CN106584464B - 一种捕获轨迹试验中解耦机构的飞行器模型传动链误差补偿方法 - Google Patents
一种捕获轨迹试验中解耦机构的飞行器模型传动链误差补偿方法 Download PDFInfo
- Publication number
- CN106584464B CN106584464B CN201611268341.2A CN201611268341A CN106584464B CN 106584464 B CN106584464 B CN 106584464B CN 201611268341 A CN201611268341 A CN 201611268341A CN 106584464 B CN106584464 B CN 106584464B
- Authority
- CN
- China
- Prior art keywords
- error
- transmission chain
- decoupling mechanism
- decoupling
- motor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/16—Programme controls
- B25J9/1602—Programme controls characterised by the control system, structure, architecture
- B25J9/1607—Calculation of inertia, jacobian matrixes and inverses
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/16—Programme controls
- B25J9/1628—Programme controls characterised by the control loop
- B25J9/1633—Programme controls characterised by the control loop compliant, force, torque control, e.g. combined with position control
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/16—Programme controls
- B25J9/1628—Programme controls characterised by the control loop
- B25J9/1638—Programme controls characterised by the control loop compensation for arm bending/inertia, pay load weight/inertia
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/16—Programme controls
- B25J9/1679—Programme controls characterised by the tasks executed
- B25J9/1692—Calibration of manipulator
Landscapes
- Engineering & Computer Science (AREA)
- Robotics (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- Automation & Control Theory (AREA)
- Control Of Position Or Direction (AREA)
Abstract
一种捕获轨迹实验中解耦机构的飞行器模型传动链误差补偿方法,其包括步骤,进行机构运动学正解分析确定该解耦机构的末端位姿与电机转角的理论关系矩阵;利用便携式测量臂确定该解耦机构的实际关节参数并与理论值比较得到各自由度关节参数误差;建立期望末端位姿与实际传动链位姿误差对应关系表;建立传动链位姿误差对应的电机角度补偿表;按给定预期位姿通过查阅期望末端位姿与实际传动链位姿误差关系表找出位姿误差,进而查阅传动链位姿误差对应的电机角度补偿表找出电机角度补偿量,调整电机输入角度达到误差补偿的目的,以确保该解耦机构在参与捕获轨迹实验中的精度,即,确保该六自由度机构在参与捕获轨迹实验中的精度,能够准确地补偿分离体机构在各自由度传动部分的误差。
Description
技术领域
本发明涉及一种风洞试验多体分离机构系统的误差补偿方法,属于精密技术领域,特别涉及一种捕获轨迹试验中解耦机构的飞行器模型传动链误差补偿方法。
背景技术
开展风洞多体分离试验,需要一套安装于风洞内部、由计算机控制的分离体模型机构,用以支撑分离体试验模型,并提供六自由度(轴向X、法向Y、侧向Z、俯仰角α、偏航角β和滚转角γ)运动功能。
为了满足多体分离试验要求,分离体模型机构需要具有较大的运动范围,较高的承载能力和运动精度,能以最快的速度达到指定位置,同时应尽可能达到风洞试验段截面的任何地方。要保证试验具有较高的运动精度,就必须进行机构尾支杆处各自由度位姿的误差标定和补偿。可以理解的是,六个自由度包括:三自由度运动位移轴向X、法向Y、侧向Z及三自由度运动角度俯仰角α、偏航角β和滚转角γ,由于机构加工、安装与传动部分存在误差,所以该机构末端各自由度运动的轨迹存在一定的误差。在保证机械加工和安装精度在要求的范围内,由于技术和经济成本,安装和加工误差无法再降低的前提下,本发明提供一种捕获轨迹试验中解耦机构的飞行器模型传动链误差补偿方法,以降低机构末端位姿误差,提高精度。
发明内容
本发明的目的是提供一种捕获轨迹试验中解耦机构的飞行器模型传动链误差补偿方法。
为了达到上述目的,本发明提供一种捕获轨迹试验中解耦机构的飞行器模型传动链误差补偿方法,其中该捕获轨迹试验中解耦机构的飞行器模型传动链误差补偿方法包括步骤:
步骤1,进行机构运动学正解分析确定该解耦机构的末端位姿与电机转角的理论关系矩阵;
步骤2,利用便携式测量臂确定该解耦机构的实际关节参数并与理论值比较得到各自由度关节参数误差;
步骤3,建立期望末端位姿与实际传动链位姿误差对应关系表。
步骤4,建立传动链位姿误差对应的电机角度补偿表。
步骤5,按给定预期位姿通过查阅期望末端位姿与实际传动链位姿误差关系表找出位姿误差,进而查阅传动链位姿误差对应的电机角度补偿表找出电机角度补偿量,调整电机输入角度达到误差补偿的目的。
作为对本发明的该捕获轨迹试验中解耦机构的飞行器模型传动链误差补偿方法的进一步优选的实施例,该步骤1也可以在该步骤2之后,从而先测量该解耦机构在各自由度的关节参数的实际值,再确定该解耦机构的末端位姿与电机转角的理论关系矩阵,以在该步骤3中,建立该解耦机构的误差模型。
作为对本发明的该捕获轨迹试验中解耦机构的飞行器模型传动链误差补偿方法的进一步优选的实施例,在该步骤1中,通过对该解耦机构的各自由度的运动学正解,确定该解耦机构末端位姿与电机转角的理论关系矩阵。
作为对本发明的该捕获轨迹试验中解耦机构的飞行器模型传动链误差补偿方法的进一步优选的实施例,在该步骤2中,通过便携式测量臂测量该解耦机构的实际关节参数并与理论值比较得到各自由度关节参数误差;
作为对本发明的该捕获轨迹试验中解耦机构的飞行器模型传动链误差补偿方法的进一步优选的实施例,在该步骤3中,按线性和非线性误差分别建立机构传动链各部分因关节参数误差引起的该解耦机构端位姿的误差模型,找出期望末端位姿与实际传动链位姿误差对应关系,建立位姿误差表;
作为对本发明的该捕获轨迹试验中解耦机构的飞行器模型传动链误差补偿方法的进一步优选的实施例,在该步骤4中,根据传动链位姿误差值进行机构运动学逆解分析以分别得到该解耦机构在各自由度的电机角度的补偿量,从而建立误差补偿表。
本发明的该捕获轨迹试验中解耦机构的飞行器模型传动链误差补偿方法的优势在于:
该捕获轨迹试验中解耦机构的飞行器模型传动链误差补偿方法包括以下步骤:进行机构运动学正解分析确定该解耦机构的末端位姿与电机转角的理论关系矩阵;测量该解耦机构的实际关节参数并与理论值比较得到各自由度关节参数误差;建立期望末端位姿与实际传动链位姿误差对应关系表;建立传动链位姿误差对应的电机角度补偿表;按给定预期位姿通过查阅期望末端位姿与实际传动链位姿误差关系表找出位姿误差,进而查阅传动链位姿误差对应的电机角度补偿表找出电机角度补偿量,调整电机输入角度达到误差补偿的目的。确保该解耦机构在参与捕获轨迹试验中的精度,即,确保该六自由度机构在参与捕获轨迹试验中的精度,能够准确地补偿分离体机构在各自由度传动部分的误差。
该捕获轨迹试验中解耦机构的飞行器模型传动链误差补偿方法将该解耦机构的末端位姿的复杂误差按照传动链的组成部分进行分解,分类计算,以简化误差量的获得和判断引起误差原因的过程。该捕获轨迹试验中解耦机构的飞行器模型传动链误差补偿方法通过机构运动学正解分析得到该六自由度机构的位姿与电机转角的理论关系矩阵,测量机构具体参数,得到参数误差,依次找出因参数误差引起的末端位姿误差,建立期望末端位姿与实际传动链位姿误差对应关系表;根据机构末端位姿的最终误差值,进行机构运动学逆解分析以分别得到该解耦机构在各自由度的电机角度的补偿量,建立传动链位姿误差对应的电机角度补偿表,最后查出补偿量调整电机输入转角进行误差补偿。
附图说明
为了获得本发明的上述和其他优点和特点,以下将参照附图中所示的本发明的具体实施例对以上概述的本发明进行更具体的说明。应理解的是,这些附图仅示出了本发明的典型实施例,因此不应被视为对本发明的范围的限制,通过使用附图,将对本发明进行更具体和更详细的说明和阐述。在附图中:
图1是六自由度机构的立体示意图。
图2是六自由度机构的直线变圆弧运动简图。
图3是六自由度机构的偏航运动简图。
图4是六自由度机构的俯仰运动简图。
具体实施方式
以下描述用于揭露本发明以使本领域技术人员能够实现本发明。以下描述中的优选实施例只作为举例,本领域技术人员可以想到其他显而易见的变型。在以下描述中界定的本发明的基本原理可以应用于其他实施方案、变形方案、改进方案、等同方案以及没有背离本发明的精神和范围的其他技术方案。
如图1至图4,一个用于捕获轨迹试验中的六自由度机构解耦机构,其中该六自由度机构包括一个Z向运动机构1、一个X向运动机构2、一个偏航β运动机构3、一个Y向运动机构4、一个俯仰α运动机构5以及一个滚转γ运动机构6,其中该Z向运动机构1、该X向运动机构2、该偏航β运动机构3、该Y向运动机构4、该俯仰α运动机构5以及该滚转γ运动机构6采用串联的方式,以形成该六自由度机构,这样,不仅能够使该六自由度机构的结构更加紧凑,而且还能够保证该六自由度机构的可靠性,以使该六自由度机构的每个自由度都能够单独地调整,并且使多个自由度可以解耦。
可以理解的是,该Z向运动机构1、该X向运动机构2和该Y向运动机构4的传动组成部分都有电机、减速机、联轴器和滚珠丝杠,该偏航β运动机构2和该俯仰α运动机构5的传动组成部分都有电机、减速机、联轴器、滚转丝杆刚和直线变圆弧机构,该滚转γ运动机构6的传动组成部分由电机和减速机。先进行机构运动学正解分析确定该解耦机构的末端位姿与电机转角的理论关系矩阵;然后测量该解耦机构的实际关节参数并与理论值比较得到各自由度关节参数误差;进而建立期望末端位姿与实际传动链位姿误差对应关系表;建立传动链位姿误差对应的电机角度补偿表;最后按给定预期位姿通过查阅期望末端位姿与实际传动链位姿误差关系表找出位姿误差,进而查阅传动链位姿误差对应的电机角度补偿表找出电机角度补偿量,调整电机输入角度达到误差补偿的目的。以确保该解耦机构在参与捕获轨迹试验中的精度,即,确保该六自由度机构在参与捕获轨迹试验中的精度,能够准确地补偿分离体机构在各自由度传动部分的误差。以保证试验精度和试验结果的可靠性。
一、机构运动学正解分析确定该解耦机构的末端位姿与电机转角的理论关系矩阵
设与六自由度对应的伺服电机转子连接的编码器获得电机高精度的旋转角度分别为:θx、θy、θz、θα、θβ和θγ,经机构运动学的正解算法得到飞行器末端位姿的三个直线位移rx、ry和rz三个角位移α、β和γ。具体过程如下:
当除去滚转自由度外其余五自由度对应的电机旋转角度分别为θx、θy、θz、θα、θβ和θγ记与之对应的直线滑块的位移分别为:qx、qy、qz、qp和qf。该六自由度机构的末端X、Y、Z向位移,即为直线滑块的位移qx、qy、qz,直线滑块的位移与电机旋转角度的关系为:其中Ph为丝杠导程理论值,分别为:Px=Pz,Py,Pα=Pβ,i为减速机的减速比理论值为分别为:ix=iz,iy=iα=iβ,iγ。滚转角与对应的电机转角关系为:所以有
偏航直线滑块和俯仰直线滑块的滑移距离分别为qp和qf,规定滑移方向正向为自伺服电机指向滚珠丝杆一侧。根据运动学分析求得执行末端的俯仰角α和偏航角β分别为qf和qp的函数,具体分析如下:
该偏航运动机构3可以简化成以下机构简图,如图3所示。其中,以圆弧导轨的旋转中心为偏航坐标原点,建立该偏航β运动机构3的随体坐标系,坐标原点为O。该偏航运动机构3的初始位置如上图,A点为偏航机构直线滑块的初始位置,坐标为(x0,z0),B点为连杆与偏航箱体的转动轴处,转动轴与偏航中心的连线与X向夹角为θ0。偏航转轴做弧形运动的圆弧半径为R。
设偏航电机驱动偏航直线滑块A运动位移S,则连杆带动偏航部分绕O做旋转运动。根据该偏航β运动机构3的实际布置情况,相应偏航机构连杆位置表示为A'B',∠BOB'就是偏航角β。
该偏航β运动机构3的设计尺寸R,L,x0,θ0的初始值已知,
由几何关系可知
当滑块A运动位移S时,A'点的坐标变为A'(x0,z0+S),B'点坐标为B'(Rcos(θ0+β),Rsin(θ0+β)),则有:
滑块A在直线导轨上运动的压力角为:
连杆AB长度为L,则有:
L2=(Rcos(θ0+β)-x0)2+(Rsin(θ0+β)-z0-S)2 (4)
由上式可得:
由运动学分析可得出偏航角度与直线滑块位移的关系:
该俯仰α运动机构5可以简化成以下机构简图,如图4所示。其中,以圆弧导轨的旋转中心为俯仰坐标原点,建立俯仰机构的随体坐标系,坐标原点为O。该俯仰α运动机构5的初始位置如上图,C点为该俯仰α运动机构5的直线滑块的初始位置,坐标为(x0,y0),D点为连杆与俯仰箱体的转动轴处,转动轴与俯仰中心的连线与X向夹角为Φ0。俯仰转轴做弧形运动的圆弧半径为R。
设俯仰电机驱动俯仰直线滑块C运动位移S,则,连杆带动俯仰部分绕O旋转运动。根据该俯仰α运动机构5的实际布置情况,相应俯仰机构连杆位置变为C'D',∠DOD'就是俯仰角α。
该俯仰α运动机构5的设计尺寸分别为R,L,y0,
由几何关系可知
当滑块C运动位移S时,C点的坐标变为C'(x0+S,y0),D点坐标为D'则有:
滑块C在直线导轨上运动的压力角为:
连杆CD长度为L,则有:
由上式可得:
由运动学分析可得出俯仰角度与直线位移的关系:
α=f(S) (12)
β=κ(S) (13)
其中函数f(qf)和κ(qp)由式(11)和式(6)确定,
值得注意的是,式(14)、式(15)式(16)都采用的是角度制而不是弧度制。
在该六自由度机构运动的任何时候,执行末端(外挂物)质心的位置矢量只和X向滑块,Y向滑块,Z向滑块的运动有关系,该六自由度机构的六个自由度完全解耦,每个自由度可以独立控制,则机构各自由度末端位姿与对应的滑块位移关系如下:
结合(1)和(6)可得该六自由度机构各自由度末端的理论位姿矩阵为:
根据以上关系在电机旋转角度已知的条件下可分别求得该六自由度机构各自由度末端的理论位姿:rx、ry、rz、α、β和γ。
二、确定机构各关节参数实际值得到关节参数误差
查阅资料说明书,确定各自由度丝杠传递精度和电机理论控制精度,用便携式机械臂测量俯仰和偏航直线变圆弧机构的参数误差。具体参数情况如下表:
表1:机构关节参数误差表
三、建立传动链各部分位姿误差表
首先进行误差分析,结合机构运动链结构参数一一分析各自由度位姿误差产生原因,各自由度位姿误差分别记为Δrx、Δry、Δrz、Δα、Δβ和Δγ。传动链各部分位姿误差表具体过程如下:
该六自由度机构在X、Y和Z向误差产生原因有:丝杠传递精度(导程精度和轴向刚性)引起的误差和电机理论控制精度引起的误差,均为线性误差其中:
X向位移误差Δrx与各个参数误差的关系:
(a)丝杠传递精度引起的误差计算。
(a.1)丝杠导程精度引起的误差计算,其中丝杠的导程精度为K um/mm,丝杠正转引起的误差为:
丝杠反转由导程精度引起的行程误差为:
(a.2)丝杠轴向弹性变形引起的误差计算,其中X方向行程Hx,丝杠沟槽谷直径为d1,由受力分析可知,X方向等效为一个丝杠驱动时最大轴向力为Fx,而实际为两个丝杠同步驱动,取1.5的载荷分配系数,则每个丝杠所受的最大轴向力为Fx',于是,X方向丝杠轴的轴向刚性引起的误差计算公式Δ2为,
(b)电机理论控制精度引起的误差计算。
电机编码器的参数为n线,丝杠导程Px,且X向的减速比为ix,则由于电机引起的误差为:
值得注意的是由丝杠导程精度引起的误差大小要根据丝杠正转与反转两种情况分析:
丝杠正转时,直线位移为rx,X向位移误差Δrx为:
Δx=rx'-rx=-|Δ1x|-|Δ2x|-|Δ3x| (23)
丝杠反转时,直线位移为rx,X向位移误差Δrx为:
Δx=rx'-rx=|Δ1x'|+|Δ2x|-|Δ3x| (24)
该六自由度机构的Y向位移误差Δry与各个参数误差的关系:
(c)丝杠传递精度引起的误差计算。
(c.1)丝杠导程精度引起的误差计算,其中丝杠的导程精度为K um/mm,丝杠正转引起的误差为
丝杠反转由导程精度引起的行程误差为:
(c.2)丝杠轴向弹性变形引起的误差计算,其中Y方向行程Hy,丝杠沟槽谷直径d2,
受力分析知,Y方向丝杠驱动时最大轴向力为Fy,于是,Y方向丝杠轴的轴向刚性引起
的误差计算公式Δ2为,
(d)电机理论控制精度引起的误差计算,其中电机编码器的参数为n线,丝杠导程Py,且Y向的减速比为iy,则由于电机引起的误差为:
丝杠正转时,直线位移为ry,Y向位移误差Δry为:
Δy=ry'-ry=-|Δ1y|-|Δ2y|-|Δ3y| (30)
丝杠反转时,直线位移为ry,Y向位移误差Δry为:
Δy=ry'-ry=|Δ1y'|+|Δ2y|-|Δ3y| (31)
Z向位移误差Δrz与各个参数误差的关系:
丝杆传递精度引起的误差计算。
丝杠导程精度引起的误差计算,其中丝杠的导程精度为K um/mm,丝杠正转引起的误差为
丝杠反转由导程精度引起的行程误差为:
丝杠轴向刚性引起的误差计算,其中Z方向行程Hz,丝杠沟槽谷直径d3,由受力分析可知,Z方向等效为一个丝杠驱动时最大轴向力为Fz,而实际为两个丝杠同步驱动,取1.5的载荷分配系数,则每个丝杠所受的最大轴向力为Fz',于是,Z方向丝杠轴的轴向刚性引起的误差Δ2为,
(e)电机理论控制精度引起的误差计算
电机编码器的参数为n线,丝杠导程Pz,且Z向的减速比为iz,则由于电机引起的误差为:
综合以上可知,丝杠正转时,直线位移为rz,Z向位移误差Δrz为:
Δz=rz'-rz=-|Δ1z|-|Δ2z|-|Δ3z| (37)
丝杠反转时,直线位移为rz,Z向位移误差Δrz为:
Δz=rz'-rz=|Δ1z'|+|Δ2z|-|Δ3z| (38)
该六自由度机构的滚转角γ误差产生原因是:电机的理论控制精度和减速器旋转精度引起的误差,为线性误差。
(1)电机的理论控制精度引起的误差为:
综上可知,滚转轴的传递误差为:Δγ=Δγ1(37)
该六自由度机构的偏航角β与俯仰角α误差产生原因相似,主要有:直线变圆弧机构尺寸参数误差、丝杠传递精度(导程精度和轴向刚性)引起的误差和电机理论控制精度引起的误差,为非线性误差。
偏航角误差Δβ与各参数误差的关系:
(1)机构误差:
经测量,弧形导轨带动机构运动的半径R1,误差ΔR1、直线导轨到弧形导轨圆心的距离x1,误差Δx1。直线导轨滑块在初始位置时Z11,误差由于直线导轨和滑块的变形以及装配工艺,误差ΔZ1。连杆的长度L1,误差ΔL1。在初始位置的角度θ0,由于是在初始位置的角度值,且设定其值为零,误差为Δθ0=0。
S1是取机构偏航角为β时,偏航电机驱动直线滑块的位移,滚珠丝杠的导程精度为K um/mm。
(2)滚珠丝杠导程误差:
丝杠正转时,
丝杠反转时,
(3)丝杠轴向弹性变形引起的误差计算:
丝杠轴向直线行程Hβ,丝杠沟槽谷直径d4,由受力分析可知,丝杠驱动时最大轴向力为Fβ,于是,丝杠轴的轴向刚性引起的误差计算公式ΔS12为:
(4)电机理论控制精度引起的误差计算:
电机编码器的参数为n线,丝杠导程Pβ,且偏航的减速比为iβ,则由于电机引起的误差为:
由此可以得电机正转时,偏航电机驱动直线滑块的位移S的误差:
ΔS1=-|ΔS11|-ΔS12-|ΔS13| (44)
电机反转时,偏航电机驱动直线滑块的位移S的误差:
ΔS1=|ΔS11'|+ΔS12-|ΔS13| (45)
由运动学分析可得出偏航角度与直线滑块位移的关系:
上式表明了偏航角β与各个参数间的关系:
β=F(R1,L1,X1,Z1,S1,θ0) (47)
R1、L1、X1、Z1、S1、θ0存在的误差分别表示为ΔR1、ΔL1、ΔX1、ΔZ1、ΔS1、Δθ0,则得到的实际偏航角为:
β'=F(R1+ΔR1,L1+ΔL1,X1+ΔX1,Z1+ΔZ1,S1+ΔS1,θ0+Δθ0) (48)
于是有:
Δβ=β'-β (49)
当这些误差都比较小时,可以简化为诸如下式的形式:
通过对正解公式进行偏微分,可以分别求得:
该六自由度机构的俯仰角误差Δα与各参数的关系:
(1)机构误差:
弧形导轨带动机构运动的半径为R2,误差ΔR2;直线导轨到弧形导轨圆心的距离为y2,误差Δy2;直线导轨滑块在初始位置时X2,误差由于直线导轨和滑块的变形以及装配工艺,误差ΔX2;连杆的长度L2,误差ΔL2;在初始位置的角度由于是在初始位置的角度值,且设定其值为零,误差为
S2是取机构俯仰角为α时,偏航电机驱动直线滑块的位移,滚珠丝杠的导程精度为K um/mm。
(2)滚珠丝杠导程误差:
丝杠正转时,
丝杠反转时,
(3)丝杠轴向弹性变形引起的误差计算:
丝杠轴向直线行程Hα,丝杠沟槽谷直径d5,由受力分析可知,丝杠驱动时最大轴向力为Fα,于是,丝杠轴的轴向刚性引起的误差计算公式ΔS22为:
(4)电机理论控制精度引起的误差计算:
电机编码器的参数为n线,丝杠导程Pα,且偏航的减速比为iα,则由于电机引起的误差为:
由此可以得电机正转时,偏航电机驱动直线滑块的位移S的误差:
ΔS2=-|ΔS21|-ΔS22-|ΔS23| (61)
电机反转时,偏航电机驱动直线滑块的位移S的误差:
ΔS2=|ΔS21'|+ΔS22-|ΔS23| (62)
由运动学分析可得出俯仰角度与直线位移的关系:
上式表明了俯仰角α与各个参数间的关系:
R2、L2、X2、Z2、S2、φ0存在的误差表示为ΔR2、ΔL2、ΔX2、ΔZ2、ΔS2、Δφ0,得到实际的俯仰角α'为:
于是有:
Δα=α'-α (66)当这些误差都比较小时,可以简化为下列形式的关系式:
通过对正解公式进行偏微分,可以分别求得:
经过以上各自由度传动链误差分析计算,建立如下位姿误差表:
表2:机构位姿误差表
四、根据末端位姿误差大小逆解得到电机转角补偿量,进行误差补偿
经过以上分析计算分别求得各个自由度位姿误差的表达式,根据实际误差和末端的理论位姿矩阵表达式(17)对机构作运动学逆解,机构位姿误差与电机补偿角度关系矩阵,结果如下:
