Nothing Special   »   [go: up one dir, main page]

CN108026502A - 用于浓缩包含产油酵母的粘质生物质的细胞悬液的方法 - Google Patents

用于浓缩包含产油酵母的粘质生物质的细胞悬液的方法 Download PDF

Info

Publication number
CN108026502A
CN108026502A CN201680054505.3A CN201680054505A CN108026502A CN 108026502 A CN108026502 A CN 108026502A CN 201680054505 A CN201680054505 A CN 201680054505A CN 108026502 A CN108026502 A CN 108026502A
Authority
CN
China
Prior art keywords
acid
cell suspension
biomass
cement
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201680054505.3A
Other languages
English (en)
Other versions
CN108026502B (zh
Inventor
R·波特罗
D·比安基
M·巴尔达萨雷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eni SpA
Original Assignee
Eni SpA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eni SpA filed Critical Eni SpA
Publication of CN108026502A publication Critical patent/CN108026502A/zh
Application granted granted Critical
Publication of CN108026502B publication Critical patent/CN108026502B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/14Fungi; Culture media therefor
    • C12N1/16Yeasts; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/005Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor after treatment of microbial biomass not covered by C12N1/02 - C12N1/08
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/02Separating microorganisms from their culture media
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2500/00Specific components of cell culture medium
    • C12N2500/30Organic components
    • C12N2500/34Sugars
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Medicinal Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Virology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Mycology (AREA)
  • Botany (AREA)
  • Sustainable Development (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)

Abstract

本发明属于生物技术领域,并且涉及用于浓缩包含产油酵母的粘质生物质的细胞悬液的方法。更具体地,本发明涉及用于浓缩含有在允许细胞内脂质积累的条件下在发酵液中发酵的产油酵母生物质的细胞悬液(以有利于随后的细胞内脂质提取过程)的方法,所述生物质的特征在于其含有大量的粘质物质。

Description

用于浓缩包含产油酵母的粘质生物质的细胞悬液的方法
本发明属于生物技术领域,并且涉及用于浓缩包含产油酵母的粘质生物质的细胞悬液的方法。
更具体地,本发明涉及用于浓缩含有在允许细胞内脂质积累的条件下在发酵液中发酵的产油酵母生物质的细胞悬液(以使随后的细胞内脂质提取过程更容易)的方法,所述生物质的特征在于其含有大量的粘质物质。
微生物产生的脂质可以方便地用于生产生物塑料或用作合成中间体,特别是在所谓的“绿色化学”领域或生物燃料诸如例如“生物柴油”或“绿色柴油”的生产中,其本身可直接使用,或与用于机动车的其它燃料混合使用。
对于这些类型的应用,脂质的微生物生产被建议为对可再生资源目前生产方法的有利替代。关于植物油的使用,微生物过程不受气候或地理因素的影响,也不与用于食物用途的土壤的农业开发竞争。另一个有利方面在于这些方法利用微生物通过使用廉价底物(诸如,例如木质纤维素材料的水解衍生物)快速繁殖的特性的事实。
在脂质的微生物生产领域,产油酵母是特别有希望的,即在特定培养条件下能够以等于或高于其干重的25%的量积累脂质的酵母。
产油酵母用于生产脂质的用途是已知技术的一部分。
例如,国际专利申请WO2012/052368描述了用于在稀释的含糖底物(从包含至少一种多糖的木质纤维素生物质的水解获得的)存在的情况下通过发酵过程从选自红酵母属(Rhodotorula)、油脂酵母属(Lypomyces)、三角酵母属(Trigonopsis)、假丝酵母属(Candida)、拟酵母属(Torulopsis)和毕赤酵母属(Pichia)的产油酵母生产脂质的方法。该方法包括:使包含至少一种多糖的所述生物质经历酸水解,获得包含第一固相和第一水相的第一混合物;在至少一种产油酵母存在的情况下将所述第一水相供给发酵装置,获得包含第一产油细胞生物质的第一发酵液;将所述第一固相经历酸水解或酶水解,获得包含第二固相和第二水相的第二混合物;在所述第一发酵液存在的情况下将所述第二水相供给所述发酵装置,获得包含含脂质的第二产油细胞生物质的第二发酵液;将至少一部分所述第二发酵液经历微过滤,从而获得渗余物和渗透物;将所述渗余物供给所述发酵装置。
由此获得的脂质可以有利地用于生产生物柴油或绿色柴油,所述生物柴油或绿色柴油可以本身直接使用,或与用于机动车辆的其它燃料混合使用。
然而,在制备生物燃料诸如生物柴油或绿色柴油以及作为合成中间体,特别是在所谓的“绿色化学”领域中,使用微生物来源的脂质与使用化石来源的燃料和化学中间体竞争,所述化石来源的燃料和化学中间体通过几乎总是在经济上更加便利的方法获得。因此,能够降低生物特别是微生物来源的脂质的生产成本并且还提高其产率的方法的研究仍然是非常有意义的。
与脂质的微生物生产相关的最重要方面之一在于容积生产率(即每体积单位的发酵培养基可获得的脂质量)是有限的,并且通常小于100g/L。因此这些生产过程的工业应用意味着所述产油微生物的相当大的发酵体积。自然必须对这些大量的细胞悬液进行处理以回收所产生的生物质,并在大型工厂中进行脂质的提取,并且设置和加工成本高。
从产油微生物提取脂质的方法也是已知技术的一部分。
例如,国际专利申请WO2012/078852描述了通过在酸性环境中和在极性溶剂存在的情况下热处理细胞生物质而从微藻中提取甘油三酯,以便“条件化”微藻的细胞壁并方便随后利用非极性溶剂提取的方法。
几乎所有用于从产油微生物的生物质中提取脂质内容物的方法都设想有在发酵过程结束时从培养基中回收所述生物质的初步步骤,这通过物理手段诸如过滤、絮凝或离心来完成。
当然有一些例外:例如,其中一种由专利申请WO2001/053512代表,其中描述了从微生物中提取脂质的方法,其中所述提取可在将生物质经历裂解后直接在发酵罐中的培养基中进行。
然而,如已提及的,通常从产油微生物中提取脂质的方法包括从培养基中回收细胞生物质的初步回收步骤。
例如,国际专利申请WO2012/052368设想在发酵后通过切向微滤来回收由产油酵母细胞组成的生物质。
类似地,意大利专利申请MI2014A000761描述了通过发酵从产油生物质生产脂质,然后通过离心从培养基中回收包含脂质的所述生物质的方法。
另一方面,在US2001/0046691中,将产油生物质完全脱水,将来自发酵罐的细胞悬液转移至加热的转鼓式干燥器中,从而导致所述悬浮液中所含的水分蒸发。
然而,应该指出的是,一些产油酵母,诸如例如红酵母属(Rhodotorula)、红冬孢酵母属(Rhodosporidium)、隐球菌属(Cryptococcus)、假丝酵母属(Candida)、丝孢酵母属(Trichosporon)等的酵母可以产生生物乳化剂和生物表面活性剂(例如由R.Shepherd,J.Rockey,I.W.Sutherland和S.Roller在“Novel bioemulsifier from microorganismsfor use in foods”(1995),J.Biotechnol.,第40卷,第207-217页中所描述的),它们为所述微生物的液体培养物提供了特征性的粘质性质。特别是,当在工业规模的发酵过程中达到高浓度的生物质时,会产生这些粘质物质。
已经常观察到这些物质的表面活性剂性质使得难以从培养基中回收产生它们的微生物。
一些研究(例如在K.Pavlova,L.Koleva,M.Kratchanova,I.Panchev“Productionand characterization of an exopolysaccharide by yeast”(2004),World J.ofMicrobiol.&Biotechnol.,第20卷,第435-439页中和I.N.A.Van Bogaert,J.Zhang,W.Soetaert“Microbial synthesis of sophorolipids”(2011)Process Biochemistry,第46卷,第821-833页中)已表明,在产油微生物的部分上生物合成这些粘质物质可通过用于促进脂质积累的相同培养条件来刺激。这意味着通常可能证明脂质积累与粘质物质产生之间存在相关性,从某种程度上来说,产生更多脂质的微生物也是由于形成这些物质而更难从培养基中回收的那些微生物。
在这些情况下,实际上,细胞团可获得与培养基表观上相同的密度,从而不能通过诸如例如沉降或离心的技术来分离液相和固相,所述技术利用的正是要分离的相之间的密度差异。
显然,在脂质的突变型微生物脂质生产者的粘质物质的产生导致稳定的乳液形成,这使得不可能使用本领域已知的技术从发酵液中回收微生物细胞。产生粘质物质的产油酵母的一个实例是专利申请MI2014A002292中描述的产油酵母突变株Rhodosporidiumazoricum DSM 29495。
在其它情况下,粘质性物质的产生可伴随着发酵罐中发酵液粘度的显著提高,如例如对于隐球菌属或丝孢酵母属的种的酵母的一些高生产率培养物(具有等于或高于每升培养物80g生物质的生物质浓度)可观察到的,所述高生产率培养物不仅在浓缩过程期间,而且甚至在发酵液从发酵罐的排放阶段以及转移至用于脂质提取的分离或处理系统中时可引起困难。
因此,当通常在工业实践中用于这一目的的方法和技术被证明是低效时,本申请人已考虑了通过将包含所述粘质生物质的细菌悬浮液以充分减小的体积浓缩来寻找从发酵液中回收产油酵母的粘质生物质的方法的问题。
如已经提到的,发酵液的高粘度和/或发酵液各相之间密度差的减小可使离心“本身”对于从培养基中回收产油生物质完全低效。
在用于浓缩细胞悬液的方法中,可提及的有在平面膜上或在旋转过滤器上过滤,但由产油微生物产生的粘质物质可快速阻塞所述过滤器的孔,从而防止水相的渗透;另一方面,借助特定的添加剂(所谓的预涂层或助滤剂)除了几乎没有益处外也是不适宜的,因为其不利地干扰随后的脂质提取处理。这些添加剂实际上是固体材料(例如基于纤维素或粘土的衍生物的固体材料),其保持包入生物质中,可在随后的脂质提取阶段产生问题(例如导致过滤器堵塞,形成固体存积物,通过泵传输的困难等)。
类似地,在这些情况下向发酵液中添加生物质的絮凝剂或沉降促进剂可证明是低效的,因为它们不能有利于将生物质从由发酵液组成的液相中分离。此外,由于与提取中使用的溶剂有高亲和力,一些絮凝剂的性质可能与脂质的后续提取过程不相容。实际上,这些产品可以与细胞内脂质一起提取,因此代表了在使用脂质本身之前要除去的杂质。
切向微滤,特别是如果配备有反脉冲背压系统,用于补偿由于膜结垢导致的流速降低,对于包含高度粘质的生物质的细胞悬液的浓缩可以是有效的;然而,即使是这种技术也没有真正的工业应用,因为甚至是在短时间使用后也会发生渗透流突然下降,从而导致处理时间不可持续地增加。
最后,尽管设想发酵液中所含水分蒸发的方法(诸如,例如生物质转鼓式干燥、冻干或喷雾干燥技术)对于浓缩高度粘质的细胞悬液是有效的,但它们需要高能量消耗,并且在任何情况下引起存在于发酵液中的组分的同时浓缩,这可能与随后的提取过程或提取的脂质的使用不相容。
本申请人现在已发现了一种用于浓缩包含产油酵母的粘质生物质的细胞悬液的方法,其不具有上述缺点。
所述方法包括在酸性pH环境中,在不引起细胞裂解的条件下热处理产油酵母的细胞悬液,以便利用本领域已知的方法,例如通过离心形成浓缩形式的所述细胞悬液。
在应用根据本发明的方法中获得许多有利方面。
所述方法例如允许回收含有完整产油酵母细胞的粘质生物质,即基本上不存在所述酵母的细胞膜的降解或细胞裂解现象,从而避免目标细胞内脂质的分散。
为了本发明的目的,细胞悬液的产油酵母细胞被认为是完整的,达到其中在根据本发明的方法(如下文中(实例5)更好地描述的)结束时从细胞悬液除去的发酵液的脂质含量证明基本为零的程度。
另一个重要的有利方面在于这样的事实,即根据本发明的方法实现的细胞悬液的浓缩允许将最初存在于发酵液中或因发酵而形成的化合物与水相一起从细胞生物质中除去,所述化合物可损害或降低随后的脂质提取处理的效力。
该方法的另一个明确的有利方面在于这样的事实,即细胞悬液的体积可以大大减小,从而允许随后的脂质提取处理以减小的规模进行,在设备和试剂(例如溶剂)以及加工成本方面明显节省。
为了本发明的目的,细胞悬液中生物质的浓度被定义为参照悬浮液体积单位的生物质干重。特别地,生物质的“干重”是指已知体积的细胞悬液中含有的细胞的重量,是通过在通风炉中在105℃下通过热处理直至恒定的重量(约24小时)而除去全部水分后对上述细胞称重测定的。然后可以使所述重量与1升细胞悬液相关联,因此将浓度以克/升(g/L)表示,或者可使其与100g细胞悬液相关联,在该情况下将生物质的浓度表示为相对于悬浮液总重量的百分比(“干重”%或dw%)。
根据以下详细描述和非限制性实例,本发明的其它特征和有利方面将显而易见。
出于本说明书和以下权利要求的目的,除非另有说明,否则数值范围的定义总是包含端值。
出于本说明书和以下权利要求的目的,除非另有说明,否则百分数是指重量百分比。
出于本说明书和以下权利要求的目的,术语“包含”还包括术语“基本上由...组成”或“由......组成”。
出于本发明的目的,术语“脂质”是指在分子中通常包含脂族烃链的一类物质,其溶于非极性有机溶剂并且难溶于水。脂质形成活细胞中的一组必需分子,包括例如脂肪、油、蜡、蜡的酯、甾醇、萜类、类异戊二烯、类胡萝卜素、多羟基链烷酸酯、脂肪酸、脂肪醇、脂肪酸酯、磷脂、糖脂、鞘脂和酰基甘油酯诸如甘油单酯、甘油二酯和甘油三酯。
出于本发明的目的并特别涉及微生物培养物,特别是酵母培养物,术语“粘液(mucilage)”是指类似于凝胶的能够截留液体的有机物质复合物,其特征在于粘稠的橡胶样稠度。粘液可由例如多糖、糖脂、脂肽、糖肽、多糖-脂质复合物、多糖-蛋白质复合物的混合物组成。在一些情况下,高度粘质酵母培养物的特征在于等于或高于15mPa·s的高粘度(K.Pavlova,L.Koleva,M.Kratchanova,I.Panchev“Production and characterizationof an exopolysaccharide by yeast”(2004),World Journal of Microbiol&Biotechnol.,第20卷,第435-439页)。
出于本发明的目的,术语“粘质微生物”是指在正常或生理条件下或在代谢应激条件下或在特定底物存在的情况下和/或在特定发酵条件下产生粘液的微生物。粘质微生物的培养导致“粘质生物质”的产生。
出于本发明的目的,术语“生物柴油”是指包含衍生自生物来源的长链脂肪酸的烷基酯(例如甲基、丙基或乙基酯)的柴油发动机用燃料。
出于本发明的目的,术语“绿色柴油”是指这样的柴油发动机用燃料,其包含在氢气和至少一种催化剂存在的情况下衍生自生物来源的脂质的氢化或脱氧产物。
出于本发明的目的,术语“生物塑料”是指衍生自生物来源的可再生原料的可回收塑料类型,或其是可生物降解的或具有这两种性质。
出于本发明的目的,术语“可再生原料”是指至少部分衍生自由于天然特征或由于人类活动的影响而被认为是非-“可耗尽的”的来源和/或过程的组合物,即其随时间而更新,从而几乎可以无限制地获得用于利用。
出于本发明的目的,表述“产油微生物”是指能够以等于或高于其细胞干重的25%的量积累脂质的微生物。产油微生物包括产油酵母。
产油酵母的一些变体能够以等于或高于其细胞干重40%的百分比积累脂质。在特定条件下,产油酵母可积累优选等于或高于其细胞干重60%的百分比的脂质。
出于本发明的目的,表述“培养(cultivation)”和“培养”表示微生物的细胞在由人控制的条件下生长和繁殖的过程。在本发明的一些实施方案中实现的产油酵母的“发酵”落入由上述表述限定的过程内。
出于本发明的目的,表述发酵(或培养)“培养基”或“培养液”表示为维持微生物例如产油酵母的细胞的生长而制备的液体或凝胶。
出于本发明的目的,术语“生物质”是指衍生自植物、动物或微生物的细胞和/或细胞材料的组合。在一个优选方面,生物质可衍生自细胞和/或源自真菌、细菌、酵母、霉菌和微藻类的细胞材料。所述生物质通常可以是天然来源的。在本发明的一些实施方案中,所述生物质可由天然突变体、诱导的突变体或遗传修饰的生物组成。所述生物质优选通过发酵或其它培养模式产生。
本发明的一个目的涉及用于浓缩含有产油酵母的粘质生物质的细胞悬液的方法,上述方法包括以下步骤:
a)在发酵液中培养所述产油酵母,由此获得包含所述粘质生物质的细胞悬液;
b)使获自步骤a)的细胞悬液在95℃至120℃范围内的温度下进行热处理并进行酸处理,由此获得包含含有完整产油酵母细胞的所述粘质生物质的经处理的细胞悬液;
c)浓缩步骤b)中获得的经处理的细胞悬液,其包括用于除去至少部分所述发酵液,从而获得浓缩的细胞悬液的步骤。
产油酵母优选选自耶氏酵母属(Yarrowia)、假丝酵母属(Candida)、隐球菌属(Cryptococcus)、毛孢子菌属(Trichosporon)、三角酵母属(Trigonopsis)、球拟酵母属(Torulopsis)、油脂酵母属(Lipomyces)、毕赤酵母属(Pichia)、红酵母属(Rhodotorula)、红冬孢酵母属(Rhodosporidium)及其聚生体(consortia),优选毛孢子菌属、隐球菌属、红冬孢酵母属或其聚生体。
上述酵母优选以等于或高于其干重的25%,优选等于或高于其干重的40%,更优选等于或高于其干重的60%,甚至更优选等于或高于其干重的70%的量积累脂质。
在一个优选方面,所述产油酵母可以由酵母Rhodosporidium azoricum DSM29495的细胞代表。
如在本申请人提交的意大利专利申请MI2014A002292中所述,产油酵母Rhodosporidium azoricum DSM 29495的突变菌株通过体外诱变方法获得,其特征在于相对于相同Rhodosporidium azoricum种的野生型菌株而言在富含氮源的发酵液中培养时脂质的细胞内积累产量显著更高。
发酵液可包含获自淀粉植物或含糖果实(第一代糖)的糖溶液。在其它实施方案中,可使用包含通过水解和糖化处理不可食用的木质纤维素生物质(第二代糖)获得的糖类的发酵液。
在本发明的一个优选方面,在其中实现产油酵母的发酵的发酵液可衍生自木质纤维素生物质的水解。
出于本发明的目的,术语“木质纤维素材料”和“木质纤维素生物质”是指包含纤维素、半纤维素和木质素的植物来源的复合结构。通过本领域已知的物理化学和酶促处理从该材料获得糖,其可在微生物发酵过程中用作碳源来生产醇和/或脂质。在本发明的一个优选方面,将从淀粉植物或含糖果实获得的糖(第一代糖)或通过非食用木质纤维素生物质的水解和糖化处理获得的糖(第二代糖)供给至其中接种了产油酵母的预培养物的发酵罐中。除糖以外,还可向发酵罐中加入其它营养物质诸如维生素、盐或含氮化合物。在根据本发明的方法的上述步骤a)中使用的发酵液优选衍生自木质纤维素生物质的水解。
在其中将细胞悬液经历热处理和酸化处理的上述步骤b)中,可以在不搅拌的情况下保持上述悬浮液,或者也可将其进行缓慢、间歇或连续搅拌。在一个优选方面,可在缓慢搅拌的条件下保持细胞悬液。
热处理优选进行3-12小时的时间,优选4-8小时的时间。
优选在100℃至110℃范围内的温度下进行热处理。等效处理可通过不同的时间和温度组合来获得。例如,进行所述热处理的温度越高,所需时间的量越少。特别地,在本发明的一个优选方面,热处理可在100℃下进行约8小时。在本发明另外一个优选方面,热处理可在110℃下进行约4小时。
应该注意的是,上述热处理不同于已知技术中描述的其它热处理和/或预处理,因为所述预处理(其目的是对产油微生物的生物质进行“巴氏消毒”并且允许在提取细胞内脂质之前长时间保存)在非常短的时间内进行,并且在标准方案中不包括酸处理。实际上,这些巴氏消毒处理已被证明对浓缩包含产油酵母的粘质生物质的细胞悬液是完全无效的。
相反,本发明的方法的特征在于与酸化处理结合热处理持续适当确定的时间相关联的协同作用出乎意料地使得所述细胞悬液毫无困难地被浓缩。
在根据本发明的酸化处理后,细胞悬液的pH可在1.5至6.0的范围内,优选在2.0至4.5的范围内。
酸化处理可在热处理过程中进行。在一个优选方面,在热处理之前进行上述酸化处理。
酸化处理优选通过加入有机或无机酸,优选无机酸来进行。
酸优选选自乙酸、盐酸、硝酸、磷酸、硫酸、硼酸、氢氟酸、氢溴酸、乳酸、甲酸、丙酸或其混合物,更优选硫酸。
应该注意的是,根据本发明的方法中使用的酸可具有任何浓度,因此其可以是稀释于水中的酸或浓酸,优选为浓酸。
优选地,所述酸的终浓度,即其在酸化处理结束时在细胞悬液的全部体积中的浓度可在0.05%至0.5%w/v的范围内,优选可在0.2%至0.3%w/v的范围内。
本领域技术人员可以确定哪个浓度是酸的最适合终浓度,同时记住在添加所述酸结束时细胞悬液的pH值必须在上述范围内。
优选地,用于浓缩细胞悬液的上述步骤c)可通过自发沉降或重力、虹吸作用、真空蒸发、冻干、絮凝、微滤或离心进行,并且所述步骤甚至更优选通过离心进行。在一个特别优选的方面,步骤c)可通过不连续离心或通过连续离心进行。在后一种情况下,可使用具有溢流分离的沉降式离心机或平板离心机。
当根据所述方法进行热处理和酸化处理后含有产油酵母的粘质生物质的细胞悬液的浓缩通过离心进行时,所述离心可以以1,000×g至6,000×g的范围内,优选2,000×g至5,000×g的范围内的加速度进行,甚至更优选以3,000至4,000×g的范围内的加速度进行。
离心后,由产油酵母组成的粘质生物质可在离心容器底部形成沉淀物,或者其可被浓缩在漂浮于培养基表面上的层中。在这种情况下,由发酵液组成的清澈的下层漂浮物(infranatant)可通过抽吸虹吸管,或者通过将所述清澈的下层漂浮物通过对应于容器底部适当地安置的阀门排出来从漂浮的生物质中去除。
应该指出的是,本发明的方法允许获得浓缩的细胞悬液,其中产油酵母细胞保持完整,即不存在酵母细胞的任何破坏。实际上已经表明(下文中提供的实施例5)在根据所述方法的过程结束时从生物质移除的发酵液中未发现脂质的存在。
不希望受任何特定理论的束缚,推测本发明的方法有利于酵母细胞表面上存在的粘质物质的降解,以促进相同细胞的聚集并有利于从发酵液中分离。通过避免细胞壁的破坏,获得了阻止细胞内脂质通过渗漏分散到培养基中以及限制水相中生物和有机物质的含量的双重有利方面,所述含量可增加COD(化学需氧量)指数,并且可能需要在去除耗尽的培养基之前对其进行特定处理。
归功于根据本发明的方法,在所述方法的步骤c)中除去至少部分发酵液后,获得的细胞悬液中的生物质浓度可在19.0%dw至35.0%dw的范围内,浓度优选在21.0%dw至30.0%dw的范围内。
利用根据本发明方法的工艺浓缩包含产油酵母的生物质的细胞悬液后,可将上述生物质经历裂解过程并随后用任何已知技术的方法提取脂质。
根据专利申请WO2012/052368中描述的方法,例如,可将生物质转移至高压灭菌器中,其中可将其在140℃下经历进一步热处理4小时,以引起其裂解。然后可将获得的悬浮液转移至反应器中并用纯的或与水溶性极性溶剂(例如,乙醇、丙醇、异丙醇)混合的至少一种不与水混溶的极性有机溶剂(例如乙基-叔丁基醚、甲基-异丁基-酮、乙酸乙酯)或至少一种非极性有机溶剂(例如,异辛烷、己烷或具有5至10个碳原子的直链或支链石蜡的混合物、苯、甲苯或二甲苯)进行提取。
在于有机溶剂中提取后,可通过蒸发有机溶剂本身来分离细胞中含有的甘油三酯的混合物。
脂质级分可根据现有技术的方法通过色谱技术,例如通过气相色谱或通过高效液相色谱(HPLC)来进行分析。
通过这些分析方法,已发现积累在产油酵母细胞中的脂质中甘油三酯占至少90%,所述甘油三酯优选为具有8-24个碳原子的脂肪酸(诸如,例如棕榈酸、硬脂酸、油酸、α-亚油酸)的甘油酯。
可存在的其它脂质为:磷脂、甘油单酯、甘油二酯、游离脂肪酸或其混合物。
根据本发明的方法目标获得的脂质可有利地用作合成中间体,特别是在所谓的“绿色化学”领域中。还可将它们在至少一种具有1至4个碳原子的醇,优选甲醇或乙醇和至少一种酸性或碱性催化剂存在的情况下进行酯交换反应,以产生甘油和烷基酯,特别是甲酯或乙酯(生物柴油)。
或者,可将所述脂质在氢和至少一种催化剂存在的情况下进行氢化/脱氧以产生“绿色柴油”。氢化/脱氧方法在本领域中是已知的,并且描述于例如欧洲专利申请EP1728844中。
提供了一些非限制性实施例以更好地说明本发明及其实际实施方案。
实施例1(产油酵母Rhodosporidium azoricum DSM 29495的发酵)
下文中提供了制备产油酵母Rhodosporidium azoricum DSM 29495的细胞悬液的实例。
将预先在高压灭菌器中在80℃下灭菌45分钟的200mL YEPD培养基(酵母提取物10g/L,蛋白胨10g/L,葡萄糖20g/L)导入1L烧瓶中。
用产油酵母菌株Rhodosporidium azoricum DSM 29495的样品接种所获得的初始发酵液。
将该预培养物在30℃下以200rpm搅拌24小时,然后转移至20L发酵罐中,该发酵罐含有8L含葡萄糖50g/L、玉米浆固体5g/L、酵母提取物2g/L、KH2PO4 6g/L、MgSO4·7H2O0.3g/L、NaCl 0.06g/L、CaCl2·2H2O 0.06g/L的培养基,其预先在80℃下灭菌45分钟。
在通过吹入1L/L·min的无菌空气并以600-900rpm搅拌产生的好氧条件(通过空气流调节以维持溶解氧(DO2)浓度等于饱和值的30%)下,将发酵罐中的该第一培养物在30℃下保持24小时。
在24小时结束时,通过蠕动泵将获得的细胞悬液转移至200L发酵罐中,该发酵罐含有80L预先在121℃下灭菌20分钟的培养基,所述培养基含有葡萄糖80g/L、玉米浆固体8g/L、酵母提取物3.2g/L、KH2PO4 6g/L、MgSO4·7H2O 0.3g/L、NaCl 0.06g/L、CaCl2·2H2O0.06g/L、(NH4)2SO4 8g/L。
在通过吹入无菌空气并以600-900rpm搅拌产生的好氧条件(通过空气流调节以维持溶解氧(DO2)浓度等于饱和值的30%)下,在等于约5.0的pH(通过在需要时添加数滴KOH5M或H2SO4 10%(体积/体积)的溶液来维持)下将发酵罐中的该第二培养物在30℃下保持24小时。
在24小时结束时,根据本领域已知的方法,例如使用酶促膜分析仪诸如生化分析仪YSI 2900,或通过离子交换色谱(HPAE-PAD),使用配备有Carbopac PA100柱的Dionex色谱仪,利用氢氧化钠和乙酸钠(作为抗衡离子)的梯度来测定残留葡萄糖的含量。
然后将两个罐连接至发酵罐:将614g/L的葡萄糖无菌溶液引入这些罐中的一个中,根据微生物在培养中的消耗动力学以1L/h的平均流速连续供给至发酵罐中,以使培养物中的葡萄糖的浓度保持恒定,等于30g/L。将80g/L的酵母提取物和200g/L的(NH4)2SO4的无菌溶液引入至第二罐中,以400ml/h的平均流速连续供给至发酵罐中。
然后在上述条件下继续发酵,进行总共117小时。
最后,从发酵罐中排出细胞悬液(共187kg),随后进行浓度测试。由此获得的细胞悬液的特征在于生物质浓度为112.3g/L的细胞干重(dw)或11.23%dw,以及总脂质含量为相对于细胞干重的51重量%。此外,所述悬浮液的特征在于在30℃下用Stabinger SVR3000Anton Paar微粘度计(“剪切速率”1/1000)测量的粘度为4.1mPa·s、30℃下的密度为1.023g/cm3和粘液外观。
根据本发明的实施例2(通过在100℃热处理和酸化处理,包含产油酵母菌 Rhodosporidium azoricum DSM 29495的粘质生物质的细胞悬液的浓缩测试)
本实施例显示包含产油酵母的粘质生物质的细胞悬液的100℃热处理连同酸化处理对于充分浓缩相同的细胞悬液是有效的。
将根据前述实施例1的方法获得的200mL细胞悬液引入500mL高压灭菌器中,并加入0.4g H2SO4 96%(相当于酸浓度为相对于相同悬浮液的体积的0.2重量%)。获得的pH值等于3.2。然后将细胞悬液达到100℃并在缓慢搅拌下于该温度下保持8小时。最后,在冷却后,观察到清澈的下层漂浮物(infranatant)与由分离的细胞生物质组成的上层相的分离。
冷却后,然后将细胞悬液从高压灭菌器中排出并引入离心容器中,并用Thermo-Scientific IEC-CL31R Multispeed离心机在20℃下以3,000×g离心10分钟。
在离心结束时,含有富含脂质的细胞的细胞悬液浓缩在由发酵液组成的清澈下层漂浮物上方的上部“漂浮”相中。除去澄清的下层漂浮物后,获得85.73mL浓缩细胞悬液,其特征在于生物质浓度为26.2%dw,足以用于随后的脂质提取过程的目的。
根据本发明的实施例3(通过在110℃下的热处理和酸化处理,包含产油酵母 Rhodosporidium azoricum DSM 29495的粘质生物质的细胞悬液的浓缩测试)
本实施例显示包含产油酵母的粘质生物质的细胞悬液在110℃下的热处理连同酸化处理对于充分浓缩相同细胞悬液也是有效的。
将根据前述实施例1的方法获得的200mL细胞悬液引入500mL高压灭菌器中,并加入0.4g H2SO4 96%(相当于酸浓度为相对于所述悬浮液的体积的0.2重量%)。获到的pH值等于3.2。然后使细胞悬液达到110℃并在缓慢搅拌下在该温度下保持4小时。冷却后,然后将细胞悬液从高压灭菌器中排出并引入离心容器中,并用Thermo-Scientific IEC-CL31RMultispeed离心机在20℃下以3,000×g离心10分钟。
在离心结束时,含有富含脂质的细胞的细胞悬液浓缩在由发酵液组成的清澈下层漂浮物上方的上部“漂浮”相中。除去澄清的下层漂浮物后,获得80mL浓缩细胞悬液,其特征在于生物质浓度为28.1%dw,足以用于随后的脂质提取过程的目的。
根据本发明的实施例4(通过在110℃下的热处理和酸化处理,包含产油酵母 Rhodosporidium azoricum DSM 29495的粘质生物质的细胞悬液的浓缩)
本实施例显示,根据前述实施例3进行的包含产油酵母的粘质生物质的细胞悬液在110℃下的热处理连同酸化处理对于充分浓缩所述细胞悬液是有效的,即使大规模应用时亦如此。
将14.4kg根据前述实施例1的方法获得的细胞悬液引入20L高压灭菌器中,并加入28.8g H2SO4 96%(相当于酸浓度为相对于相同细胞悬液的体积的0.2重量%)。获到的pH值等于3.2。然后使细胞悬液达到110℃并在缓慢搅拌下在该温度下保持4小时。最后,在冷却后,然后将整个细胞悬液从高压灭菌器中排出并引入离心容器中,并用具有固定角度转头JLA-8.1000的Beckman CoulterAvanti J-26XP离心机在20℃下以3,000×g离心10分钟。
离心后,含有富含脂质的细胞的细胞悬液浓缩在由发酵液组成的清澈下层漂浮物上方的上部“漂浮”相中。除去澄清的下层漂浮物后,获得7.7kg浓缩细胞悬液,其特征在于生物质浓度为21.2%dw,足以用于随后的脂质提取过程的目的。
实施例5(在于110℃下的热处理和酸化处理后获得的下层漂浮物的脂质含量的测 定)
本实施例显示热处理与酸化处理一起允许获得细胞悬液,其中产油酵母细胞是完整的,或者换句话说,其不引起产油细胞的裂解。
将根据前述实施例4的方法获得的500mL清澈的离心下层漂浮物引入配备有搅拌器和冷凝器的夹套玻璃反应器中。将1L纯异辛烷(99.8%)加入至所述下层漂浮物中,在搅拌下将温度升至80℃,以使两种不混溶的液相完全混合。将悬浮液在这些温度和搅拌条件下保持2小时,然后在不搅拌的情况下冷却至室温,以有利于下层水相与上层有机相的分离,将所述水相取出并收集在蒸馏烧瓶中,然后在真空下蒸发溶剂。溶剂蒸发后残留物的分析证实其中不含有脂质。
实施例6(比较)(通过离心对包含产油酵母Rhodosporidium azoricum DSM 29495 的粘质生物质的细胞悬液进行浓缩测试)
通过对用实施例1的方法获得的细胞悬液样品的一些测试,将根据本发明的细胞悬液的浓缩方法与在发酵后回收生物质的常用实践中所用的技术进行比较。
本实施例显示,除非在根据本发明方法的处理之后进行,否则离心对于充分浓缩包含产油酵母的粘质生物质的细胞悬液不太有效。
将如实施例1中所述获得的14mL细胞悬液引入分级离心试管中,并在Thermo-Scientific IEC-CL31R Multispeed离心机中以3000×g在20℃下离心5分钟。在离心结束时,观察到2ml澄清的下层漂浮物的分离,而剩余体积(12mL,等于85.7%体积/体积)保持混浊。其中细胞悬液浓缩1.16倍,生物质浓度等于13.1%dw。该值不足以用于后续的脂质提取过程的目的。
实施例7(比较)(通过热处理和离心对包含产油酵母Rhodosporidium azoricum DSM 29495的粘质生物质的细胞悬液进行浓缩测试)
本实施例显示在离心之前仅对发酵液的简单热处理对于充分浓缩包含产油酵母的粘质生物质的悬浮液不太有效。
将如实施例1中所述获得的200mL细胞悬液引入500mL高压灭菌器中并在缓慢搅拌下使其达到110℃,持续4小时。
最后,将14mL经受热处理的细胞悬液引入梯度离心试管中,并在Thermo-Scientific IEC-CL31R Multispeed离心机中以3000×g在20℃下离心5分钟。在离心结束时,观察到0.5ml澄清的下层漂浮物的分离,而剩余的体积(13.5mL,等于96.4%体积/体积)保持混浊。其中细胞悬液仅浓缩1.04倍,生物质浓度等于11.6%dw。该值不足以用于后续的脂质提取过程的目的。
实施例8(比较)(通过添加酸和离心对包含产油酵母Rhodosporidium azoricum DSM 29495的粘质生物质的细胞悬液进行浓缩测试)
本实施例显示,在离心之前不对细胞悬液进行热处理的简单酸处理本身对于充分浓缩细胞悬液是无效的。
将如实施例1中所述获得的200mL细胞悬液引入500mL烧瓶中,并使用0.4g H2SO496%(相当于酸浓度为相对于细胞悬液体积的0.2重量%)。获到的pH值等于3.2。然后将烧瓶置于定轨摇床(MPM Instruments)中,温度设定在30℃,并保持缓慢搅拌8小时。
最后,将14mL经历处理的细胞悬液引入分级离心试管中,并在Thermo-ScientificIEC-CL31R Multispeed离心机中以3000×g在20℃下离心5分钟。在离心结束时,未观察到相分离,表明所进行的处理不足以获得所需水平的细胞悬液浓缩。
实施例9(比较)(通过切向微滤对包含产油酵母Rhodosporidium azoricum DSM29495的粘质生物质的细胞悬液进行的浓缩测试)
本实施例显示,除非在根据本发明方法的处理之后进行,否则切向微滤如离心,对于充分浓缩包含产油酵母的粘质生物质的细胞悬液是无效的。
使用“反向脉冲”模式的plant Hydro Air HAR P19和0.2μm陶瓷膜将如实施例1所述获得的93.6kg细胞悬液经历切向微滤。
在室温下以等于8,000L/h的流速值进行微滤6小时,产生40.5kg渗余物(浓缩的细胞悬液)和53.1kg渗透物(无细胞的发酵液)。浓缩的细胞悬液的特征在于生物质浓度等于195g/L(即19.5%dw)。该值经证明对于随后的脂质提取过程的目的几乎是不足够的。
然而,在微滤过程中,渗透流从最初的60kg·h-1·m-2降至约10kg·h-1·m-2。所述终渗透流太低而无法方便地应用于工业过程。
所使用的包含Rhodosporidium azoricum DSM 29495的粘质生物质的细胞悬液似乎导致了微滤过程中使用的滤膜的性能劣化。即使实际上在微滤过程结束时根据生产商的说明通过用150L蒸馏水洗涤其约5小时、然后用60L的NaOH溶液0.5重量%再洗涤5小时、最后用另外的150L蒸馏水再洗涤5小时来再生膜,渗透流也不能恢复到膜的特征值。
总之,即使切向微滤对于浓缩包含产油酵母的粘质生物质的细胞悬液是有效的,但由于单次处理后装置的性能降低,该技术实际上不能应用于工业过程。
实施例10(比较)(通过絮凝法对包含产油酵母Rhodosporidium azoricum DSM29495的粘质生物质的细胞悬液进行浓缩测试)
本实施例显示,除非在根据本发明方法的处理之后进行,否则如同离心和切向微滤一样,絮凝对于充分浓缩包含产油酵母的粘质生物质的细胞悬液是无效的。
将如实施例1中所述获得的200mL细胞悬液引入500mL分级滚筒中,并且在室温(20℃)下非常缓慢地且在温和搅拌下向所述悬浮液中添加基于聚丙烯酰胺(Basf9068FS)的阳离子絮凝悬浮液;在加入0.5g絮凝剂(这对应于等于约2.5kg/m3悬浮液的剂量)后观察到絮凝的开始。该量被认为对于在工业过程的应用是过量的,这首先归咎于在任何情况下处理的有效性都不令人满意的事实。事实上,在絮凝剂添加结束时,仅分离出50ml清澈的发酵液,将细胞悬液中的生物质浓度从最初的11.3%dw浓缩至15.0%dw。该值不适合于后续的脂质提取过程的目的。
实施例11(从包含产油酵母的粘质生物质的浓缩细胞悬液中提取脂质)
本实施例显示用本发明的方法获得的浓缩细胞悬液可以有利地经历细胞内脂质的提取过程。
将根据前述实施例4获得的、相当于1.25kg细胞干重的5.9kg浓缩细胞悬液引入至20L高压灭菌器中,使其达到140℃,并在该温度下保持4小时。
在处理结束时,将获得的悬浮液转移到配备有搅拌器和冷凝器的30L夹套玻璃反应器中。向悬浮液中加入3L(等于2,073g)纯异辛烷(99.8%),在搅拌下使温度达到80℃,以保证两个不混溶相的完全混合。将混合物在这些温度和搅拌条件下保持2小时,然后在不搅拌的情况下冷却至室温(20℃),以有利于下层水相与上层有机相的分离,将所述下层水相取出并收集在适当的容器中。
将在搅拌下用异辛烷在80℃下进行2小时的提取过程再重复两次,每个循环使用相同量的新鲜异辛烷。将三个提取过程的有机相汇集在相同的容器中,随后使溶剂蒸发。将除去溶剂后获得的残余物称重并进行分析,提供总计为620.3g的脂质含量,相当于提取产率等于相对于理论总量的98重量%。
实施例12(产油酵母弯曲隐球酵母ATCC 20509的发酵)
下文提供了用于制备包含产油酵母弯曲隐球酵母ATCC 20509的粘质生物质的细胞悬液的实例。
将预先在80℃下于高压灭菌器中灭菌45分钟的200mL YEPD培养基(酵母提取物10g/L,蛋白胨10g/L,葡萄糖20g/L)引入1L烧瓶中。
用产油酵母菌株弯曲隐球酵母ATCC 20509的样品接种如此获得的初始发酵液。
将培养物在200rpm搅拌的条件下于30℃下保持24小时,然后转移至20L发酵罐中,该发酵罐含有预先在80℃下灭菌45分钟的6L培养基,其中包含葡萄糖100g/L、玉米浆固体5g/L、酵母提取物2g/L、(NH4)2SO4 5g/L、KH2PO4 6g/L、MgSO4·7H2O 0.3g/L、NaCl 0.06g/L、CaCl2·2H2O 0.06g/L。
在通过吹入1L/L·min无菌空气并以600-900rpm搅拌产生的好氧条件(通过空气流调节以维持溶解氧(DO2)浓度高于饱和值的30%)下,在等于约5.0的pH(通过在需要时添加数滴KOH 5M或H2SO4 10%(体积/体积)的溶液来维持)下将发酵罐中的培养物在30℃下保持24小时。
在24小时结束时,将32.5g(NH4)2SO4和200mL玉米浆液添加至发酵罐中的肉汤中,然后将罐连接至发酵罐,所述发酵罐含有600g/L葡萄糖的无菌溶液,根据培养物中微生物的消耗动力学将该葡萄糖溶液以在50-100mL/h的范围内变化的可变流速连续供给至发酵罐中,以在培养物中维持等于30g/L的恒定葡萄糖浓度。
然后在上述条件下继续发酵总共140小时。
最后,从发酵罐中排出总共8.6L细胞悬液,其特征在于生物质浓度等于118g/L干重或11.8%dw,总脂质含量为相对于细胞干重的66重量%。此外,所述细胞悬液的特征在于在30℃下用Stabinger SVR 3000Anton Paar微粘度计(“剪切速率”1/1000)测量的粘度为160mPa·s。
根据本发明的实施例13(通过在110℃下的热处理和酸化处理浓缩包含产油酵母 弯曲隐球酵母ATCC 20509的粘质生物质的细胞悬液)
本实施例显示,在110℃下的热处理连同根据本发明的酸化处理对于充分浓缩包含产油酵母弯曲隐球酵母ATCC 20509的粘质生物质的细胞悬液也是有效的。
将根据前述实施例12的方法获得的200mL细胞悬液引入500mL高压灭菌器中,并加入0.4g H2SO4 96%(相当于酸浓度为相对于细胞悬液的体积的0.2重量%)。获得的pH值等于3。然后使细胞悬液达到110℃并在该温度下保持4小时。最后,在冷却后,用StabingerSVR 3000Anton Paar微粘度计(“剪切速率”1/1000)在30℃下测量所处理的悬浮液的粘度,得到粘度值为18mPa·s。
然后将细胞悬液从高压灭菌器中排出并引入离心容器中,并在具有固定角转子JLA-8.1000的Beckman CoulterAvanti J-26XP离心机中于20℃以3,000×g离心10分钟。
在离心并移出清澈的下层漂浮物结束时,获得80mL浓缩的细胞悬液,其特征在于生物质浓度等于29.5%dw,足以用于随后的脂质提取过程的目的。
如先前实施例5中所述对清澈的下层漂浮物进行脂质含量的测定。同样在该情况下,所获得的残余物的分析显示所述下层漂浮物没有包含脂质,证实了根据本发明的浓缩方法允许获得这样的细胞悬液,其中产油酵母细胞是完整的,即换句话说,所述方法不导致细胞的裂解。

Claims (12)

1.一种用于浓缩包含产油酵母的粘质生物质的细胞悬液的方法,所述方法包括以下步骤:
a)在发酵液中培养所述产油酵母,由此获得包含所述粘质生物质的细胞悬液;
b)将获自步骤a)的细胞悬液在95℃与120℃之间的温度下经历热处理并经历酸处理,由此获得包含含有完整产油酵母细胞的所述粘质生物质的经处理的细胞悬液;
c)浓缩步骤b)中获得的经处理的细胞悬液,其包括用于除去至少部分所述发酵液、由此获得浓缩的细胞悬液的步骤。
2.根据权利要求1所述的方法,其中在所述步骤b)中,在所述热处理之前进行所述酸处理。
3.根据权利要求1或2所述的方法,其中所述产油酵母选自耶氏酵母属(Yarrowia)、假丝酵母属(Candida)、隐球菌属(Cryptococcus)、毛孢子菌属(Trichosporon)、三角酵母属(Trigonopsis)、球拟酵母属(Torulopsis)、油脂酵母属(Lipomyces)、毕赤酵母属(Pichia)、红酵母属(Rhodotorula)、红冬孢酵母属(Rhodosporidium)及其聚生体,优选毛孢子菌属(Trichosporon)、隐球菌属(Cryptococcus)、红冬孢酵母属(Rhodosporidium)或其聚生体。
4.根据权利要求1至3中任一项所述的方法,其中所述酵母以其干重的25%或更高,优选40%或更高,更优选60%或更高,甚至更优选70%或更高的量积累脂质。
5.根据权利要求1至4中任一项所述的方法,其中所述发酵液衍生自木质纤维素生物质的水解。
6.根据权利要求1至5中任一项所述的方法,其中所述热处理在100℃至110℃的范围内的温度下进行。
7.根据权利要求1至6中任一项所述的方法,其中将所述热处理进行3与12小时之间的时间,优选进行4与8小时之间的时间。
8.根据权利要求1至7中任一项所述的方法,其中在所述酸处理之后,所述细胞悬液的pH在1.5至6.0的范围内,优选在2.0至4.5的范围内。
9.根据权利要求1至8中任一项所述的方法,其中所述酸处理通过添加有机或无机酸,优选无机酸来进行。
10.根据权利要求9所述的方法,其中所述酸选自乙酸、盐酸、硝酸、磷酸、硫酸、硼酸、氢氟酸、氢溴酸、乳酸、甲酸、丙酸或其混合物,优选硫酸。
11.根据权利要求1至10中任一项所述的方法,其中所述浓缩所述细胞悬液的步骤c)通过自发沉降或重力、虹吸作用、真空蒸发、冻干、絮凝、微滤或离心,优选通过离心来进行。
12.根据权利要求1至11中任一项所述的方法,其中在步骤c)中,在去除至少部分发酵液的步骤之后,所述获得的细胞悬液中的生物质浓度为19.0%dw至35.0%dw,优选21.0%dw至30.0%dw。
CN201680054505.3A 2015-08-06 2016-08-05 用于浓缩包含产油酵母的粘质生物质的细胞悬液的方法 Active CN108026502B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
IT102015000042925 2015-08-06
ITUB2015A002958A ITUB20152958A1 (it) 2015-08-06 2015-08-06 Metodo per concentrare una sospensione cellulare comprendente una biomassa mucillaginosa di lieviti oleaginosi.
PCT/IB2016/054734 WO2017021931A1 (en) 2015-08-06 2016-08-05 Method for concentrating a cell suspension comprising a mucilaginous biomass of oleaginous yeasts

Publications (2)

Publication Number Publication Date
CN108026502A true CN108026502A (zh) 2018-05-11
CN108026502B CN108026502B (zh) 2021-10-01

Family

ID=54843898

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201680054505.3A Active CN108026502B (zh) 2015-08-06 2016-08-05 用于浓缩包含产油酵母的粘质生物质的细胞悬液的方法

Country Status (9)

Country Link
US (1) US10961497B2 (zh)
EP (1) EP3331985B1 (zh)
CN (1) CN108026502B (zh)
BR (1) BR112018002385A2 (zh)
ES (1) ES2879988T3 (zh)
IT (1) ITUB20152958A1 (zh)
PL (1) PL3331985T3 (zh)
UA (1) UA123436C2 (zh)
WO (1) WO2017021931A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113271789A (zh) * 2019-01-03 2021-08-17 柯碧恩生物技术公司 制造裂解细胞悬浮液的方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT201700071514A1 (it) 2017-06-27 2018-12-27 Versalis Spa Procedimento per la produzione di lipidi da biomassa derivante da piante di guayule
IT201700081383A1 (it) * 2017-07-18 2019-01-18 Versalis Spa Variante di lievito oleaginoso e suo utilizzo per la produzione di lipidi.
CN111690587B (zh) * 2019-03-13 2022-10-25 上海凯赛生物技术股份有限公司 一种离心筛选具有高含油率油脂酵母菌株的方法及其应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010069516A2 (en) * 2008-12-18 2010-06-24 Eni S.P.A. Process for the production of bio-oil from biomass
CN103314112A (zh) * 2010-10-22 2013-09-18 艾尼股份公司 从生物质制备脂类的方法
US20140004579A1 (en) * 2012-06-29 2014-01-02 BP Biofuels UK Limited Process for separation of renewable materials from m icroorganisms

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2295594B1 (en) 2000-01-19 2018-04-04 DSM IP Assets B.V. Solventless extraction process
ATE374531T1 (de) 2000-01-28 2007-10-15 Martek Biosciences Corp Verstaerkte produktion von lipiden enthaltend mehrfachungesaettigte fettsaeuren durch hochdichte kulturen von eukariotischen mikroben in gaervorrichtungen
US20060264684A1 (en) 2005-05-19 2006-11-23 Petri John A Production of diesel fuel from biorenewable feedstocks
US9296985B2 (en) 2009-03-10 2016-03-29 Valicor, Inc. Algae biomass fractionation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010069516A2 (en) * 2008-12-18 2010-06-24 Eni S.P.A. Process for the production of bio-oil from biomass
CN103314112A (zh) * 2010-10-22 2013-09-18 艾尼股份公司 从生物质制备脂类的方法
US20140004579A1 (en) * 2012-06-29 2014-01-02 BP Biofuels UK Limited Process for separation of renewable materials from m icroorganisms
CN104508113A (zh) * 2012-06-29 2015-04-08 Bp生物燃料英国有限公司 从微生物中分离可再生物质的方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CHAO HUANG: "Microbial oil production from rice straw hydrolysate by Trichosporon fermentans", 《BIORESOUR TECHNOL》 *
ESPINOSA-GONZALEZ ISABEL等: "Hydrothermal treatment of oleaginous yeast for the recovery of free fatty acids for use in advaned biofuel production.", 《JOURNAL OF BIOTECHNOLOGY》 *
G CHRISTOPHE等: "Production of oils from acetic acid by the oleaginous yeast Cryptococcus curvatus", 《APPL BIOCHEM BIOTECHNOL》 *
IRNAYULI R.SITEPU等: "Oleaginous yeasts for biodiesel:Current and future trends in biology and production.", 《BIOTECHNOLOGY ADVANCES》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113271789A (zh) * 2019-01-03 2021-08-17 柯碧恩生物技术公司 制造裂解细胞悬浮液的方法

Also Published As

Publication number Publication date
ES2879988T3 (es) 2021-11-23
UA123436C2 (uk) 2021-04-07
BR112018002385A2 (pt) 2018-09-11
CN108026502B (zh) 2021-10-01
EP3331985B1 (en) 2021-04-28
ITUB20152958A1 (it) 2017-02-06
PL3331985T3 (pl) 2021-10-25
EP3331985A1 (en) 2018-06-13
WO2017021931A1 (en) 2017-02-09
US10961497B2 (en) 2021-03-30
US20180223248A1 (en) 2018-08-09

Similar Documents

Publication Publication Date Title
US8722911B2 (en) Process and method for improving the water reuse, energy efficiency, fermentation, and products of an ethanol fermentation plant
CN101918535B (zh) 由粗甘油制备营养性、治疗性或感官性产品的方法
KR102148333B1 (ko) Dha의 에틸 에스테르로 미세 조류에 의해 생산되는 오일을 연속적으로 강화시키는 방법
CN1986822A (zh) 用寇氏隐甲藻发酵生产二十二碳六烯酸油脂的方法
Colak et al. The use of raw cheese whey and olive oil mill wastewater for rhamnolipid production by recombinant Pseudomonas aeruginosa
JP6265407B2 (ja) 焼酎廃水を培地として使用するスクワレン産生藻類の培養方法
AU2016399463A1 (en) Omega-7 fatty acid composition, methods of cultivation of Tribonema for production of composition and application of composition
CN108026502A (zh) 用于浓缩包含产油酵母的粘质生物质的细胞悬液的方法
CN106459825A (zh) 用于从微生物生物质中回收脂质的方法
O'Brien et al. Production of eicosapentaenoic acid by the filamentous fungus Pythium irregulare
CN107523417A (zh) 提取微生物油脂的方法
US20120329138A1 (en) Process for separation of a mixture containing a microbial substance and a liquid
CN107557309A (zh) 微生物发酵生产单细胞蛋白和单细胞油脂的方法
Curto et al. Yeast production from virgin grape marc
Ardestani et al. Optimization of single cell protein production by Aspergillus niger using Taguchi approach
EP3134535B1 (en) Process for the production of lipids from biomass employing oleaginous microorganisms
Begea et al. Single-cell protein production of Candida strains in culture media based on vegetal oils
CA3116801A1 (fr) Procede de preparation de molecules organiques par fermentation anaerobie
CN114032259B (zh) 一种酵母菌的高密度发酵及十六碳烯酸提取方法
JPH0449396B2 (zh)
JP5017432B2 (ja) アルコール発酵性酵母及びこれを用いたエタノール製造方法
RU2536973C1 (ru) Способ получения бактериальной целлюлозы
KR101251191B1 (ko) 세포배양을 통한 세포 및 지용성물질의 생산 방법 및 장치
Sushma et al. Isolation, production and purification of lipase from Aspergillus niger using gingerly oil cake as substrate
JP5366114B2 (ja) トリグリセリド生産性酵母

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant