Nothing Special   »   [go: up one dir, main page]

CN107497427B - 一种可降解甲醛的银/石墨烯/氧化锌复合材料制备方法 - Google Patents

一种可降解甲醛的银/石墨烯/氧化锌复合材料制备方法 Download PDF

Info

Publication number
CN107497427B
CN107497427B CN201710807591.7A CN201710807591A CN107497427B CN 107497427 B CN107497427 B CN 107497427B CN 201710807591 A CN201710807591 A CN 201710807591A CN 107497427 B CN107497427 B CN 107497427B
Authority
CN
China
Prior art keywords
graphene
zno
particles
silver
nano particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710807591.7A
Other languages
English (en)
Other versions
CN107497427A (zh
Inventor
马林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou Xianghuai Environmental Technology Co.,Ltd.
Original Assignee
Shanghai Gema Environmental Protection Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Gema Environmental Protection Technology Co ltd filed Critical Shanghai Gema Environmental Protection Technology Co ltd
Priority to CN201710807591.7A priority Critical patent/CN107497427B/zh
Publication of CN107497427A publication Critical patent/CN107497427A/zh
Application granted granted Critical
Publication of CN107497427B publication Critical patent/CN107497427B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/60Platinum group metals with zinc, cadmium or mercury
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N59/00Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
    • A01N59/16Heavy metals; Compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8668Removing organic compounds not provided for in B01D53/8603 - B01D53/8665
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • B01J37/0221Coating of particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/084Decomposition of carbon-containing compounds into carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/088Decomposition of a metal salt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/342Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of electric, magnetic or electromagnetic fields, e.g. for magnetic separation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/223Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating specially adapted for coating particles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4417Methods specially adapted for coating powder
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/20Capture or disposal of greenhouse gases of methane

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Thermal Sciences (AREA)
  • Dentistry (AREA)
  • Zoology (AREA)
  • Analytical Chemistry (AREA)
  • Agronomy & Crop Science (AREA)
  • Pest Control & Pesticides (AREA)
  • Plant Pathology (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Environmental Sciences (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Toxicology (AREA)
  • Catalysts (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)

Abstract

本申请公开了一种可降解甲醛的银/石墨烯/氧化锌复合材料制备方法,其特征在于,包括以下步骤:(1)制备纳米ZnO颗粒;(2)通过物理气相沉积将Ag纳米颗粒均匀的分散在ZnO纳米颗粒上,以化学气相沉积的方式将石墨烯嵌入到Ag/ZnO纳米复合结构中,形成Ag/石墨烯/ZnO复合纳米颗粒。并可以进一步将步骤(2)制备的Ag/石墨烯/ZnO复合纳米颗粒和椰壳活性碳以及聚乙烯混合,烧结成富含Ag/石墨烯/ZnO纳米颗粒的烧结活性碳颗粒。所得到的Ag/石墨烯/ZnO复合材料本申请通过银纳米粒子在可见光下的表面等离子共振效应突破了现有产品只有在紫外光下才能起到光催化效果的技术瓶颈,光催化效果好,简洁,高效。

Description

一种可降解甲醛的银/石墨烯/氧化锌复合材料制备方法
技术领域
本申请涉及一种光催化剂的制备方法,具体涉及一种可降解甲醛的银/石墨烯/氧化锌复合材料制备方法。
背景技术
光催化技术以半导体纳米材料二氧化钛TiO2为代表,利用自然光即可催化分解细菌和污染物,具有高催化活性、良好的化学稳定性和热稳定性、无二次污染、无刺激性、安全无毒等特点,且能长期有益于生态自然环境,是最具有开发前景的绿色环保催化剂之一。
氧化锌ZnO是一种具有卓越性能的新型宽禁带、高激发能的半导体材料,特殊的电子结构使它具有优异的电、磁、光等效应。氧化锌与二氧化钛相比,二者禁带宽度相当,但氧化锌生产工艺简单、成本低廉,因此成为目前被广泛研究的光催化半导体材料。然而,低量子产率和缺乏可见光利用阻碍了ZnO的实际应用。在ZnO粒子表面沉积贵金属是一种有效的半导体光催化剂改性方法,贵金属的掺杂可改变体系中的电子分布,使纳米半导体产生晶格缺陷和杂质能级,从而改善光量子效率,提高氧化还原能力,扩大光谱吸收范围。贵金属掺杂半导体能有效提高光生电荷与光生空穴的分离,是当前光催化剂改性研究中的一个热点。此外,碳材料修饰因其较好的效果而得到广泛的研究。碳材料不仅可以作为电子接受体,提高氧化锌半导体光生电子-空穴的分离率,而且有些碳材料本身具有一定的禁带宽度,可作为光敏化剂,自身形成光生电子,同时,由于碳材料的特殊结构特点还可以作为有机污染物的吸附剂,从而提高半导体氧化物的光催化效率,石墨烯是一种新型纳米碳材料,近年来得到了快速的发展。CN104941643A公开了一种银-石墨烯量子点/氧化锌三元光催化剂的制备方法,该方法利用电化学循环伏安法制备石墨烯量子点水溶液,利用溶胶-凝胶旋涂热处理技术制备三元光催化剂薄膜,其中,含有石墨烯量子点的水溶液不仅作为溶剂溶解氧化锌前驱体溶液,而且作为还原剂原位还原银离子,这种三元光催化剂充分利用了碳纳米材料以及贵金属纳米颗粒对提高氧化锌半导体光催化性能的优势,有效的提高了氧化锌半导体光催化剂在可见光区域的光催化性能。
但是,现有市面上流行的光触媒只能在紫外线的条件下才能发挥作用,或是用杂化方式,比如氮杂化,改变导带位置,从而可以吸收可见光来进行光催化。
发明内容
针对现有技术存在的上述不足,本发明的目的在于提供一种可降解甲醛的银/石墨烯/氧化锌复合材料制备方法。
为实现以上目的,本发明提供的一种可降解甲醛的银/石墨烯/氧化锌复合材料制备方法,采用如下技术方案:
一种可降解甲醛的银/石墨烯/氧化锌复合材料制备方法,包括以下步骤:
(1)制备纳米ZnO颗粒:将Zn(NO3)2溶液边搅拌边加入NaOH溶液,静置,将生成的沉淀物进行过滤,洗涤,并烘干,再将干燥好的沉淀物放在马弗炉里焙烧,冷却后研磨,得到ZnO纳米颗粒;
(2)Ag/石墨烯/ZnO的制备:通过物理气相沉积将Ag纳米颗粒均匀的分散在步骤(1)得到的ZnO纳米颗粒上,形成Ag/ZnO复合纳米颗粒;然后以Ag/ZnO复合纳米颗粒为基体,以甲烷为碳源,以化学气相沉积的方式将石墨烯嵌入到Ag/ZnO纳米复合结构中,形成Ag/石墨烯/ZnO复合纳米颗粒。
优选的,进一步包含步骤(3):将步骤(2)制备的Ag/石墨烯/ZnO复合纳米颗粒和椰壳活性碳以及聚乙烯混合,烧结成富含Ag/石墨烯/ZnO纳米颗粒的烧结活性碳颗粒。
进一步地,所述步骤(2)中,物理气相沉积过程中,首先抽真空至0.05帕,并保持真空度不低于0.1Pa。
优选的,所述步骤(2)中,ZnO和Ag的质量比为20:1。
优选的,所述步骤(1)中Zn(NO3)2溶液的浓度为1mol/L,NaOH溶液的浓度为2mol/L,Zn(NO3)2溶液与NaOH溶液的体积比为1:1。
优选的,所述步骤(2)中,化学气相沉积在气压为10-4Pa,温度为900℃的条件下进行。
优选的,所述步骤(3)中Ag/ZnO复合纳米颗粒、椰壳活性碳以及聚乙烯的质量比为1:100:2。
优选的,所述步骤(3)中烧结条件为:压力为2个大气压,温度为220℃,烧结时间为3小时。
本申请所述的物理气相沉积也即PVD(Physical Vapor Deposition),是指在真空条件下,采用低电压、大电流的电弧放电技术,利用气体放电使靶材蒸发并使被蒸发物质与气体都发生电离,利用电场的加速作用,使被蒸发物质及其反应产物沉积在工件上。
发明人发现,将银纳米颗粒以PVD方式分散在ZnO纳米颗粒上,不仅能够使分散更加均匀,而且能够形成特殊的Ag/ZnO复合纳米结构,并进一步通过化学气相沉积形成Ag/石墨烯/ZnO复合纳米颗粒,在可见光的情况下,银纳米颗粒可以产生表面等离子体共振,可以将被自身激发的活性电子通过导电性极高的石墨烯传输到ZnO的导带上,银纳米颗粒会留下活性正电荷,可以氧化降解甲醛等有机物。
在紫外光存在条件下,ZnO纳米颗粒在紫外光照射下所产生的活性电子和正电荷空穴,以及从银纳米颗粒得到的活性电子,同样可以降解有机物,具有杀菌和消毒的作用。
根据本申请方法制备得到的可降解甲醛的含有Ag/石墨烯/ZnO的复合材料,可以用于室内空气处理,例如做成成品放置在室内,车内或是其它场所内,可以降解甲醛,吸附空气中的粉尘和其它有害杂质;也可以和空气净化器结合,达到空气的全方位净化。
根据本申请方法制备得到的可降解甲醛的含有Ag/石墨烯/ZnO的复合材料,可以用于降解甲醛。
与现有技术相比,本申请具有以下有益效果:
(1)ZnO纳米颗粒上进行PVD方式将银纳米颗粒均匀分散进行装饰,使银纳米颗粒更为均匀的分散在ZnO纳米颗粒上,又通过化学气相沉积(CVD)方式将导电性极强的石墨烯嵌入到Ag和ZnO之间,使银纳米颗粒在可见光照射下产生的活性电子更有效率的传导给ZnO纳米颗粒。Ag/石墨烯/ZnO纳米组合结构显示出更高的可见光和紫外(UV)光吸收,这导致对甲醛降解的光催化活性显着提高。银纳米颗粒的等离子体共振(SPR),显着改善了光激发ZnO的电荷分离。通过本申请方法所获得的复合纳米结构,可以收获可见光通过SPR效应来增强由紫外光引发的光催化活性,从而更有效地利用太阳能光谱进行能量转换,通过银纳米粒子在可见光下的表面等离子共振效应突破了现有产品只有在紫外光下才能起到光催化效果的技术瓶颈。
(2)将Ag/石墨烯/ZnO复合纳米颗粒和椰壳活性碳以及粘合剂聚乙烯烧结在一块,形成富含Ag/石墨烯/ZnO复合纳米颗粒的烧结活性碳颗粒,让Ag/石墨烯/ZnO纳米颗粒更为有效的附着在活性碳上,发挥其光催化的效果。
(3)本申请Ag/石墨烯/ZnO复合纳米结构利用了金属纳米颗粒的表面等离子体共振,从而在金属纳米颗粒上产生活性电子和空穴,从而提高整个系统光催化效果,可以在可见光下进行甲醛的降解,简洁,高效。
附图说明
通过阅读参照以下附图对非限制性实施例所作的详细描述,本发明的其它特征、目的和优点将会变得更明显:
图1为本申请Ag/石墨烯/ZnO纳米颗粒工作原理图;
1-导带;2-价带;3-可见光;4-紫外光。
具体实施方式
下面结合具体实施例对本发明进行详细说明。以下实施例将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。应当指出的是,对本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进。这些都属于本发明的保护范围。
实施例1
一种可以降解甲醛的Ag/石墨烯/ZnO复合材料的制备方法,包括以下步骤:
(1)制备纳米ZnO颗粒:量取1mol/LZn(NO3)2的溶液50mL放入200ml烧杯里,边搅拌边加入50mL 2mol/LNaOH溶液。静置一天时间。将生成的沉淀过滤,洗涤,80度烘箱中烘干。将干燥好的沉淀放在马弗炉里焙烧3h。冷却后研磨即可得ZnO纳米颗粒;
(2)Ag/石墨烯/ZnO的制备:通过物理气相沉积将Ag纳米颗粒均匀的分散在步骤(1)得到的ZnO纳米颗粒上,形成Ag/ZnO复合纳米颗粒,物理气相沉积过程中,首先抽真空至0.05帕,并保持真空度不低于0.1Pa,ZnO和Ag的质量比为20:1;然后以Ag/ZnO复合纳米颗粒为基体,以甲烷为碳源,在气压为10-4Pa,900℃高温下,以CVD(Chemical VaporDeposition)的方式将石墨烯嵌入到Ag/ZnO纳米复合结构中,形成最终的Ag/石墨烯/ZnO复合材料。
将本实施例制备得到的Ag/石墨烯/ZnO复合纳米颗粒放置于反应器中,进行甲醛处理的试验,结果表面甲醛降解率91%。
如图1所示,本申请制备得到的这种Ag/石墨烯/ZnO的复合结构,可以在可见光3的情况下,Ag纳米颗粒位于ZnO纳米颗粒的表面,石墨烯嵌入到Ag和ZnO之间,ZnO纳米颗粒中一部分为导带1,一部分为价带2,在可见光的情况下,银纳米颗粒可以产生表面等离子体共振,可以将被自身激发的活性电子通过导电性极高的石墨烯传输到ZnO的导带1上,银纳米颗粒会留下活性正电荷,可以氧化降解甲醛等有机物。在紫外光4存在条件下,ZnO纳米颗粒在紫外光照射下所产生的活性电子和正电荷空穴,以及从银纳米颗粒得到的活性电子,同样可以降解有机物,具有杀菌和消毒的作用。
实施例2
一种可以降解甲醛的Ag/石墨烯/ZnO复合材料的制备方法,包括以下步骤:
(1)制备纳米ZnO颗粒:量取1mol/LZn(NO3)2的溶液50mL放入200ml烧杯里,边搅拌边加入50mL 2mol/LNaOH溶液。静置一天时间。将生成的沉淀过滤,洗涤,80度烘箱中烘干。将干燥好的沉淀放在马弗炉里焙烧3h。冷却后研磨即可得ZnO纳米颗粒;
(2)Ag/石墨烯/ZnO的制备:通过物理气相沉积将Ag纳米颗粒均匀的分散在步骤(1)得到的ZnO纳米颗粒上,形成Ag/ZnO复合纳米颗粒,物理气相沉积过程中,首先抽真空至0.05帕,并保持真空度不低于0.1Pa,ZnO和Ag的质量比为20:1;然后以Ag/ZnO复合纳米颗粒为基体,以甲烷为碳源,在气压为10-4Pa,900℃高温下,以CVD(Chemical VaporDeposition)的方式将石墨烯嵌入到Ag/ZnO纳米复合结构中,形成最终的Ag/石墨烯/ZnO复合材料;
(3)将步骤(2)制备的Ag/石墨烯/ZnO复合纳米颗粒和椰壳活性碳以及聚乙烯混合,其中Ag/石墨烯/ZnO复合纳米颗粒、椰壳活性碳以及聚乙烯的质量比为1:100:2,在压力为2个大气压,220℃条件下,3个小时,烧结成富含Ag/石墨烯/ZnO纳米颗粒的烧结活性碳颗粒。
将本实施例制备得到的Ag/石墨烯/ZnO复合纳米颗粒放置于反应器中,进行甲醛处理的试验,结果表面甲醛降解率为95%。
以上对本发明的具体实施例进行了描述。需要理解的是,本发明并不局限于上述特定实施方式,本领域技术人员可以在权利要求的范围内做出各种变形或修改,这并不影响本发明的实质内容。

Claims (6)

1.一种可降解甲醛的银/石墨烯/氧化锌复合材料制备方法,其特征在于,包括以下步骤:
(1)制备纳米ZnO颗粒:将Zn(NO3)2溶液边搅拌边加入NaOH溶液,静置,将生成的沉淀物进行过滤,洗涤,并烘干,再将干燥好的沉淀物放在马弗炉里焙烧,冷却后研磨,得到ZnO纳米颗粒;
(2)Ag/石墨烯/ZnO的制备:通过物理气相沉积将Ag纳米颗粒均匀的分散在步骤(1)得到的ZnO纳米颗粒上,形成Ag/ZnO复合纳米颗粒;然后以Ag/ZnO复合纳米颗粒为基体,以甲烷为碳源,以化学气相沉积的方式将石墨烯嵌入到Ag/ZnO纳米复合结构中,形成Ag/石墨烯/ZnO复合纳米颗粒;
进一步包含步骤(3):将步骤(2)制备的Ag/石墨烯/ZnO复合纳米颗粒和椰壳活性碳以及聚乙烯混合,烧结成富含Ag/石墨烯/ZnO纳米颗粒的烧结活性碳颗粒;
所述步骤(2)中,物理气相沉积过程中,首先抽真空至0.05帕,并保持真空度不低于0.1Pa;所述步骤(2)中,ZnO和Ag的质量比为20:1;
所述步骤(3)中Ag/石墨烯/ZnO复合纳米颗粒、椰壳活性碳以及聚乙烯的质量比为1:100:2。
2.根据权利要求1所述的可降解甲醛的银/石墨烯/氧化锌复合材料制备方法,其特征在于,所述步骤(1)中Zn(NO3)2溶液的浓度为1mol/L,NaOH溶液的浓度为2mol/L,所述Zn(NO3)2溶液与NaOH溶液的体积比为1:1。
3.根据权利要求1所述的可降解甲醛的银/石墨烯/氧化锌复合材料制备方法,其特征在于,所述步骤(2)中,化学气相沉积在气压为10-4Pa,温度为900℃的条件下进行。
4.根据权利要求1所述的可降解甲醛的银/石墨烯/氧化锌复合材料制备方法,其特征在于,所述步骤(3)中烧结条件为:压力为2个大气压,温度为220℃,烧结时间为3小时。
5.根据权利要求1~3任一项所述方法制备得到的可降解甲醛的银/石墨烯/氧化锌复合材料用于室内空气处理。
6.根据权利要求1~3任一项所述方法制备得到的可降解甲醛的银/石墨烯/氧化锌复合材料用于降解甲醛。
CN201710807591.7A 2017-09-08 2017-09-08 一种可降解甲醛的银/石墨烯/氧化锌复合材料制备方法 Active CN107497427B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710807591.7A CN107497427B (zh) 2017-09-08 2017-09-08 一种可降解甲醛的银/石墨烯/氧化锌复合材料制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710807591.7A CN107497427B (zh) 2017-09-08 2017-09-08 一种可降解甲醛的银/石墨烯/氧化锌复合材料制备方法

Publications (2)

Publication Number Publication Date
CN107497427A CN107497427A (zh) 2017-12-22
CN107497427B true CN107497427B (zh) 2021-04-20

Family

ID=60695123

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710807591.7A Active CN107497427B (zh) 2017-09-08 2017-09-08 一种可降解甲醛的银/石墨烯/氧化锌复合材料制备方法

Country Status (1)

Country Link
CN (1) CN107497427B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110227453B (zh) * 2019-04-17 2022-03-25 江苏省农业科学院 一种AgCl/ZnO/GO复合可见光催化剂的制备方法
CN111185170B (zh) * 2020-01-17 2020-10-16 广东红树林新材料科技有限公司 一种纳米氧化锌包裹纳米银抗菌复合材料的制备方法
CN111744474B (zh) * 2020-06-19 2022-09-09 湖南工业大学 一种纳米复合材料、其制备方法及用途

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8878157B2 (en) * 2011-10-20 2014-11-04 University Of Kansas Semiconductor-graphene hybrids formed using solution growth
KR20140075971A (ko) * 2012-12-11 2014-06-20 삼성전자주식회사 그래핀-나노입자 구조체 및 이의 제조방법.
KR101437442B1 (ko) * 2013-01-23 2014-09-11 전자부품연구원 수처리용 그래핀-카본나노튜브 복합 구조체 제조방법 및 이를 이용한 멤브레인 제조방법
CN105498689B (zh) * 2015-12-09 2018-03-06 唐山冀东石墨烯科技发展有限公司 石墨烯负载纳米ZnO/Ag复合材料及其制备方法
CN105688939B (zh) * 2016-02-29 2019-06-28 长春理工大学 基于能带调制的双重量子点敏化氧化物复合光催化材料
CN106914070B (zh) * 2017-04-17 2018-10-26 台州绿之源环保股份有限公司 车用空气净化器

Also Published As

Publication number Publication date
CN107497427A (zh) 2017-12-22

Similar Documents

Publication Publication Date Title
Zhou et al. The preparation, and applications of gC 3 N 4/TiO 2 heterojunction catalysts—a review
CN102247877B (zh) 可见光催化剂的制备方法
Gao et al. A review on mechanism, applications and influencing factors of carbon quantum dots based photocatalysis
CN110152711B (zh) 一种CeO2@MoS2/g-C3N4三元复合光催化剂及其制备方法
CN104475133B (zh) 一种Bi/BiOCl光催化剂的制备方法
CN109569684B (zh) 等离子体改性金属氧化物和g-氮化碳共修饰二氧化钛纳米棒复合光催化剂及其制备和应用
CN107376905B (zh) 一种可降解甲醛的Ag/ZnO复合材料的制备方法
Rasheed et al. Synthesis and studies of ZnO doped with g-C3N4 nanocomposites for the degradation of tetracycline hydrochloride under the visible light irradiation
CN105688972B (zh) 介孔-α-三氧化二铁/掺氮还原石墨烯高效复合光催化剂的制备方法
CN107892284A (zh) 一种NiS/C3N4二元复合物及其制备和应用方法
CN107497427B (zh) 一种可降解甲醛的银/石墨烯/氧化锌复合材料制备方法
Zhao et al. Polyoxometalates-doped TiO 2/Ag hybrid heterojunction: removal of multiple pollutants and mechanism investigation
CN105664995A (zh) 一种多元素共掺杂纳米二氧化钛光催化材料
CN102553562B (zh) 多重改性复合光催化剂及其制备方法
An et al. The multiple roles of rare earth elements in the field of photocatalysis
Cui et al. Synthesis of a Z-scheme ternary photocatalyst (Ta3N5/Ag3PO4/AgBr) for the enhanced photocatalytic degradation of tetracycline under visible light
CN109158117B (zh) 一种全光谱响应双掺杂氟化镧/凹凸棒石上转换复合光催化材料及其制备方法与应用
Yao et al. One stone, three birds: up-conversion, photothermal and pn heterojunction to boost BiOBr: Yb3+, Er3+/Cu3Mo2O9 full spectrum photodegradation
CN107376956B (zh) 一种氧化锌/红磷异质结复合光催化剂及其制备方法
Xu et al. Synthesis and characterization of pyrochlore Bi2Sn2O7 doping with praseodymium by hydrothermal method and its photocatalytic activity study
CN111229217B (zh) 复合p-n型异质结光催化剂的制备方法及VOCs光催化降解方法
CN1259128C (zh) 光催化活性氟掺杂二氧化钛纳米材料的制备方法
CN104645980B (zh) 一种贵金属‑氧化锌复合材料及其制备方法和应用
CN111137920A (zh) 一种黑色Ta2O5及其制备方法和应用
CN108722462B (zh) 一种氨修饰氯氧铋微米球及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20220402

Address after: 215000 room 808, building 6, business travel building, No. 381, Suzhou Avenue East, Suzhou Industrial Park, Suzhou City, Jiangsu Province

Patentee after: Suzhou Xianghuai Environmental Technology Co.,Ltd.

Address before: Room C, No. 888, Huanhu West 2nd Road, Nanhui new town, Pudong New Area, Shanghai

Patentee before: SHANGHAI GEMA ENVIRONMENTAL PROTECTION TECHNOLOGY CO.,LTD.