CN106098842A - 使用外延剥离和冷焊结合的半导体太阳能电池的集成太阳能收集器 - Google Patents
使用外延剥离和冷焊结合的半导体太阳能电池的集成太阳能收集器 Download PDFInfo
- Publication number
- CN106098842A CN106098842A CN201610486903.4A CN201610486903A CN106098842A CN 106098842 A CN106098842 A CN 106098842A CN 201610486903 A CN201610486903 A CN 201610486903A CN 106098842 A CN106098842 A CN 106098842A
- Authority
- CN
- China
- Prior art keywords
- substrate
- metal
- battery
- active photovoltaic
- thin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000003466 welding Methods 0.000 title claims abstract description 18
- 239000004065 semiconductor Substances 0.000 title description 9
- 239000000758 substrate Substances 0.000 claims abstract description 61
- 238000000034 method Methods 0.000 claims abstract description 49
- 239000002184 metal Substances 0.000 claims abstract description 42
- 229910052751 metal Inorganic materials 0.000 claims abstract description 42
- 239000010409 thin film Substances 0.000 claims abstract description 25
- 150000001875 compounds Chemical class 0.000 claims abstract description 17
- 239000004033 plastic Substances 0.000 claims abstract description 17
- 229920003023 plastic Polymers 0.000 claims abstract description 17
- 239000011888 foil Substances 0.000 claims abstract description 14
- 239000010410 layer Substances 0.000 claims description 71
- 239000011241 protective layer Substances 0.000 claims description 31
- 230000012010 growth Effects 0.000 claims description 17
- 230000005670 electromagnetic radiation Effects 0.000 claims description 14
- 239000010408 film Substances 0.000 claims description 11
- 239000011248 coating agent Substances 0.000 claims description 9
- 238000000576 coating method Methods 0.000 claims description 9
- 238000005530 etching Methods 0.000 claims description 8
- 229920001721 polyimide Polymers 0.000 claims description 6
- 238000001816 cooling Methods 0.000 claims description 5
- 229910052737 gold Inorganic materials 0.000 claims description 3
- 238000003860 storage Methods 0.000 claims description 2
- 239000004642 Polyimide Substances 0.000 claims 5
- 230000008021 deposition Effects 0.000 claims 1
- 229910052709 silver Inorganic materials 0.000 claims 1
- 238000004519 manufacturing process Methods 0.000 abstract description 5
- 239000000463 material Substances 0.000 description 44
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 25
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 24
- 230000008569 process Effects 0.000 description 15
- 238000010521 absorption reaction Methods 0.000 description 13
- 238000006243 chemical reaction Methods 0.000 description 9
- 230000005611 electricity Effects 0.000 description 9
- 238000004770 highest occupied molecular orbital Methods 0.000 description 9
