬浊液,滴定完成后继续搅拌40min;
(2)配制一定浓度的铜盐溶液,将步骤(1)所述沉淀剂溶液和所述铜盐溶液同时缓慢地滴加到步骤(1)得到的所述氢氧化锌悬浊液中,不断搅拌并保持pH值为8,当铜盐滴加完毕后继续滴加所述沉淀剂溶液至pH值为9,得到的悬浊液在60℃水浴中继续搅拌2-4h,然后抽滤,用蒸馏水洗涤至pH值为7,固体在80℃烘箱中干燥12-24h,即得沉淀物前驱体;
(3)将所述沉淀物前驱体在氧化性气氛中400℃下煅烧2h,制得所述一氧化碳水汽变换低温催化剂Cu-Zn/γ-Al2O3
2.根据权利要求1所述的制备方法,其特征在于所述铜盐为Cu(NO3)2·3H2O、CuSO4·5H2O或CuCl2·2H2O,浓度为0.06~0.15mol/L;所述锌盐为Zn(NO3)2·6H2O、ZnSO4·7H2O或ZnCl2,浓度为0.05~0.12mol/L;所述沉淀剂为氨水、碳酸钠、氢氧化钠、及碳酸氢钠中的任意一种,浓度为0.4mol/L;所述氧化性气氛为空气、氧气或氧气与氮气混合气的任意一种。
CN201711403606.XA 2017-12-22 2017-12-22 一氧化碳水汽变换低温催化剂的制备方法 Active CN108114724B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711403606.XA CN108114724B (zh) 2017-12-22 2017-12-22 一氧化碳水汽变换低温催化剂的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711403606.XA CN108114724B (zh) 2017-12-22 2017-12-22 一氧化碳水汽变换低温催化剂的制备方法

Publications (2)

Publication Number Publication Date
CN108114724A true CN108114724A (zh) 2018-06-05
CN108114724B CN108114724B (zh) 2020-12-15

Family

ID=62231080

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711403606.XA Active CN108114724B (zh) 2017-12-22 2017-12-22 一氧化碳水汽变换低温催化剂的制备方法

Country Status (1)

Country Link
CN (1) CN108114724B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113083312A (zh) * 2019-12-23 2021-07-09 中石化南京化工研究院有限公司 一种一氧化碳变换催化剂及其制备方法
CN113135551A (zh) * 2021-04-23 2021-07-20 湘潭大学 一种低温水汽变换反应及其催化剂
CN113457688A (zh) * 2020-03-30 2021-10-01 中国石油化工股份有限公司 一种铜基微通道低温变换催化剂及其制备方法、微通道低温变换反应的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1350883A (zh) * 2000-10-27 2002-05-29 南化集团研究院 新型铜系一氧化碳变换催化剂及其制备工艺
KR100859743B1 (ko) * 2007-06-08 2008-09-24 고등기술연구원연구조합 디메틸에테르 직접 합성용 구리-아연-알루미늄계혼성촉매의 제조방법
JP2012161787A (ja) * 2011-01-17 2012-08-30 National Institute Of Advanced Industrial Science & Technology 微粒子凝集体の製造方法、水蒸気改質触媒、水蒸気改質触媒の製造方法及び、水素製造方法
CN105214671A (zh) * 2015-10-20 2016-01-06 福州大学 一种耐热型Cu/ZnAl2O4低温水煤气变换催化剂
CN105618063A (zh) * 2014-11-04 2016-06-01 中国石油化工股份有限公司 一种用于β-二酮加氢制备β-二醇的催化剂
CN106582660A (zh) * 2016-12-05 2017-04-26 万华化学集团股份有限公司 一种醛加氢制备醇的催化剂的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1350883A (zh) * 2000-10-27 2002-05-29 南化集团研究院 新型铜系一氧化碳变换催化剂及其制备工艺
KR100859743B1 (ko) * 2007-06-08 2008-09-24 고등기술연구원연구조합 디메틸에테르 직접 합성용 구리-아연-알루미늄계혼성촉매의 제조방법
JP2012161787A (ja) * 2011-01-17 2012-08-30 National Institute Of Advanced Industrial Science & Technology 微粒子凝集体の製造方法、水蒸気改質触媒、水蒸気改質触媒の製造方法及び、水素製造方法
CN105618063A (zh) * 2014-11-04 2016-06-01 中国石油化工股份有限公司 一种用于β-二酮加氢制备β-二醇的催化剂
CN105214671A (zh) * 2015-10-20 2016-01-06 福州大学 一种耐热型Cu/ZnAl2O4低温水煤气变换催化剂
CN106582660A (zh) * 2016-12-05 2017-04-26 万华化学集团股份有限公司 一种醛加氢制备醇的催化剂的制备方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113083312A (zh) * 2019-12-23 2021-07-09 中石化南京化工研究院有限公司 一种一氧化碳变换催化剂及其制备方法
CN113083312B (zh) * 2019-12-23 2023-11-17 中石化南京化工研究院有限公司 一种一氧化碳变换催化剂及其制备方法
CN113457688A (zh) * 2020-03-30 2021-10-01 中国石油化工股份有限公司 一种铜基微通道低温变换催化剂及其制备方法、微通道低温变换反应的方法
CN113457688B (zh) * 2020-03-30 2023-10-10 中国石油化工股份有限公司 一种铜基微通道低温变换催化剂及其制备方法、微通道低温变换反应的方法
CN113135551A (zh) * 2021-04-23 2021-07-20 湘潭大学 一种低温水汽变换反应及其催化剂

Also Published As

Publication number Publication date
CN108114724B (zh) 2020-12-15

Similar Documents

Publication Publication Date Title
CN101703933B (zh) 一种双金属甲烷化催化剂及其制备方法
CN103071504B (zh) 一种水滑石负载镍催化剂及其制备方法和应用
CN105056955B (zh) 一种用于化学循环干气重整的氧载体及其制备方法和应用
CN102698783A (zh) 一种金属改性的α型碳化钼催化剂的制备方法与其在低温水煤气变换反应中的应用
CN103183346A (zh) 一种逆水煤气变换催化剂用于逆水煤气变换反应的方法
CN110508315A (zh) 一种甲醇水蒸气重整制氢催化剂及其制备方法
CN108114724A (zh) 一氧化碳水汽变换低温催化剂的制备方法
CN114272950A (zh) 一种ch4、co2重整制备合成气催化剂及其制备方法与应用
CN102145876B (zh) 一种甲醇水蒸气重整制氢的方法
CN105214671A (zh) 一种耐热型Cu/ZnAl2O4低温水煤气变换催化剂
CN108144608A (zh) 一氧化碳水汽变换铂基催化剂及制备方法
CN101972656A (zh) 一种乙醇自热重整制取氢气的镍基催化剂及其制备方法
WO2021042874A1 (zh) 一种二氧化碳甲烷化镍基催化剂及其制备方法和应用
CN102773108B (zh) 一种硫化氢制氢气催化剂的制备方法
CN104014345A (zh) 用于水煤气变换反应的CuO-CeO2催化剂及其制备方法
CN104511281A (zh) 一种水煤气宽温变换催化剂及其制备和应用
CN102319570A (zh) 一氧化碳氧化的三元复合氧化物催化剂及其制备方法
CN107552056A (zh) 二氧化碳加氢制一氧化碳的催化剂、制备方法及其用途
CN103272600B (zh) 一种负载型铜铁水煤气变换催化剂及其制备方法
CN105854914A (zh) 一种利用蟹壳制备的逆水煤气变换催化剂
CN106423171A (zh) 一种用于催化甲醇合成反应的Ni/Cu/M催化剂及其制备方法
CN106861751B (zh) 含Hβ分子筛的核壳催化剂的制备方法及产品和应用
CN103055865A (zh) 一种Cu-Fe耦合的一氧化碳宽温变换催化剂及其制备方法
KR100579945B1 (ko) 일산화탄소의 수성반응용 촉매
CN102949998A (zh) 一种双金属活性组分焦炉气甲烷化催化剂及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant