Nothing Special   »   [go: up one dir, main page]

CN107681020A - 一种提高平面硅异质结太阳电池长波长光响应的方法 - Google Patents

一种提高平面硅异质结太阳电池长波长光响应的方法 Download PDF

Info

Publication number
CN107681020A
CN107681020A CN201710878335.7A CN201710878335A CN107681020A CN 107681020 A CN107681020 A CN 107681020A CN 201710878335 A CN201710878335 A CN 201710878335A CN 107681020 A CN107681020 A CN 107681020A
Authority
CN
China
Prior art keywords
silicon
solar battery
heterojunction solar
long wavelength
wavelength light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710878335.7A
Other languages
English (en)
Inventor
张晓丹
任千尚
李盛喆
任慧志
魏长春
侯国付
许盛之
赵颖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nankai University
Original Assignee
Nankai University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nankai University filed Critical Nankai University
Priority to CN201710878335.7A priority Critical patent/CN107681020A/zh
Publication of CN107681020A publication Critical patent/CN107681020A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • H01L31/1868Passivation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/0547Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the reflecting type, e.g. parabolic mirrors, concentrators using total internal reflection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/20Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials
    • H01L31/202Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials including only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/20Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials
    • H01L31/208Particular post-treatment of the devices, e.g. annealing, short-circuit elimination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明提供一种提高平面硅异质结太阳电池长波长光响应的方法,该方法选取衬底S,两侧分别生长钝化层I,在衬底一侧沉积发射极P,另一侧沉积N作为平面硅异质结太阳电池的背场,P层上沉积透明电极ITO,最后电池两侧分别制作金属电极M1和M2。该方法采用的n型背场N因为具有低折射率和宽带隙的特性,不需引入复杂的绒面陷光结构即提高了平面硅异质结太阳电池的长波长光响应。

Description

一种提高平面硅异质结太阳电池长波长光响应的方法
技术领域
本发明涉及太阳电池的技术领域,特别涉及一种用于钙钛矿/硅叠层太阳电池中平面硅异质结底电池的制备。
背景技术
太阳能光伏发电由于具有安全可靠、受地域限制因素较少、可方便与建筑物相结合等优势而得到快速发展。为使其能够大规模应用,降低生产成本和提高太阳电池的光电转换效率是两大关键。在众多光伏产品中,硅太阳电池因其转换效率高,制备过程低耗能,生产成本较为廉价等优点受到广泛关注。而钙钛矿太阳电池是目前研究最广,最受欢迎的太阳电池之一,它的效率在过去短短六年之间就从3.8%提升到了22.1%。钙钛矿电池的一大特点就是通过改变其中的卤素成份,我们可以获得一个从1.17到3.1eV可调的带隙。硅太阳电池具有较宽的吸收光谱,但是对短波段高能量的光谱吸收较少,而钙钛矿太阳电池具有较窄的光谱范围,通过控制钙钛矿材料中卤族元素的比例,其光吸收范围可进一步向短波方向移动。制备钙钛矿/硅叠层太阳电池可以更好的实现对太阳光的充分利用,提高太阳电池的光电转换效率。
将钙钛矿电池和硅电池结合制备叠层电池时通常有两种方式,一种是并联式四端叠层电池,一种是串联式两端叠层电池。其中两端叠层电池因其结构一体化,测试简单,更适合产业化,但其要求顶、底电池要有良好的工艺兼容。两端叠层电池的光电流要受顶、底两个子电池电流最小值的限制。因此使顶、底电池电流尽可能大且相等时,才能获得较匹配的整体光电流,从而得到较高的电池效率。在叠层电池中,位于顶部的钙钛矿吸收大部分的可见光,位于底部的硅吸收大部分红外光,所以提高平面硅异质结太阳电池的长波长光响应意义重大。
发明内容
本发明的目的是提高平面硅异质结太阳电池的长波长光响应,进而在钙钛矿/硅叠层电池的应用中,实现电流匹配,提高器件的短路电流密度。
本发明通过调整平面硅异质结太阳电池的背场,提高长波长光响应,不需任何额外设备和原料,不在电池结构中引入任何额外复杂陷光结构。
本发明的技术方案:
一种提高平面硅异质结太阳电池长波长光响应的方法,该方法步骤包括:
在n型硅片衬底S一侧沉积钝化层I,在I之上沉积背场N;
在衬底S另一侧沉积钝化层I,在I之上沉积发射极P;
在P上沉积透明导电薄膜ITO;
透明导电薄膜ITO和背场N上分别设置电极M1和M2;
其中,所述的背场N的材料为硅薄膜材料。
本发明点主要通过应用经过优化的具有低折射率和宽带隙特性的非晶硅,纳米晶硅或微晶硅或纳米晶硅氧或微晶硅氧材料中的一种或多种的组合作为平面硅异质结太阳电池的背场N,一方面低折射率的背场材料与非晶硅层形成折射率梯度增大了对长波长光的反射作用,另一方面,宽带隙的背场材料减少了长波长光吸收,并增强了电池背部场钝化效应,进而提高了器件的长波长光响应。
所述的钝化层I薄膜为非晶硅或非晶硅氧合金或非晶硅氮合金或二氧化硅或三氧化二铝中的一种或多种组合。钝化层I薄膜的厚度1-10nm。
所述的衬底S为单晶硅片或多晶硅片衬底。衬底S为双面抛光或单面抛光或双面制绒或单面制绒硅片。
所述的发射极P为非晶硅或纳米晶硅或纳米晶硅氧材料的一种或多种组合。
本方法所用的平面硅异质结太阳电池结构,由上至下依次包括:正面金属栅线(M1),透明导电氧化物薄膜掺锡氧化铟(ITO),p型发射极(P),本征非晶硅钝化层(I),n型抛光硅片衬底(S),本征非晶硅钝化层(I),n型背场(N),背部金属电极(M2)。
通过调整沉积气体中PH3的比例可以改善材料电导率。增大氢稀释率,可以提高材料晶化率促进掺杂原子的掺杂效率,进而提高材料的电导率(10-4S/cm-10S/cm)。以CO2作为氧源,沉积n型纳米晶硅氧材料,通过调整氧原子的掺杂量可以调整材料的折射率(2-3.5)和带隙(1.7-2.5eV),进而对硅异质结太阳电池的性能产生影响。
平面硅异质结太阳电池的制备选择厚度为280μm的n型双抛硅片作为衬底,电阻率范围为1-10Ωcm。电池中的硅薄膜均用同一RF-PECVD沉积,通过控制沉积时间,控制硅薄膜的厚度,包括以下步骤:
(1)衬底硅片在使用之前经过标准的RCA清洗步骤;
(2)在放入真空腔室之前在浓度为3%的HF溶液中浸泡1min;
(3)衬底硅片加热到150-300℃,在一侧沉积高质量的本征非晶硅薄膜钝化硅片表面的悬挂键,或二氧化硅,或三氧化二铝;
(4)在本征非晶硅薄膜之上沉积n型背场;
(5)衬底在真空环境中冷却至室温,取出翻面,再放入腔室;
(6)加热到与步骤(3)相同的衬底温度,在硅片另一侧沉积与步骤(4)相同的本征非晶硅薄膜作为钝化层;
(7)在步骤(6)所述的非晶硅薄膜上沉积p型发射极;
(8)在电池发射极P表面制作ITO薄膜并在其上蒸发金属栅线电极M1,然后在电池背部蒸发Al电极M2;
(9)调整硅片两侧非晶硅钝化层的厚度,在保持足够钝化效果的条件下,不影响载流子的传输和光的透过。通过调整ITO的厚度,可以初步实现电池前表面对长波长光的减反射作用,再通过调整电池背场材料,提高了背场对光的反射作用和对背部空穴的场钝化效应,进而提高了电池的长波长光响应。
本方法的优点和积极效果:
本方法通过应用低折射率和宽带隙的n型材料作为背场,提高了平面硅异质结太阳电池的长波长光响应,效率得到显著提升,且方法简单,易于实施,不需添加任何辅助设备和原料,也不在电池中引入任何附加的陷光结构。
本发明的机理分析:
本发明方法应用经过优化的低折射率和宽带隙的n型背场材料,与非晶硅钝化层形成折射率梯度,增强了电池背部对长波长光的反射作用,透射到电池背部的长波长光经过反射进入硅片被二次吸收,宽带隙的特性,增强了背场的场钝化效应,进一步提升了电池长波长光响应和光电性能。
附图说明
图1为本发明方法所用的平面硅异质结太阳电池结构示意图。
图2为n型非晶硅背场厚度为20nm,Tauc带隙为1.73eV的平面硅异质结太阳电池EQE曲线图。
图3为n型纳米晶硅背场厚度为20nm,Tauc带隙为2.14eV的平面硅异质结太阳电池EQE曲线图。
图4为n型纳米晶硅氧背场厚度为20nm,Tauc带隙为2.38eV的平面硅异质结太阳电池EQE曲线图。
图5为2nm非晶硅与20nm纳米晶硅氧复合层背场的平面硅异质结太阳电池EQE曲线图。
图6为2nm纳米晶硅与20nm纳米晶硅氧复合层背场的平面硅异质结太阳电池EQE曲线图。
具体实施方式
下面结合附图和具体实施例对本发明所述的技术方案作进一步的详细说明。
实施例1:
本实施例中平面硅异质结太阳电池结构如图1所示,从上到下依次包括:正面金属栅线(M1),透明导电氧化物薄膜掺锡氧化铟(ITO),p型纳米晶硅氧发射极(P),本征非晶硅钝化层(I),n型抛光硅片衬底(S),本征非晶硅钝化层(I),n型非晶硅背场(N),背部金属电极(M2)。
其中,n型非晶硅背场厚度为20nm,Tauc带隙为1.73eV,电导率为10-4S/cm,对1000nm波长光折射率为3.37。
工艺参数:(衬底温度:210℃,沉积气压:1.3Torr,电极间距:20mm,功率密度:69mW/cm2,SiH4/H2/PH3:10/100/10,辉光时间:150s)。
本实施例的平面硅异质结太阳电池通过以下步骤得到:
1.硅片衬底在使用之前经过标准的RCA清洗步骤;
2.在放入真空腔室之前在浓度为3%的HF溶液中浸泡1min;
3.硅片衬底加热到190℃,硅片一侧沉积5nm高质量的本征非晶硅薄膜钝化硅片表面的悬挂键;
4.在本征硅薄膜之上沉积20nm的n型非晶硅作为背场;
5.衬底在真空环境中冷却至室温,取出翻面,再放入腔室;
6.加热到与步骤3相同的衬底温度,在硅片另一侧沉积4nm与步骤(4)相同的非晶硅薄膜作为钝化层;
7.在非晶硅薄膜上沉积p型纳米晶硅氧层作为发射极;
8.在电池发射极p表面制作ITO薄膜并在其上蒸发800nm金属栅线电极M1;然后在电池背部蒸发600nm的Al背电极M2。
当采用上述背场时,平面硅异质结太阳电池的EQE曲线如图2所示,在1000nm处的EQE响应为59.5%,短路电流密度为31.49mA/cm2
实施例2:
本实施例中平面硅异质结太阳电池结构与实施例1相同,如图1所示,此处略。
其中,n型纳米晶硅背场厚度为20nm,Tauc带隙为2.14eV,电导率为10-2S/cm,对1000nm处光折射率为2.87。
工艺参数:(衬底温度:210℃,沉积气压:1.3Torr,电极间距:20mm,功率密度:69mW/cm2,SiH4/H2/PH3:2/180/3,辉光时间:15min)。
平面硅异质结太阳电池的制作步骤同实施例1。
当采用上述背场时,平面硅异质结太阳电池的EQE曲线如图3所示,在1000nm处的EQE响应为81.7%,短路电流密度为32.53mA/cm2
实施例3:
本实施例中平面硅异质结太阳电池结构与实施例1相同,如图1所示,此处略。
其中,n型背场由20nm的纳米晶硅氧层组成,纳米晶硅氧材料的Tauc带隙为2.38eV,电导率为10-1S/cm,对1000nm处光的折射率为2.44。
工艺参数:(衬底温度:210℃,沉积气压:1.3Torr,电极间距:20mm,功率密度:69mW/cm2,SiH4/H2/PH3/CO2:2/300/2/3,辉光时间:25min)。
平面硅异质结太阳电池的制作步骤同实施例1。
当采用上述背场时,平面硅异质结太阳电池的EQE曲线如图4所示,在1000nm处的EQE响应为85.1%,短路电流密度为34.07mA/cm2
实施例4:
本实施例中平面硅异质结太阳电池结构与实施例1相同,如图1所示,此处略。
其中n型背场为2nm的n型非晶硅与20nm的n型纳米晶硅氧的复合层。
非晶硅:(衬底温度:210℃,沉积气压:1.3Torr,电极间距:20mm,功率密度:69mW/cm2,SiH4/H2/PH3:10/100/10,辉光时间:20s)。
纳米晶硅氧(衬底温度:210℃,沉积气压:1.3Torr,电极间距:20mm,功率密度:69mW/cm2,SiH4/H2/PH3/CO2:2/300/2/3,辉光时间:25min)。
平面硅异质结太阳电池的制作步骤同实施例1。
当采用上述背场时,平面硅异质结太阳电池的EQE曲线如图5所示,在1000nm处的EQE响应为86.7%,短路电流密度为34.44mA/cm2
实施例5:
本实施例中平面硅异质结太阳电池结构与实施例1相同,如图1所示,此处略。
其中n型背场是2nm的纳米晶硅与20nm的纳米晶硅氧复合层。
纳米晶硅:(衬底温度:210℃,沉积气压:1.3Torr,电极间距:20mm,功率密度:69mW/cm2,SiH4/H2/PH3:2/180/3,辉光时间:2min)。
纳米晶硅氧:(衬底温度:210℃,沉积气压:1.3Torr,电极间距:20mm,功率密度:69mW/cm2,SiH4/H2/PH3/CO2:2/300/2/3,辉光时间:25min)。
平面硅异质结太阳电池的制作步骤同实施例1。
当采用上述背场时,平面硅异质结太阳电池的EQE曲线如图6所示,在1000nm处EQE响应为90.7%,短路电流密度为34.54mA/cm2
综上,本发明提供了一种提高平面硅异质结太阳电池长波长光响应的方法,该方法与硅异质结太阳电池制备工艺完全兼备,不需额外设备和原料,也不需在电池结构中引入复杂的陷光结构,方法简单,易于实现。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求的保护范围为准。

Claims (7)

1.一种提高平面硅异质结太阳电池长波长光响应的方法,该方法步骤包括:
在n型硅片衬底S一侧沉积钝化层I,在I之上沉积背场N;
在衬底S另一侧沉积钝化层I,在I之上沉积发射极P;
在P上沉积透明导电薄膜ITO;
透明导电薄膜ITO和背场N上分别设置电极M1和M2;
其中,所述的背场N具有低折射率和宽带隙特性,是纳米晶硅氧或微晶硅氧或纳米晶硅或微晶硅或非晶硅材料中的一种或多种的组合。
2.根据权利要求1所述的一种提高平面硅异质结太阳电池长波长光响应的方法,其特征在于,所述背场N层通过调整沉积气体中PH3的比例和氢稀释的比例可以在10-4S/cm-10S/cm范围内改善材料电导率;以CO2作为氧源,通过调整氧原子的掺杂量可以调整材料的折射率在2-3.5范围和带隙在1.7-2.5eV范围。
3.根据权利要求1所述的一种提高平面硅异质结太阳电池长波长光响应的方法,其特征在于,所述的钝化层I薄膜为非晶硅或非晶硅氧合金或非晶硅氮合金或二氧化硅或三氧化二铝中的一种或多种组合。
4.根据权利要求3所述的一种提高平面硅异质结太阳电池长波长光响应的方法,其特征在于,所述的钝化层I薄膜的厚度1-10nm。
5.根据权利要求1所述的一种提高平面硅异质结太阳电池长波长光响应的方法,其特征在于,所述的衬底S为单晶硅片或多晶硅片衬底。
6.根据权利要求1所述的一种提高平面硅异质结太阳电池长波长光响应的方法,其特征在于,所述的衬底S为双面抛光或单面抛光硅片。
7.根据权利要求1所述的一种提高平面硅异质结太阳电池长波长光响应的方法,其特征在于,所述的发射极P为非晶硅或纳米晶硅或纳米晶硅氧材料的一种或多种组合。
CN201710878335.7A 2017-09-26 2017-09-26 一种提高平面硅异质结太阳电池长波长光响应的方法 Pending CN107681020A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710878335.7A CN107681020A (zh) 2017-09-26 2017-09-26 一种提高平面硅异质结太阳电池长波长光响应的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710878335.7A CN107681020A (zh) 2017-09-26 2017-09-26 一种提高平面硅异质结太阳电池长波长光响应的方法

Publications (1)

Publication Number Publication Date
CN107681020A true CN107681020A (zh) 2018-02-09

Family

ID=61136107

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710878335.7A Pending CN107681020A (zh) 2017-09-26 2017-09-26 一种提高平面硅异质结太阳电池长波长光响应的方法

Country Status (1)

Country Link
CN (1) CN107681020A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109309138A (zh) * 2018-12-13 2019-02-05 苏州腾晖光伏技术有限公司 一种异质结太阳电池及其制备方法
CN113314630A (zh) * 2021-04-21 2021-08-27 中国科学院宁波材料技术与工程研究所 一种含硅氧纳米晶层的多晶硅薄膜及其制备方法和应用
CN113488555A (zh) * 2021-07-06 2021-10-08 安徽华晟新能源科技有限公司 异质结电池及制备方法、太阳能电池组件

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006120737A (ja) * 2004-10-19 2006-05-11 Mitsubishi Heavy Ind Ltd 光電変換素子
CN1826699A (zh) * 2003-07-24 2006-08-30 株式会社钟化 硅类薄膜太阳能电池
CN101809759A (zh) * 2007-10-30 2010-08-18 三洋电机株式会社 太阳能电池
CN101978512A (zh) * 2008-03-21 2011-02-16 三洋电机株式会社 太阳能电池
CN102034885A (zh) * 2009-09-28 2011-04-27 肖特太阳能控股公司 太阳能电池
CN102473750A (zh) * 2009-07-03 2012-05-23 株式会社钟化 晶体硅系太阳能电池及其制造方法
CN103907205A (zh) * 2011-10-27 2014-07-02 三菱电机株式会社 光电变换装置及其制造方法、以及光电变换模块
CN104718630A (zh) * 2012-08-31 2015-06-17 喜瑞能源公司 在基板中具有浅反掺杂层的隧穿结太阳能电池
US9761744B2 (en) * 2015-10-22 2017-09-12 Tesla, Inc. System and method for manufacturing photovoltaic structures with a metal seed layer

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1826699A (zh) * 2003-07-24 2006-08-30 株式会社钟化 硅类薄膜太阳能电池
JP2006120737A (ja) * 2004-10-19 2006-05-11 Mitsubishi Heavy Ind Ltd 光電変換素子
CN101809759A (zh) * 2007-10-30 2010-08-18 三洋电机株式会社 太阳能电池
CN101978512A (zh) * 2008-03-21 2011-02-16 三洋电机株式会社 太阳能电池
CN102473750A (zh) * 2009-07-03 2012-05-23 株式会社钟化 晶体硅系太阳能电池及其制造方法
CN102034885A (zh) * 2009-09-28 2011-04-27 肖特太阳能控股公司 太阳能电池
CN103907205A (zh) * 2011-10-27 2014-07-02 三菱电机株式会社 光电变换装置及其制造方法、以及光电变换模块
CN104718630A (zh) * 2012-08-31 2015-06-17 喜瑞能源公司 在基板中具有浅反掺杂层的隧穿结太阳能电池
US9761744B2 (en) * 2015-10-22 2017-09-12 Tesla, Inc. System and method for manufacturing photovoltaic structures with a metal seed layer

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109309138A (zh) * 2018-12-13 2019-02-05 苏州腾晖光伏技术有限公司 一种异质结太阳电池及其制备方法
CN113314630A (zh) * 2021-04-21 2021-08-27 中国科学院宁波材料技术与工程研究所 一种含硅氧纳米晶层的多晶硅薄膜及其制备方法和应用
CN113488555A (zh) * 2021-07-06 2021-10-08 安徽华晟新能源科技有限公司 异质结电池及制备方法、太阳能电池组件
CN113488555B (zh) * 2021-07-06 2024-06-21 安徽华晟新能源科技股份有限公司 异质结电池及制备方法、太阳能电池组件

Similar Documents

Publication Publication Date Title
CN207320169U (zh) 一种渐变带隙的钙钛矿电池
WO2019119817A1 (zh) 一种太阳能异质结电池及其制备方法
US20110259395A1 (en) Single Junction CIGS/CIS Solar Module
WO2021047673A1 (zh) 碲化镉太阳能电池及其制备方法
CN104733557B (zh) Hit太阳能电池及提高hit电池的短路电流密度的方法
Li et al. Enhanced electrical and optical properties of boron-doped ZnO films grown by low pressure chemical vapor deposition for amorphous silicon solar cells
CN107681020A (zh) 一种提高平面硅异质结太阳电池长波长光响应的方法
CN108878570B (zh) 空穴选择型MoOx/SiOx(Mo)/n-Si异质结、太阳电池器件及其制备方法
WO2023115870A1 (zh) 一种pn异质结硒化锑/钙钛矿太阳能电池及其制备方法
CN101640226B (zh) 叠层结构和包括该叠层结构的薄膜太阳能电池
Multone et al. Triple-junction amorphous/microcrystalline silicon solar cells: Towards industrially viable thin film solar technology
CN106558628A (zh) 一种cigs薄膜太阳能电池窗口层的制备方法
CN103035757B (zh) 一种薄膜太阳能电池及p型半导体和p型半导体的制备方法
TW201010115A (en) Method for depositing an amorphous silicon film for photovoltaic devices with reduced light-induced degradation for improved stabilized performance
CN102157596B (zh) 一种势垒型硅基薄膜半叠层太阳电池
CN106711288A (zh) 一种纳米晶硅薄膜太阳能电池的制备方法
CN116669501A (zh) 钙钛矿/硅异质结叠层太阳能电池及其制备方法
JP2008283075A (ja) 光電変換装置の製造方法
CN102938430B (zh) 包含中间层的柔性衬底硅基多结叠层太阳电池及其制造方法
CN109494304A (zh) 一种太阳能电池高透高导薄膜电极的制备方法
JPH04282871A (ja) 薄膜太陽電池
TWI447919B (zh) 具有異質接面之矽基太陽能電池及其製程方法
CN211238271U (zh) 一种高转化效率的异质结电池
CN113506842A (zh) 异质结太阳能电池的制备方法
CN102290450A (zh) 一种n型晶体硅太阳能电池

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20180209

RJ01 Rejection of invention patent application after publication