- 238000012360 testing method Methods 0.000 description 9
- 229910000530 Gallium indium arsenide Inorganic materials 0.000 description 8
- 238000010586 diagram Methods 0.000 description 8
- 238000005516 engineering process Methods 0.000 description 8
- 239000010931 gold Substances 0.000 description 8
- 230000005693 optoelectronics Effects 0.000 description 8
- 230000008859 change Effects 0.000 description 7
- 239000000126 substance Substances 0.000 description 7
- 230000008901 benefit Effects 0.000 description 6
- 239000004020 conductor Substances 0.000 description 6
- 238000005286 illumination Methods 0.000 description 6
- 238000004768 lowest unoccupied molecular orbital Methods 0.000 description 6
- 230000003287 optical effect Effects 0.000 description 6
- 239000011368 organic material Substances 0.000 description 6
- 239000002800 charge carrier Substances 0.000 description 5
- 239000013078 crystal Substances 0.000 description 5
- 230000007547 defect Effects 0.000 description 5
- 230000005684 electric field Effects 0.000 description 5
- 239000011230 binding agent Substances 0.000 description 4
- 238000013461 design Methods 0.000 description 4
- 230000004907 flux Effects 0.000 description 4
- 238000002835 absorbance Methods 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- XCJYREBRNVKWGJ-UHFFFAOYSA-N copper(II) phthalocyanine Chemical compound [Cu+2].C12=CC=CC=C2C(N=C2[N-]C(C3=CC=CC=C32)=N2)=NC1=NC([C]1C=CC=CC1=1)=NC=1N=C1[C]3C=CC=CC3=C2[N-]1 XCJYREBRNVKWGJ-UHFFFAOYSA-N 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 3
- 230000005284 excitation Effects 0.000 description 3
- 230000002349 favourable effect Effects 0.000 description 3
- 238000001451 molecular beam epitaxy Methods 0.000 description 3
- 230000005855 radiation Effects 0.000 description 3
- 230000003595 spectral effect Effects 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 238000004833 X-ray photoelectron spectroscopy Methods 0.000 description 2
- 229910021417 amorphous silicon Inorganic materials 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 229910021419 crystalline silicon Inorganic materials 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- MRNHPUHPBOKKQT-UHFFFAOYSA-N indium;tin;hydrate Chemical compound O.[In].[Sn] MRNHPUHPBOKKQT-UHFFFAOYSA-N 0.000 description 2
- 230000001678 irradiating effect Effects 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000013086 organic photovoltaic Methods 0.000 description 2
- 229920003223 poly(pyromellitimide-1,4-diphenyl ether) Polymers 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000001004 secondary ion mass spectrometry Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- JRIGVWDKYXCHMG-UHFFFAOYSA-N (5-arsoroso-2-hydroxyphenyl)azanium;chloride Chemical compound Cl.NC1=CC([As]=O)=CC=C1O JRIGVWDKYXCHMG-UHFFFAOYSA-N 0.000 description 1