最后根据机构位姿误差与电机补偿角度关系,建立位姿误差补偿表,如下:
表3:机构误差补偿表
得到位姿误差后,通过查阅机构误差补偿表得到电机角度补偿量,调整电机角度进行误差补偿。
根据本发明,该捕获轨迹试验中解耦机构的飞行器模型传动链误差补偿方法包括以下步骤:
步骤1,进行机构运动学正解分析确定该解耦机构的末端位姿与电机转角的理论关系矩阵;
步骤2,利用便携式测量臂确定该解耦机构的实际关节参数并与理论值比较得到各自由度关节参数误差;
步骤3,建立期望末端位姿与实际传动链位姿误差对应关系表。
步骤4,建立传动链位姿误差对应的电机角度补偿表。
步骤5,按给定预期位姿通过查阅期望末端位姿与实际传动链位姿误差关系表找出位姿误差,进而查阅传动链位姿误差对应的电机角度补偿表找出电机角度补偿量,调整电机输入角度达到误差补偿的目的。
以上对本发明的一个实施例进行了详细说明,但该内容仅为本发明的较佳实施例,不能被认为用于限定本发明的实施范围。凡依本发明申请范围所作的均等变化与改进等,均应仍归属于本发明的专利涵盖范围之内。
Claims (2)
1.一种捕获轨迹试验中解耦机构的飞行器模型传动链误差补偿方法,其特征在于,
针对的六自由度机构包括一个Z向运动机构、一个X向运动机构、一个偏航β运动机构、一个Y向运动机构、一个俯仰α运动机构以及一个滚转γ运动机构,其中该Z向运动机构、该X向运动机构、该偏航β运动机构、该Y向运动机构、该俯仰α运动机构以及该滚转γ运动机构采用串联的方式;
该捕获轨迹试验中解耦机构的飞行器模型传动链误差补偿方法包括以下步骤:
步骤1,进行机构运动学正解分析确定该解耦机构的末端位姿与电机转角的理论关系矩阵;通过对该解耦机构的各自由度的运动学正解,确定该解耦机构末端位姿与电机转角的理论关系矩阵;
步骤2,利用便携式测量臂确定该解耦机构的实际关节参数并与理论值比较得到各自由度关节参数误差;
步骤3,建立期望末端位姿与实际传动链位姿误差对应关系表按线性和非线性误差分别建立机构传动链各部分因关节参数误差引起的该解耦机构端位姿的误差模型,找出期望末端位姿与实际传动链位姿误差对应关系,建立位姿误差表;
步骤4,建立传动链位姿误差对应的电机角度补偿表,根据传动链位姿误差值进行机构运动学逆解分析以分别得到该解耦机构在各自由度的电机角度的补偿量,从而建立误差补偿表;
步骤5,按给定预期位姿通过查阅期望末端位姿与实际传动链位姿误差关系表找出位姿误差,进而查阅传动链位姿误差对应的电机角度补偿表找出电机角度补偿量,调整电机输入角度达到误差补偿的目的。
2.如权利要求1所述的一种捕获轨迹试验中解耦机构的飞行器模型传动链误差补偿方法,其特征在于,该步骤1也可以在该步骤2之后,从而先测量该解耦机构在各自由度的关节参数的实际值,再确定该解耦机构的末端位姿与电机转角的理论关系矩阵,以在该步骤3中,建立该解耦机构的误差模型。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201611268341.2A CN106584464B (zh) | 2016-12-31 | 2016-12-31 | 一种捕获轨迹试验中解耦机构的飞行器模型传动链误差补偿方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201611268341.2A CN106584464B (zh) | 2016-12-31 | 2016-12-31 | 一种捕获轨迹试验中解耦机构的飞行器模型传动链误差补偿方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106584464A CN106584464A (zh) | 2017-04-26 |
CN106584464B true CN106584464B (zh) | 2019-11-12 |
Family
ID=58582073
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201611268341.2A Active CN106584464B (zh) | 2016-12-31 | 2016-12-31 | 一种捕获轨迹试验中解耦机构的飞行器模型传动链误差补偿方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106584464B (zh) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107121256B (zh) * | 2017-05-02 | 2018-10-09 | 中国空气动力研究与发展中心超高速空气动力研究所 | 一种连续在轨运动的六自由度捕获轨迹试验方法 |
US11181442B2 (en) | 2019-04-18 | 2021-11-23 | Dalian University Of Technology | Six-DOF motion testing and motion parameter decoupling method for rotors based on shaft-disk |
CN110044613B (zh) * | 2019-04-18 | 2020-04-28 | 大连理工大学 | 基于轴盘的转子六自由度运动测试及其运动参数解耦方法 |
CN111707441B (zh) * | 2020-06-23 | 2021-04-16 | 重庆大学 | 联动轨迹捕获实验中主体和分离体解耦机构运动分配方法 |
CN111693245B (zh) * | 2020-06-23 | 2021-04-27 | 中国空气动力研究与发展中心超高速空气动力研究所 | 连续在轨联动轨迹捕获实验的非解耦运动分配方法 |
CN112054471B (zh) * | 2020-09-16 | 2021-08-06 | 中国空气动力研究与发展中心高速空气动力研究所 | 一种风洞连续变滚转机构线缆保护装置 |
CN114611362B (zh) * | 2022-03-22 | 2023-08-15 | 中国工程物理研究院流体物理研究所 | 一种大型器械工作面的安装调试方法、电子装置及介质 |
CN116399543B (zh) * | 2023-04-10 | 2023-12-12 | 四川省机械研究设计院(集团)有限公司 | 基于Hexaglide并联机构的六自由度风洞模型支撑系统及控制方法 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102314690A (zh) * | 2011-06-07 | 2012-01-11 | 北京邮电大学 | 机械臂运动学参数分离辨识方法 |
CN102806560A (zh) * | 2012-08-24 | 2012-12-05 | 电子科技大学 | 一种可自动消除机器人运动累积误差的方法 |
CN103144110A (zh) * | 2013-02-26 | 2013-06-12 | 中国科学院自动化研究所 | 一种悬臂末端振动分析与误差补偿方法 |
CN103968761A (zh) * | 2014-05-28 | 2014-08-06 | 中科华赫(北京)科技有限责任公司 | 串联关节式机器人绝对定位误差校准方法及标定系统 |
CN104408299A (zh) * | 2014-11-17 | 2015-03-11 | 广东产品质量监督检验研究院 | 基于距离识别冗余运动学参数的机器人位置误差补偿方法 |
CN104516268A (zh) * | 2013-09-28 | 2015-04-15 | 沈阳新松机器人自动化股份有限公司 | 一种基于模糊神经网络的机器人标定误差补偿方法 |
CN104535027A (zh) * | 2014-12-18 | 2015-04-22 | 南京航空航天大学 | 一种变参数误差辨识的机器人精度补偿方法 |
CN104608129A (zh) * | 2014-11-28 | 2015-05-13 | 江南大学 | 基于平面约束的机器人标定方法 |
CN104731103A (zh) * | 2015-01-21 | 2015-06-24 | 北京航空航天大学 | 一种多层闭环控制策略的Stewart六自由度飞行模拟平台 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5991857B2 (ja) * | 2011-06-10 | 2016-09-14 | 三星電子株式会社Samsung Electronics Co.,Ltd. | ロボットの均衡制御装置及びその制御方法 |
-
2016
- 2016-12-31 CN CN201611268341.2A patent/CN106584464B/zh active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102314690A (zh) * | 2011-06-07 | 2012-01-11 | 北京邮电大学 | 机械臂运动学参数分离辨识方法 |
CN102806560A (zh) * | 2012-08-24 | 2012-12-05 | 电子科技大学 | 一种可自动消除机器人运动累积误差的方法 |
CN103144110A (zh) * | 2013-02-26 | 2013-06-12 | 中国科学院自动化研究所 | 一种悬臂末端振动分析与误差补偿方法 |
CN104516268A (zh) * | 2013-09-28 | 2015-04-15 | 沈阳新松机器人自动化股份有限公司 | 一种基于模糊神经网络的机器人标定误差补偿方法 |
CN103968761A (zh) * | 2014-05-28 | 2014-08-06 | 中科华赫(北京)科技有限责任公司 | 串联关节式机器人绝对定位误差校准方法及标定系统 |
CN104408299A (zh) * | 2014-11-17 | 2015-03-11 | 广东产品质量监督检验研究院 | 基于距离识别冗余运动学参数的机器人位置误差补偿方法 |
CN104608129A (zh) * | 2014-11-28 | 2015-05-13 | 江南大学 | 基于平面约束的机器人标定方法 |
CN104535027A (zh) * | 2014-12-18 | 2015-04-22 | 南京航空航天大学 | 一种变参数误差辨识的机器人精度补偿方法 |
CN104731103A (zh) * | 2015-01-21 | 2015-06-24 | 北京航空航天大学 | 一种多层闭环控制策略的Stewart六自由度飞行模拟平台 |
Non-Patent Citations (1)
Title |
---|
风洞试验绳牵引冗余并联机器人的刚度增强与运动控制;刘欣等;《航空学报》;20090625(第06期);1156-1163 * |
Also Published As
Publication number | Publication date |
---|---|
CN106584464A (zh) | 2017-04-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106584464B (zh) | 一种捕获轨迹试验中解耦机构的飞行器模型传动链误差补偿方法 | |
CN101907441B (zh) | 滚珠丝杠的激光螺距测量仪及其测量方法 | |
CN109458958B (zh) | 一种四轴视觉测量装置中的转台中心位置的标定方法 | |
CN102944197B (zh) | 一种双转台结构的五轴加工中心精度检测方法 | |
CN207501862U (zh) | 一种可升降式双目立体视觉测量装置 | |
CN107081787B (zh) | 基于工业机器人内置传感器信号的运动特性检测方法 | |
CN109520420B (zh) | 一种转台回转中心的空间坐标确定方法 | |
CN110900306B (zh) | 一种球杆仪安装误差与机床几何误差的分离方法 | |
CN203587046U (zh) | 圆柱体形位公差测量装置 | |
CN104006964A (zh) | 谐波传动轮齿啮合及柔轮变形动力学特性测试系统 | |
CN107202692A (zh) | 一种滚珠丝杠副轴向静刚度测量装置及方法 | |
CN101377418A (zh) | 基于旋转-直线运动的接触式大型异型玻璃外廓检测装置和方法 | |
CN106840080A (zh) | 空间三点平面校准机械手以及重置自查方法以及校准方法 | |
CN107144251B (zh) | 用于气浮转子陀螺仪动压马达间隙测量的自动施力装置及方法 | |
CN104007768A (zh) | 四轴共平面对位平台的回归原点方法 | |
CN102519361A (zh) | 激光跟踪仪专用工作台及激光跟踪测量方法 | |
CN105758285B (zh) | 基于并行误差分离法的大型圆柱廓形在线测量重构方法 | |
CN108362493A (zh) | 一种数控机床直线轴转角误差快速检测方法 | |
CN208254413U (zh) | 一种移动式三坐标激光测量装置 | |
CN106774443A (zh) | 一种星载新型高精度高稳定度二维指向机构 | |
CN103900478A (zh) | 一种平面运动测量装置及方法 | |
CN206330482U (zh) | 一种目标空间角位置模拟器 | |
CN110411347B (zh) | 数控机床工作台瞬时旋转中心的检测装置及其检测方法 | |
CN102519671A (zh) | 一种用于测量陀螺仪静平衡的基于双目视觉的空间位姿测量装置 | |
CN102519672B (zh) | 一种用于测量陀螺仪静平衡的基于单目原理的六自由度位姿测量装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |