CN106682671A - 图像文字识别系统 - Google Patents
图像文字识别系统 Download PDFInfo
- Publication number
- CN106682671A CN106682671A CN201611254376.0A CN201611254376A CN106682671A CN 106682671 A CN106682671 A CN 106682671A CN 201611254376 A CN201611254376 A CN 201611254376A CN 106682671 A CN106682671 A CN 106682671A
- Authority
- CN
- China
- Prior art keywords
- pictures
- sub
- picture
- character
- image
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/20—Image preprocessing
- G06V10/26—Segmentation of patterns in the image field; Cutting or merging of image elements to establish the pattern region, e.g. clustering-based techniques; Detection of occlusion
- G06V10/267—Segmentation of patterns in the image field; Cutting or merging of image elements to establish the pattern region, e.g. clustering-based techniques; Detection of occlusion by performing operations on regions, e.g. growing, shrinking or watersheds
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/21—Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
- G06F18/214—Generating training patterns; Bootstrap methods, e.g. bagging or boosting
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/22—Matching criteria, e.g. proximity measures
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/74—Image or video pattern matching; Proximity measures in feature spaces
- G06V10/75—Organisation of the matching processes, e.g. simultaneous or sequential comparisons of image or video features; Coarse-fine approaches, e.g. multi-scale approaches; using context analysis; Selection of dictionaries
- G06V10/751—Comparing pixel values or logical combinations thereof, or feature values having positional relevance, e.g. template matching
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V30/00—Character recognition; Recognising digital ink; Document-oriented image-based pattern recognition
- G06V30/40—Document-oriented image-based pattern recognition
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V30/00—Character recognition; Recognising digital ink; Document-oriented image-based pattern recognition
- G06V30/10—Character recognition
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Data Mining & Analysis (AREA)
- Artificial Intelligence (AREA)
- Multimedia (AREA)
- Evolutionary Computation (AREA)
- General Engineering & Computer Science (AREA)
- Evolutionary Biology (AREA)
- Bioinformatics & Computational Biology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Computing Systems (AREA)
- Databases & Information Systems (AREA)
- General Health & Medical Sciences (AREA)
- Medical Informatics (AREA)
- Software Systems (AREA)
- Character Discrimination (AREA)
Abstract
本发明涉及图像识别处理领域,特别涉及图像文字识别系统;包含图像文字切分模块,特征图片生成模块,存储模块,归一化处理模块和图像文字识别模块;所述图像文字切分模块将待处理图像切分成各个仅包含单个字符的子图片存储于存储模块中;所述特征图片生成模块,根据用户选择的待识别图像文字的字体,制作出对应的字符特征图片存储于所述存储模块中;所述归一化处理模块提取存储于存储模块中的特征图片和待识别子图片,根据对应的类型,进行归一化处理,并将处理后的图片信息存储于存储模块中;所述图像文字识别模块,提取存储模块中的子图片,采用异或算法计算子图片与特征图片的符合程度,进而实现子图片字符内容的识别,并将识别结果输入。
Description
技术领域
本发明图像识别领域,特别涉及图像文字识别系统。
背景技术
随着社会的发展和科技的进步,人类创造的知识正以指数级的数量增加,在电子书籍出现之前,大部分的知识是以图书的方式进行传承,中华上下五千年,产生了大量优秀书籍,这些书籍在历史的长河中,或多或少都遭到了不同程度的损坏,因此对这些书籍进行数字化存储迫在眉睫;在图书管理领域,书籍内容的快速搜索对于快速定位书籍很有帮助,而由于书籍数量太多,加上早期印刷的图书没有作者的电子文稿,因此纸质书籍的电子化很有必要。
光学字符识别软件就是处理这种纸质图书到电子文档转化的利器,其主要利用大量的字符样本,经过复杂网络的学习,生成相应的模型文件,从而达到识别图片中字符的目的。
光学字符识别软件主要功能是识别拍摄、扫描图片中的字符,现有技术中在进行图像中文字的识别时,首先需要将图像中的字符串切分开,形成包含单个文字的小图片,然后使用一定的方法对切分后的文字进行识别。而进行文字切分最常用的方法为投影法,即是将图像文字二值化处理后,通过垂直投影法找到两个文字之间的分界线,根据分界线将文字切分开来。然而当图像中的文字之间具有粘连,且图像中包含左右结构的汉字时,简单的投影方法就很难实现较好的切分效果;正是因为这个原因使得切分一直是OCR识别的难点,切分的质量将直接影响到文字的识别效果。
此外光学字符识别软件主要功能是识别拍摄、扫描图片中的字符,对于一些特殊字体的扫描件,公章,拍照,比如早期印刷的书籍,政府单位制作的证件等,由于历史原因以及保密与安全需要,其字体往往是特制的,现有的光学字符识别软件主要集中于机器学习的方法,模型运算量大,而且由于训练字体样本没有覆盖到特殊字体,导致特殊字体的识别准确率不高,严重影响纸质文档的电子化。
现有技术大多采用神经网络机器学习算法对字符进行识别,需要制作大量的样本,耗费大量的时间进行训练,且生成的模型文件非常庞大,且对于不同字体的字符,识别率不尽相同,对于某些特殊字体字符,识别率比较低,很难满足一些特殊场景下的字符识别。
发明内容
本发明的目的在于克服现有技术中所存在的上述不足,提供图像文字识别系统,根据用户选择的字体生成对应的特征图片,在对待识别图像文字进行有效切分的基础上,结合针对性的字符特征图片实现待识别图像文字的自动识别。为图像文字识别提供快捷工具。
为了实现上述发明目的,本发明提供了以下技术方案:图像文字识别系统,所述系统图像文字识别包含以下实现步骤:
(1)将待识别图像文字切分成仅包含单个字符的子图片;将其中的数字、字母和标点符号,文字子图分别标记出来;
(2)在每个数字、字母和标点对应的子图片中选择一张子图片,将子图中的字符,分别向上、下、左、右、左上、左下、右上和右下移动设定距离l,制成对应的特征图片,并对制成的特征图片进行对应的标注;
根据待识别图像选择对应字体,生成样本图片,对样本图片中的字符分别向上、下、左、右、左上、左下、右上和右下移动设定距离l,制成对应的特征图片,并对制成的特征图片进行对应的标注;
(3)将特征图片和待识别图片进行归一化处理:
将特征图片和待识别子图片的图片尺寸调整成相同大小,并对各图片中的各个像素灰度值根据设置的阈值分别转化成0或者1(将图片中0-255的灰度值,根据设置的阈值,转化为0或1)将转化后的像素值按位置存储于存储模块中;
(4)将待识别子图片与对应类型的特征图片进行对比,同一像素位置的值执行异或处理,统计1出现的次数,记为误差频次,将误差频次最小的特征图片对应的标注作为识别结果进行输出。
具体的,所述系统在所述步骤(4)中,将待识别的数字、字母和标点子图片与数字、字母和标点特征图片进行对比,同一像素位置的值执行异或处理,统计1出现的次数,记为误差频次,将误差频次最小的特征图片对应的标注作为识别结果进行输出;
对待识别文字字符子图片与对应的文字特征图片进行对比,同一像素位置的值执行异或处理,统计1出现的次数,记为误差频次,将误差频次最小的特征图片对应的标注作为识别结果进行输出。
进一步的,n*h<l<N*h。
进一步的,n≤1/4。
进一步的,文字字符图片的切分包含以下实现过程:
使用投影法找出文字字符图片的初始切分位置,根据初始切分位置将待识别图像片切分成初始子图片序列;
对序列中的初始子图片使用如下规则进行处理:
A、使用投影法待识别图像文字进行切分,切分成子图片序列;将其中的数字、字母和标点符号标记出来;
B、对未标记的子图片进行判断:是否满足L≤M*h,L为子图片字符投影的宽度,M为系数,h为行高;
对于不满足条件的子图片进行切分,切分位置根据以下公式进行确定:
f(x)=g(x)t(x)
重复执行步骤B,直到序列中未标记的子图片均满足条件:L≤M*h;
C、对于序列中数字、字母和标点字图片以外的相邻两子图片的总宽度进行判断:是否满足L合≤M*h;
如果满足,依序对满足条件的相邻子图片进行合并;
重复执行步骤C直到除数字、字母和标点以外的相邻子图片总宽度均不满足L合≤M*h;
D、对序列中未标记的子图片进行判断:如果序列中存在三个相邻的子图片,且三个子图片满足:第一子图片和第三子图片的宽度L≤0.5h,且中间子图片的宽度L≥h,则将中间子图片根据公式:
f(x)=g(x)t(x)
所确定的切分点进行切分;根据确定的切分点,将中间子图片切分成第一中间子图片和第二中间子图片;
将第一子图片和第一中间子图片合并;
将第二中间子图片和第三子图片合并。
进一步的,0.9≤M≤1.3。
作为一种优选:M=1.2。
进一步的,所述系统为加载有上述图像文字识别功能程序的计算机或服务器。
与现有技术相比,本发明的有益效果:本发明提供图像文字识别系统,根据用户选择的字体,构造原始特征图片,在原始特征图片的基础上,将图片中的字符分别向不同方向移动设定的距离,制成对应的特征模板;这样制成的特征模板能够更好的适应字符图片切分不完美的情况,因而具有更好的容错性。在特征图片的基础上,用异或算法来识别待识别子图片与特征模板的相似程度,计算过程简单方法,识别效率和可靠性较高。
此外,本发明采用了逐级的来判断切分后的子图片的切分质量,并对切分后的子图片进行相应的处理,层层筛选和处理的方式,保证子图片的切分质量;为最终的识别率,进一步准备了条件。此外相比于传统的切分方法,本发明系统在幅值的基础上引入了修正值,将切分位置与字符边缘的距离作为了确定切分点的考虑因素,因此具有更高的准确性,而且当遇到特殊结构字符时出现多个较小值,或者极值点时,通过本公式可以快速的找出最优化的切分点,增加了切分的准确性,提高了切分的效率;对粘连字符的切分效果更好。
在特征图片和图像字符的基础上,采用异或算法来识别待识别子图片与特征模板的相似程度,计算过程简单方法,识别效率和可靠性较高。
附图说明:
图1为本图像文字识别系统的系统结构示意图。
图2为本系统的图像文字识别的实现步骤或信号流程示意图。
图3为数字模板的制作示意图。
图4为文字模板的制作示意图。
具体实施方式
下面结合试验例及具体实施方式对本发明作进一步的详细描述。但不应将此理解为本发明上述主题的范围仅限于以下的实施例,凡基于本发明内容所实现的技术均属于本发明的范围。
本发明系统提供图像文字识别系统,如图1所示,包含图像文字切分模块,特征图片生成模块,存储模块,归一化处理模块和图像文字识别模块;
所述图像文字切分模块将待处理图像中的字符进行切分,切分成各个仅包含单个字符的子图片,并将切分后的子图片序列存储于存储模块中;
所述特征图片生成模块,根据用户选择的待识别图像文字的字体,制作出对应的字符特征图片,并将制作成的特征图片存储于所述存储模块中;
所述归一化处理模块提取存储于存储模块中的特征图片和待识别子图片,根据对应的类型,进行归一化处理,并将处理后的图片信息存储于存储模块中;
所述图像文字识别模块,提取存储模块中的子图片,采用异或算法计算子图片与特征图片的符合程度,进而实现子图片字符内容的识别,并将识别结果输入。
所述系统的文字识别包含如图2所示的以下实现步骤:
(1)将待识别图像文字切分成仅包含单个字符的子图片;将其中的数字、字母和标点符号,文字子图分别标记出来(本步骤的标记,仅标记子图片的类型,不进行具体的识别)。实现时,对待识别图像文字使用投影法进行切分,切分成子图片序列,将其中的数字、字母和标点符号标记出来;比如说投影的宽度较窄(比如设置为<0.4h),投影的面积较小(0.5h*0.8h),切割后形成的相邻子图片之间的距离明显大于普通字符图片的距离等,利用上述特征,可以首先将属于数字、字母和标点的子图片切分出来。在数字、字母和标点符号子图片已并被标记的基础上,对未标记的子图片(文字字符图片)进行切分,切分成仅包含单个字符的子图片。分步骤进行的子图片切分能够达到更好的切分效果。
(2)在每个数字、字母和标点对应的子图片中选择一张子图片,将子图中的字符,分别向上、下、左、右、左上、左下、右上和右下移动设定距离l,制成对应的特征图片,如图3所示,并对制成的特征图片进行对应的标注(本次标注是指,将特征图片对应的字符内容标记出来,比如说图2中的9张特征图片均标注为“8”);
根据待识别图像选择对应字体,生成样本图片,对样本图片中的字符分别向上、下、左、右、左上、左下、右上和右下移动设定距离l,制成对应的特征图片,并对制成的特征图片进行对应的标注(本次标注是指,将特征图片对应的字符内容标记出来,比如说图4中的9张特征图片均标注为:“字”);将模板中的字符分别移动设定的距离,超过子图片框范围的字符部分将被切除,向上述方向移动设局距离后形成的图片和原图片一起构成了同一字符的9张不同切分情形的参考样本图片如图3所示,这与实际操作中字符图片切分可能不规则,不完美的情况相对应,因此基于本方法形成的特征模板来实现的字符识别,具有更好的容错性。
(3)将特征图片和待识别图片进行归一化处理:
将特征图片和待识别子图片的图片尺寸调整成相同大小,并对各图片中的各个像素灰度值根据设置的阈值分别转化成0或者1(将图片中0-255的灰度值,根据设置的阈值,转化为0或1)将转化后的像素值按位置存储于存储模块中;
(4)将待识别子图片与对应类型的特征图片进行对比,同一像素位置的值执行异或处理(如果特征图片和待识别图片对应像素点的值相同,异或计算后的值为0;如果特征图片和待识别图片对应像素点的值不同,异或计算后的值为1),统计1出现的次数,记为误差频次,将误差频次最小的特征图片对应的标注作为识别结果进行输出。
具体的,所述步骤(4)中,将待识别的数字、字母和标点子图片与数字、字母和标点特征图片进行对比,同一像素位置的值执行异或处理,统计1出现的次数,记为误差频次,将误差频次最小的特征图片对应的标注作为识别结果进行输出;
对待识别文字字符子图片与对应的文字特征图片进行对比,同一像素位置的值执行异或处理,统计1出现的次数,记为误差频次,将误差频次最小的特征图片对应的标注作为识别结果进行输出。
本发明系统使用异或算法来识别待识别子图片与特征模板的相似程度,计算过程简单方法,识别效率和可靠性较高。
进一步的,文字字符图片的切分包含以下实现过程:
使用投影法找出文字字符图片的初始切分位置,根据初始切分位置将待识别图像片切分成初始子图片序列;
对序列中的初始子图片使用如下规则进行处理:
A、使用投影法待识别图像文字进行切分,切分成子图片序列;将其中的数字、字母和标点符号标记出来;
B、对未标记的子图片进行判断:是否满足L≤M*h,L为子图片字符投影的宽度,M为系数,h为行高;
对于不满足条件的子图片进行切分,切分位置根据以下公式进行确定:
f(x)=g(x)t(x)
重复执行步骤B,直到序列中未标记的子图片均满足条件:L≤M*h。
式中f(x)为幅值,x为列投影点在行方向上的坐标,h为当前字符的行高,g(x)为修正值,t(x)为行投影值,两者共同决定投影点的幅值,当幅值最小时,即为两个字符之间的切割点;经过g(x)的修正所找到最小幅值点作为切分点,相比于简单的最小行投影值,本方法方法中所寻找的切分点,引入了切分点位置与字符边缘距离的考量因素,因此具有更高的准确性,而且当遇到特殊结构字符时出现多个较小值,或者极值点时,通过本公式可以快速的找出最优化的切分点,增加了切分的准确性,提高了切分的效率。
C、对于序列中数字、字母和标点字图片以外的相邻两子图片的总宽度进行判断:是否满足L合≤M*h;
如果满足,依序对满足条件的相邻子图片进行合并;
重复执行步骤C直到除数字、字母和标点以外的相邻子图片总宽度均不满足L合≤M*h;
D、对序列中未标记的子图片进行判断:如果序列中存在三个相邻的子图片,且三个子图片满足:第一子图片和第三子图片的宽度L≤0.5h,且中间子图片的宽度L≥h,则将中间子图片根据公式:
f(x)=g(x)t(x)
所确定的切分点进行切分;根据确定的切分点,将中间子图片切分成第一中间子图片和第二中间子图片;
将第一子图片和第一中间子图片合并;
将第二中间子图片和第三子图片合并。
在某些情况下:连续的两个左右结构的字符图片,中间具有粘连,那么在利用投影法进行切分时,可能将前后字符中间的部首切开,但是对于两个字符之间粘连的部首识别不了,而当成一个字符切分出来的情况;本发明系统对于这种情况有较好的处理效果,对于粘连的中间部分通过上述公式寻找到最佳的切分点,并将切分后的前后字符的部首进行重新的整合,达到了较好的切分效果。
上述规则依序循环使用,经过不断的迭代,最终形成了仅包含单个字符的子图片,良好的切分效果为图像文字识别准备了条件。
进一步的,0.9≤M≤1.3。子图片宽度阈值的设置在本范围内,均能实现较好的切分和识别效果。
作为一种优选:M=1.2。经过实验反复验证,将M设置为1.2时,能够实现较好的切分效果。
进一步的,所述系统为加载有上述图像文字识别功能程序的计算机或服务器。
Claims (8)
1.图像文字识别系统,其特征在于,所述系统实现图像文字识别包含以下实现步骤:
(1)将待识别图像文字切分成仅包含单个字符的子图片;将其中的数字、字母和标点符号,文字子图分别标记出来;
(2)在每个数字、字母和标点对应的子图片中选择一张子图片,将子图中的字符,分别向上、下、左、右、左上、左下、右上和右下移动设定距离l,制成对应的特征图片,并对制成的特征图片进行对应的标注;
根据待识别图像选择对应字体,生成样本图片,对样本图片中的字符分别向上、下、左、右、左上、左下、右上和右下移动设定距离l,制成对应的特征图片,并对制成的特征图片进行对应的标注;
(3)将特征图片和待识别图片进行归一化处理,并将各图片的像素对应值,按位存储于存储模块中;
(4)将待识别子图片与对应类型的特征图片进行对比,同一像素位置的值执行异或处理,统计1出现的次数,记为误差频次;将误差频次最小的特征图片对应的标注作为识别结果进行输出。
2.如权利要求1所述的系统,其特征在于,n*h<l<N*h。
3.如权利要求2所述的系统,其特征在于,n≤1/4。
4.如权利要求1所述的系统,其特征在于,所述系统,中的归一化处理过程包括:将特征图片和待识别子图片的图片尺寸调整成相同大小;
对各图片中的各个像素灰度值根据设置的阈值分别转化成0或者1,将转化后的像素值按位置存储于存储模块中。
5.如权利要求1至4之一所述的系统,其特征在于,文字字符图片的切分包含以下实现过程:
A、将图片序列中的数字、字母和标点符号标记出来;
B、对未标记的子图片进行判断:是否满足L≤M*h,L为子图片字符投影的宽度,M为系数,h为行高;
对于不满足条件的子图片进行切分,切分位置根据以下公式进行确定:
f(x)=g(x)t(x)
重复执行步骤B,直到序列中未标记的子图片均满足条件:L≤M*h;
C、对于序列中数字、字母和标点字图片以外的相邻两子图片的总宽度进行判断:是否满足L合≤M*h;
如果满足,依序对满足条件的相邻子图片进行合并;
重复执行步骤C直到除数字、字母和标点以外的相邻子图片总宽度均不满足L合≤M*h;
D、对序列中未标记的子图片进行判断:如果序列中存在三个相邻的子图片,且三个子图片满足:第一子图片和第三子图片的宽度L≤0.5h,且中间子图片的宽度L≥h,则将中间子图片根据公式:
f(x)=g(x)t(x)
所确定的切分点进行切分;根据确定的切分点,将中间子图片切分成第一中间子图片和第二中间子图片;
将第一子图片和第一中间子图片合并;
将第二中间子图片和第三子图片合并。
6.如权利要求5所述的系统,其特征在于,0.9≤M≤1.3。
7.如权利要求6所述的系统,其特征在于,M=1.2。
8.如权利要求7所述的系统,其特征在于,所述系统为加载有上述图像文字识别功能程序的计算机或服务器。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201611254376.0A CN106682671A (zh) | 2016-12-29 | 2016-12-29 | 图像文字识别系统 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201611254376.0A CN106682671A (zh) | 2016-12-29 | 2016-12-29 | 图像文字识别系统 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN106682671A true CN106682671A (zh) | 2017-05-17 |
Family
ID=58872298
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201611254376.0A Pending CN106682671A (zh) | 2016-12-29 | 2016-12-29 | 图像文字识别系统 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106682671A (zh) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106682698A (zh) * | 2016-12-29 | 2017-05-17 | 成都数联铭品科技有限公司 | 基于模板匹配的ocr识别方法 |
CN107292280A (zh) * | 2017-07-04 | 2017-10-24 | 盛世贞观(北京)科技有限公司 | 一种印鉴字体自动识别方法及识别装置 |
CN107545391A (zh) * | 2017-09-07 | 2018-01-05 | 安徽共生物流科技有限公司 | 一种基于图像识别的物流单据智能分析与自动存储方法 |
CN109034149A (zh) * | 2017-06-08 | 2018-12-18 | 北京君正集成电路股份有限公司 | 一种字符识别方法及装置 |
CN110390508A (zh) * | 2019-06-10 | 2019-10-29 | 平安科技(深圳)有限公司 | 基于ocr创建日程方法、装置及存储介质 |
CN110942074A (zh) * | 2018-09-25 | 2020-03-31 | 京东数字科技控股有限公司 | 字符切分识别方法、装置、电子设备、存储介质 |
CN113627849A (zh) * | 2021-08-12 | 2021-11-09 | 深圳市全景世纪科技有限公司 | 一种提升自动化货物客户信息采集识别率方法及系统 |
CN113971804A (zh) * | 2020-07-24 | 2022-01-25 | 中国移动通信集团浙江有限公司 | 签名伪造的检测装置、方法、计算设备及存储介质 |
Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07131622A (ja) * | 1993-10-29 | 1995-05-19 | Matsushita Graphic Commun Syst Inc | ファクシミリ装置 |
JPH08129443A (ja) * | 1994-07-13 | 1996-05-21 | Yashima Denki Co Ltd | 筆跡記憶・再現装置及び筆跡再現方法及び画像再現方法 |
JP2001351065A (ja) * | 2000-06-05 | 2001-12-21 | Japan Science & Technology Corp | 文字認識方法、文字認識プログラムを記録したコンピュータ読み取り可能な記録媒体及び文字認識装置 |
JP2002230482A (ja) * | 2000-11-28 | 2002-08-16 | Fujitsu Ltd | 文字認識装置及び文字認識方法 |
JP2004334913A (ja) * | 2004-08-19 | 2004-11-25 | Matsushita Electric Ind Co Ltd | 帳票認識装置及び帳票認識方法 |
JP2006331354A (ja) * | 2005-05-30 | 2006-12-07 | Sharp Corp | 文字認識装置、文字認識方法、並びに、そのプログラムおよび記録媒体 |
JP2008004116A (ja) * | 2007-08-02 | 2008-01-10 | Hitachi Ltd | 映像中の文字検索方法及び装置 |
CN101571921A (zh) * | 2008-04-28 | 2009-11-04 | 富士通株式会社 | 关键字识别方法和装置 |
CN102663378A (zh) * | 2012-03-22 | 2012-09-12 | 杭州新锐信息技术有限公司 | 连笔手写字符的识别方法 |
CN102915440A (zh) * | 2011-08-03 | 2013-02-06 | 汉王科技股份有限公司 | 一种字符切分的方法及装置 |
JP2015215893A (ja) * | 2014-05-08 | 2015-12-03 | 株式会社Nttドコモ | 運動参加者の標識文字の識別方法及び設備 |
CN105447522A (zh) * | 2015-11-25 | 2016-03-30 | 成都数联铭品科技有限公司 | 一种复杂图像文字识别系统 |
CN105654072A (zh) * | 2016-03-24 | 2016-06-08 | 哈尔滨工业大学 | 一种低分辨率医疗票据图像的文字自动提取和识别系统与方法 |
CN105678292A (zh) * | 2015-12-30 | 2016-06-15 | 成都数联铭品科技有限公司 | 基于卷积及递归神经网络的复杂光学文字序列识别系统 |
CN106682698A (zh) * | 2016-12-29 | 2017-05-17 | 成都数联铭品科技有限公司 | 基于模板匹配的ocr识别方法 |
-
2016
- 2016-12-29 CN CN201611254376.0A patent/CN106682671A/zh active Pending
Patent Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07131622A (ja) * | 1993-10-29 | 1995-05-19 | Matsushita Graphic Commun Syst Inc | ファクシミリ装置 |
JPH08129443A (ja) * | 1994-07-13 | 1996-05-21 | Yashima Denki Co Ltd | 筆跡記憶・再現装置及び筆跡再現方法及び画像再現方法 |
JP2001351065A (ja) * | 2000-06-05 | 2001-12-21 | Japan Science & Technology Corp | 文字認識方法、文字認識プログラムを記録したコンピュータ読み取り可能な記録媒体及び文字認識装置 |
JP2002230482A (ja) * | 2000-11-28 | 2002-08-16 | Fujitsu Ltd | 文字認識装置及び文字認識方法 |
JP2004334913A (ja) * | 2004-08-19 | 2004-11-25 | Matsushita Electric Ind Co Ltd | 帳票認識装置及び帳票認識方法 |
JP2006331354A (ja) * | 2005-05-30 | 2006-12-07 | Sharp Corp | 文字認識装置、文字認識方法、並びに、そのプログラムおよび記録媒体 |
JP2008004116A (ja) * | 2007-08-02 | 2008-01-10 | Hitachi Ltd | 映像中の文字検索方法及び装置 |
CN101571921A (zh) * | 2008-04-28 | 2009-11-04 | 富士通株式会社 | 关键字识别方法和装置 |
CN102915440A (zh) * | 2011-08-03 | 2013-02-06 | 汉王科技股份有限公司 | 一种字符切分的方法及装置 |
CN102663378A (zh) * | 2012-03-22 | 2012-09-12 | 杭州新锐信息技术有限公司 | 连笔手写字符的识别方法 |
JP2015215893A (ja) * | 2014-05-08 | 2015-12-03 | 株式会社Nttドコモ | 運動参加者の標識文字の識別方法及び設備 |
CN105447522A (zh) * | 2015-11-25 | 2016-03-30 | 成都数联铭品科技有限公司 | 一种复杂图像文字识别系统 |
CN105678292A (zh) * | 2015-12-30 | 2016-06-15 | 成都数联铭品科技有限公司 | 基于卷积及递归神经网络的复杂光学文字序列识别系统 |
CN105654072A (zh) * | 2016-03-24 | 2016-06-08 | 哈尔滨工业大学 | 一种低分辨率医疗票据图像的文字自动提取和识别系统与方法 |
CN106682698A (zh) * | 2016-12-29 | 2017-05-17 | 成都数联铭品科技有限公司 | 基于模板匹配的ocr识别方法 |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106682698A (zh) * | 2016-12-29 | 2017-05-17 | 成都数联铭品科技有限公司 | 基于模板匹配的ocr识别方法 |
CN109034149A (zh) * | 2017-06-08 | 2018-12-18 | 北京君正集成电路股份有限公司 | 一种字符识别方法及装置 |
CN107292280A (zh) * | 2017-07-04 | 2017-10-24 | 盛世贞观(北京)科技有限公司 | 一种印鉴字体自动识别方法及识别装置 |
CN107545391A (zh) * | 2017-09-07 | 2018-01-05 | 安徽共生物流科技有限公司 | 一种基于图像识别的物流单据智能分析与自动存储方法 |
CN110942074A (zh) * | 2018-09-25 | 2020-03-31 | 京东数字科技控股有限公司 | 字符切分识别方法、装置、电子设备、存储介质 |
CN110942074B (zh) * | 2018-09-25 | 2024-04-09 | 京东科技控股股份有限公司 | 字符切分识别方法、装置、电子设备、存储介质 |
CN110390508A (zh) * | 2019-06-10 | 2019-10-29 | 平安科技(深圳)有限公司 | 基于ocr创建日程方法、装置及存储介质 |
CN113971804A (zh) * | 2020-07-24 | 2022-01-25 | 中国移动通信集团浙江有限公司 | 签名伪造的检测装置、方法、计算设备及存储介质 |
CN113627849A (zh) * | 2021-08-12 | 2021-11-09 | 深圳市全景世纪科技有限公司 | 一种提升自动化货物客户信息采集识别率方法及系统 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106682671A (zh) | 图像文字识别系统 | |
CN106682698A (zh) | 基于模板匹配的ocr识别方法 | |
CN110738207B (zh) | 一种融合文字图像中文字区域边缘信息的文字检测方法 | |
CN111401372B (zh) | 一种扫描文档图文信息提取与鉴别的方法 | |
CN104809481B (zh) | 一种基于自适应色彩聚类的自然场景文本检测方法 | |
US6252988B1 (en) | Method and apparatus for character recognition using stop words | |
CN106611174A (zh) | 一种非常见字体的ocr识别方法 | |
Ferrer et al. | Lbp based line-wise script identification | |
CN110210413A (zh) | 一种基于深度学习的多学科试卷内容检测与识别系统及方法 | |
CN105512611A (zh) | 一种表格图像检测识别方法 | |
CN105447522A (zh) | 一种复杂图像文字识别系统 | |
CN104008384A (zh) | 字符识别方法和字符识别装置 | |
CN105426856A (zh) | 一种图像表格文字识别方法 | |
Yadav et al. | A robust approach for offline English character recognition | |
CN106682667A (zh) | 非常见字体的图像文字ocr识别系统 | |
Yin et al. | Decipherment of historical manuscript images | |
CN112446259A (zh) | 图像处理方法、装置、终端和计算机可读存储介质 | |
CN107463866A (zh) | 一种用于成绩评价的识别手写实验报告的方法 | |
CN109685061A (zh) | 适用于结构化的数学公式的识别方法 | |
CN106778759A (zh) | 用于图像文字识别的特征图片自动生成系统 | |
JP2006053920A (ja) | 文字認識プログラム、文字認識方法および文字認識装置 | |
CN106682666A (zh) | 用于非常见字体ocr识别的特征模板制备方法 | |
Darma et al. | Segmentation of balinese script on lontar manuscripts using projection profile | |
CN112580738B (zh) | 基于改进的AttentionOCR文本识别方法及装置 | |
CN108062548B (zh) | 一种盲文方自适应定位方法及系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20170517 |