- MARUHZGHZWCEQU-UHFFFAOYSA-N 5-phenyl-2h-tetrazole Chemical compound C1=CC=CC=C1C1=NNN=N1 MARUHZGHZWCEQU-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 206010021703 Indifference Diseases 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 1
- IKWTVSLWAPBBKU-UHFFFAOYSA-N a1010_sial Chemical compound O=[As]O[As]=O IKWTVSLWAPBBKU-UHFFFAOYSA-N 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000006117 anti-reflective coating Substances 0.000 description 1
- 229910000413 arsenic oxide Inorganic materials 0.000 description 1
- 229960002594 arsenic trioxide Drugs 0.000 description 1
- 238000000089 atomic force micrograph Methods 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000010261 cell growth Effects 0.000 description 1
- 239000013626 chemical specie Substances 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000001143 conditioned effect Effects 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000011889 copper foil Substances 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 230000001351 cycling effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 238000005538 encapsulation Methods 0.000 description 1
- 230000005281 excited state Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000002803 fossil fuel Substances 0.000 description 1
- 239000003574 free electron Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 230000005283 ground state Effects 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 230000004807 localization Effects 0.000 description 1
- 230000013011 mating Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 229910000510 noble metal Inorganic materials 0.000 description 1
- 229950008475 oxophenarsine Drugs 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000005622 photoelectricity Effects 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 238000006862 quantum yield reaction Methods 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 230000003252 repetitive effect Effects 0.000 description 1
- 230000027756 respiratory electron transport chain Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000026280 response to electrical stimulus Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 238000004627 transmission electron microscopy Methods 0.000 description 1
- 230000005641 tunneling Effects 0.000 description 1
- 238000001039 wet etching Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/02—Details
- H01L31/0232—Optical elements or arrangements associated with the device
- H01L31/02327—Optical elements or arrangements associated with the device the optical elements being integrated or being directly associated to the device, e.g. back reflectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/0248—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
- H01L31/0256—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
- H01L31/0264—Inorganic materials
- H01L31/0304—Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
- H01L31/03046—Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds including ternary or quaternary compounds, e.g. GaAlAs, InGaAs, InGaAsP
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/77—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
- H01L21/78—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
- H01L21/7806—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices involving the separation of the active layers from a substrate
- H01L21/7813—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices involving the separation of the active layers from a substrate leaving a reusable substrate, e.g. epitaxial lift off
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/0248—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
- H01L31/0256—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
- H01L31/0264—Inorganic materials
- H01L31/0304—Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/0248—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
- H01L31/036—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
- H01L31/0392—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/0248—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
- H01L31/036—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
- H01L31/0392—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
- H01L31/03926—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate comprising a flexible substrate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/04—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
- H01L31/042—PV modules or arrays of single PV cells
- H01L31/0445—PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/04—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
- H01L31/06—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
- H01L31/068—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
- H01L31/0687—Multiple junction or tandem solar cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/04—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
- H01L31/06—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
- H01L31/068—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
- H01L31/0693—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells the devices including, apart from doping material or other impurities, only AIIIBV compounds, e.g. GaAs or InP solar cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/18—Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/18—Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
- H01L31/184—Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
- H01L31/1844—Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising ternary or quaternary compounds, e.g. Ga Al As, In Ga As P
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/18—Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
- H01L31/1892—Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof methods involving the use of temporary, removable substrates
- H01L31/1896—Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof methods involving the use of temporary, removable substrates for thin-film semiconductors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/52—PV systems with concentrators
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/544—Solar cells from Group III-V materials
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Electromagnetism (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Sustainable Development (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Energy (AREA)
- Inorganic Chemistry (AREA)
- Photovoltaic Devices (AREA)
Abstract
公开了一种超高效的单结和多结薄膜太阳能电池。本公开还涉及基板无损伤外延剥离(ELO)工艺,其对于基板采用无粘合剂、可靠且轻质的冷焊结合,诸如对于成形为复合抛物线金属箔聚能器的塑料或金属箔的结合。通过如本文所述地将低成本天阳能电池生产和在箔基板上被成形为集成收集器的会聚太阳能强度的薄膜太阳能电池的超高效率相结合,实现了更低成本的模块以及基础结构的显著成本降低。
Description
相关申请的交叉应用
本申请是2012年7月6日的国际申请PCT/US2012/045778进入中国国家阶段的申请201280042064.7的分案申请。本申请要求2011年7月6日提交的美国临时申请No.61/505,014的权益,该临时申请的全文以引用方式并入本文。
联合研究协议
要求保护的发明是根据大学-公司联合研究协议由下列团体中一个或多个做出,并代表其名义和/或与其相关:密歇根大学和环球光子能量公司(Global Photonic EnergyCorporation)。该协议在发明做出之时和之前有效,并且在该协议范围内进行的研究获得要求保护的发明。
技术领域
本公开涉及超高效率的单结和多结薄膜太阳能电池。本发明还涉及基板无损伤外延剥离(ELO)工艺,其对于基板采用无粘合剂、可靠和质轻的冷焊结合,诸如对于成形为复合抛物线金属箔聚能器的塑料或金属箔的结合。
背景技术
光电子器件依赖于材料的光学性质和电子性质,以用电子学方法来产生或检测电磁辐射或者由环境电磁辐射产生电力。
光敏光电子器件将电磁辐射转换成电力。太阳能电池、也称为光伏(PV)器件,是一类专门用于产生电能的光敏光电子器件。可以用太阳光之外的光源产生电能的PV器件可以用于驱动耗电负载以提供例如照明、加热,或为诸如计算器、无线电、计算机或远程监测或通信设备的电子电路或装置供电。这些发电应用通常还涉及电池或其他能量存储装置的充电,使得当来自太阳或其他光源的直接照射不可用时能够继续运行,或根据特定应用的要求平衡PV器件的电力输出。当在本文中使用时,术语“电阻性负载”是指任何耗电或储电电路、装置、设备或系统。
另一种类型的光敏光电子器件是光电导体电池。在这种功能中,信号检测电路监测器件的电阻以检测由光的吸收所引起的变化。
另一种类型的光敏光电子器件是光电检测器。在操作中,光电检测器与电流检测电路结合使用,该电流检测电路测量当光电检测器暴露于电磁辐射并可以具有施加的偏置电压时所产生的电流。本文描述的检测电路能够向光电检测器提供偏置电压并且测量光电检测器对电磁辐射的电子响应。
这三种类别的光敏光电子器件可以根据是否存在下文定义的整流结并且还根据器件是否使用也称为偏压或偏置电压的外加电压进行操作来表征。光电导体电池没有整流结并且通常使用偏压进行操作。PV器件具有至少一个整流结并且不使用偏压进行操作。光电检测器具有至少一个整流结但通常不总是使用偏压进行操作。按惯例,光伏电池向电路、装置或设备供电,但是不提供信号或电流来控制检测电路或从检测电路输出信息。相比之下,光电检测器或光电导体提供信号或电流以控制检测电路或从检测电路输出信息,但是不向电路、装置或设备供电。
传统上,光敏光电子器件由多种无机半导体构成,例如晶体、多晶和非晶硅、砷化镓、碲化镉等。在本文中,术语“半导体”是指当受到热或电磁激发感生电荷载流子时能够传导电力的材料。术语“光电导”一般是指电磁辐射能量被吸收并且从而转换成电荷载流子的激发能以便载流子能够传导,即传输材料中的电荷的过程。术语“光电导体”和“光电导材料”在本文中用于指由于其为了吸收电磁辐射来产生电荷载流子的性质而被选择的半导体材料。
PV器件可以由它们能够将入射太阳能转换成可用电能的效率来表征。利用晶体或非晶硅的器件在商业应用中占主导地位,并且某些已经达到23%或更大的效率。然而,有效的基于晶体的器件,特别是大表面积器件,由于在没有明显降低效率的缺陷地生产大晶体中固有的问题,生产起来困难且昂贵。另一方面,高效非晶硅器件仍然受到稳定性问题的困扰。目前可商购的非晶硅电池的稳定转换效率在4到8%之间。更近的尝试已经聚焦于使用有机光伏电池以经济的生产成本获得可接受的光伏转换效率。
可以对PV器件进行优化,以在标准照射条件(即,标准测试条件,其为1000W/m2、AMI.5光谱照射)下最大化电能产生,用于最大化光电流乘以光电压的乘积。这种电池在标准照射条件下的电能转换效率取决于以下三个参数:(1)零偏压下的电流,即短路电流Isc,,单位为安培;(2)开路条件下的光电压,即开路电压VOC,单位为伏特;以及(3)填充因子ff。
PV器件在跨负载连接并用光照射时,产生光生电流。当在无限负载下照射时,PV器件产生其最大可能电压,V开路电压或VOC。当在其电接触短路的情况下照射时,PV器件产生其最大可能电流,I短路电流或ISC。当实际用于产生电力时,PV器件连接到有限电阻性负载并且电力输出由电流和电压的乘积I×V给出。由PV器件产生的最大总电力必然不能超过乘积ISC×VOC。当对负载值进行优化以获得最大功率提取时,电流和电压分别具有值Imax和Vmax。
PV器件的品质因数是填充因子ff,其定义为:
ff={Imax Vmax}/{ISC VOC} (1)
其中,ff总是小于1,因为在实际使用中永远不能同时获得ISC和VOC。但是,在最佳条件下,当ff接近1时,器件具有较低的串联或内部电阻,因此向负载提供ISC与VOC的乘积的更大百分率。当Pinc是在器件上入射的功率时,器件的功率效率P可以由下式计算:
P=ff*(ISC*VOC)/Pinc
当适合能量的电磁辐射入射在例如有机分子晶体(OMC)材料或聚合物的半导体有机材料上时,光子可以被吸收以产生被激发的分子状态。这用符号表示为S0+hvΨS0*。这里,S0和S0*分别表示分子的基态和激发态。这种能量吸收伴有电子从可以是B-键的HOMO能级中的束缚态跃迁到可以是B*-键的LUMO能级,或等价地,空穴从LUMO能级跃迁到HOMO能级。在有机薄膜光电导体中,一般相信产生的分子状态是激子,即作为准粒子传输的处于束缚态的电子-空穴对。激子在成对复合之前可以具有可观的寿命,该成对复合是指原始的电子和空穴彼此复合的过程,这与同来自其他对的空穴或电子的复合相反。为了产生光电流,将电子-空穴对分离,通常是在两个不同的相接触的有机薄膜之间的施主-受主界面处分离。如果电荷没有分离,则它们可以在也称为淬灭过程的成对复合过程中,辐射地通过发射比入射光的能量更低的光,或非辐射地通过产生热而复合。在光敏光电子器件中,这些结果中的任一种都不是想要的。
在接触处的电场或不均匀性会造成激子淬灭而不是在施主-受主界面处游离,导致对电流没有净贡献。因此,期望使光生激子保持远离接触。这具有限制激子向结附近的区域扩散,以便关联电场有更多的机会分离由结附近的激子游离所释放的电荷载流子的作用。
为了产生占据显著体积的内生电场,常用的方法是将具有特别是在其分子量子能态分布方面具有适当选择的导电性质的两层材料并置。这两种材料的界面被称为光伏异质结。在传统半导体理论中,用于形成PV异质结的材料一般被称为n或p型。这里n型是指多数载流子类型是电子。这可以被视为具有许多处于相对自由能态中的电子的材料。p型是指多数载流子类型是空穴。这样的材料具有许多处于相对自由能态的空穴。本底的类型,即非光生的多数载流子浓度,主要取决于由缺陷或杂质引起的无意掺杂。杂质的类型和浓度决定了最高占据分子轨道(HOMO)能级与最低未占分子轨道(LUMO)能级之间的能隙(被称为HOMO-LUMO能隙)中的费米能量或能级的值。费米能量的特征在于分子量子能态的统计学占据,其用占据概率等于1/2时的能量值表示。费米能量接近LUMO能级指示电子是优势载流子。费米能量接近HOMO能级指示空穴是优势载流子。因此,费米能量是传统半导体的主要定性性质并且原型PV异质结传统上是p-n界面。
术语“整流”尤其是指具有不对称导电特性的界面,即,界面支持优选一个方向上的电子电荷传输。整流一般与适当选择的材料之间的异质结处产生的内建电场相关。
当在本文中使用时,并且正如本技术领域的专业人员将通常理解的,如果第一个“最高占据分子轨道”(HOMO)或“最低未占分子轨道”(LUMO)能级更接近真空能级,则第一个能级“大于”或“高于”第二个HOMO或LUMO能级。由于电离电势(IP)被测量为相对于真空能级的负能量,因此更高的HOMO能级对应于具有较小绝对值的IP(负得较少的IP)。同样,更高的LUMO能级对应于具有更小绝对值的电子亲和势(EA)(负得较少的EA)。在常规能级图上,真空能级位于顶部,材料的LUMO能级高于同一材料的ΗOΜO能级。“更高的”ΗOΜO或LUMO能级与“更低的”ΗOΜO或LUMO能级相比,显得更接近于此能级图的顶部。
在有机材料的情形下,术语“施主”和“受主”是指两种相接触但是不同的有机材料的ΗOΜO能级和LUMO能级的相对位置。这与这些术语在无机材料情形中的使用相反,在无机材料情形中,“施主”和“受主”可以是指分别可用于产生无机n型层和ρ型层的掺杂物的类型。在有机材料情形中,如果与一种材料接触的另一种材料的LUMO能级较低,则该材料是受主。否则,它是施主。在不存在外部偏压的情况下,施主-受主结处的电子移动到受主材料中并且空穴移动到施主材料中,在能量上是有利的。
有机半导体的显著性质是载流子迁移率。迁移率度量了电荷载流子能够响应于电场通过导电材料移动的容易度。在有机光敏器件的情形中,包括有由于高电子迁移率而倾向于通过电子进行传导的材料的层可以被称为电子传输层或ETL。包括有由于高空穴迁移率而倾向于通过空穴进行传导的材料的层可以被称为空穴传输层或HTL。优选地,但不是必须的,受主材料是ETL并且施主材料是HTL。
常规的无机半导体PV电池采用p-n结建立内部电场。早期的有机薄膜电池,诸如Tang的Appl.Phys Lett.48,183(1986)所报道的,包含与在常规无机PV电池中使用的类似的异质结。然而,现在认识到,除了p-n型结的建立之外,异质结的能级失谐也发挥重要作用。
由于有机材料中光生过程的基本性质,据信,有机D-A异质结处的能级失谐对于有机PV器件的操作来说是重要的。在有机材料的光学激发后,产生了局部化的弗伦克尔(Frenkel)或电荷转移激子。为了进行电检测或产生电流,必须使束缚的激子游离成它们的组分电子和空穴。这样的过程可以由内建电场感生,但是在有机器件中通常得到的电场(F~106V/cm)下的效率低。有机材料中最有效的激子游离发生在施主-受主(D-A)界面处。在这种界面处,具有低电离电势的施主材料与具有高电子亲和势的受主材料形成异质结。取决于施主和受主材料的能级排列,激子在这种界面处的游离可能变得能量上有利,从而造成在受主材料中的自由电子极化子以及在施主材料中的自由空穴极化子。
有机PV电池在与传统的基于硅的器件相比时具有许多潜在优点。有机PV电池重量轻,材料的使用经济,并且可以沉积在诸如柔性塑料箔的低成本基板上。然而,有机PV器件通常具有相对低的量子产率(所吸收的光子与所产生的载流子的比率、或电磁辐射到电力的转换效率),其在1%或更低的量级上。据认为,这部分是由于固有的光电导过程的次级性质导致的。也就是说,载流子产生需要激子的产生、扩散和电离或收集。这些过程中的每一个都伴有效率。下标可以如下使用:Ρ表示功率效率,EXT表示外量子效率,A表示光子吸收,ED表示扩散,CC表示收集,并且INT表示内量子效率。使用该表示法:
P~EXT=A*ED*CC
EXT=A*INT
激子的扩散长度(Ld)(LD~50Δ)典型情况下远小于光学吸收长度(~500Δ),从而在使用具有多个或高度折叠界面的厚的并因此高电阻的电池或具有低光学吸收效率的薄电池之间,需要折衷。
通常用I=I0e-αx给出通过同质吸收介质的电磁辐射的入射通量的强度衰减,其中,I0是初始位置(X-0)处的强度,a是吸收常数并且x是距离x=0的深度。因此,随着通量穿过介质前进,强度指数地减小。因此,吸收介质的厚度越大或者如果吸收常数可以增大,吸收的光越多。通常,给定光导电介质的吸收常数是不可调的。对于某些光导电材料,例如,3,4,9,10-二萘嵌苯四羧联二苯并咪唑(PTCBI)或铜酞菁(CuPc),由于高体电阻率,导致非常厚的层是不期望的。
通过穿过光导电材料的给定薄膜适当地多次再反射或再循环光,穿过给定光导电材料的光路可以显著增加,而不引起显著的附加体电阻。需要一种解决方案,其有效地允许电磁通量被收集并且传递到包含光导电材料的腔体,同时还将所传递的通量限于腔体,使得其可以被吸收。
已经寻求了用于光生功率的更便宜和更有效的器件来使太阳能与目前较便宜的矿物燃料相媲美。由于有可能节省成本,已经寻求到诸如CuPc或PTCBI的有机光导体作为用于有机光伏器件(OPV)的材料。上述的高体电阻率使得期望的是利用这些材料的相对薄的膜。然而,使用非常薄的有机光敏层对于生成有效装置存在其它阻碍。如以上说明的,非常薄的光敏层吸收一小部分入射复合,从而降低外量子效率。
另一个问题在于,非常薄的膜更经受诸如电极材料的侵入导致的短路的缺陷。以引用方式并入本文的美国专利No.6,333,458描述了合并有一个或多个激子阻挡层的光敏异质结构,这解决了非常薄的膜OPV的一些问题。然而,需要其他解决方案来解决非常薄的膜的低光子吸收问题,无论膜是有机光导体还是无机光导体。
在太阳能转换领域中常见的是使用被称为温斯顿(Winston)收集器的光学聚能器。这种聚能器已经被主要用于需要高热梯度的热太阳能收集装置中。在较小程度上,它们与光伏太阳能转换装置一起使用。然而,想到的是,这种应用涉及期望在光初始入射到有源光导体介质上时出现光子吸收的装置。如果使用非常薄的光导体层,则有可能被会聚的辐射中的许多将被吸收。它可以被反射回器件环境,被基板吸收或者如果基板是透明则只是穿过。因此,单独使用聚能器没有解决薄光导电层的低光子吸收率问题。用于辐射监测的光聚能器还已经用于利用光电倍增(PM)管检测切伦科夫(Cerenkov)或其它辐射。PM管以与诸如本发明的OPV的固态检测器完全不同的原理,即光电效应操作。在PM管中,光子吸收介质,即金属电极中的低光子吸收率不是问题,但与本文公开的OPV不同的是,PM管需要高操作电压。
光聚焦和光陷是提高薄膜光伏太阳能电池和光电检测器的性能的重要途径。然而,这种方案中通常使用的反射镜利用的是诸如银或金的金属,其可以导致由于反射镜的光谱吸收而造成入射光子的显著损失。因此,将有利的是,提供一种增加薄膜光伏太阳能电池或光电检测器中的光陷并且跨大光谱范围具有减少损失的结构。
发明人近来已证实,借助外延生长之后从昂贵的母基板被剥离的薄的、高效III-V半导体太阳能电池的分子束外延(MBE)进行生长。这种过程与过去二十年中采用的传统ELO技术的明显不同在于,围绕“牺牲ELO层”生长“保护层”,牺牲ELO层通常被蚀刻掉以将有源器件外延(~2μm厚)与母基板分开。在全文以引用方式并入本文的美国专利申请No.13/099,850中描述了这个过程。通过使用复合保护层结构,消除了母晶片的化学和表面形态劣化,如图1中所示。
因此,可以使经处理的晶片的表面比开始的晶片更平滑,并且其表面的化学性还是保持不变,因此不需要在为了生长附加的且最终也可去除的外延层而再使用之前进行晶片再抛光。因此,可以不确定地再使用母晶片,因为原始母晶片在此过程期间都没有被消耗或改变。事实上,只有包括薄膜、单晶、高效的太阳能电池有源区的外延有源层被从整个晶片表面去除,随后被冷焊(不使用增加成本、重量并且有可能失败的粘合剂)至第二薄膜“主”基板。
由于基板是工艺中使用的最贵的材料,因此多次再使用的策略去除了作为材料成本的晶片,并且将其获得转换成了开支成本,从而基本上改变了基于单晶III-V的太阳能电池的成本结构。如果不使用粘合剂的情况下将太阳能电池的非常薄的有源外延层结合到金属或金属化塑料箔,则所得模块的重量和形式因子还受到有利影响。
发明内容
为了努力解决上述需要中的至少一些,公开了一种超高效单结和多结薄膜太阳能电池。本公开还涉及无损伤外延剥离(ELO)工艺,其对于基板采用无粘合剂、可靠和质轻的冷焊结合,诸如对成形为复合抛物线金属箔聚能器的塑料或金属箔的结合。发明人已经发现,将低成本天阳能电池制造和被成形为集成收集器的箔基板上的会聚太阳能强度的薄膜太阳能电池的超高效率相结合可以不仅导致模块自身的低成本,而且因为在超过6W/gm的功率密度下用箔(包括低成本集成聚能器)上的超轻质电池取代重模块,导致基础结构的显著成本降低。
在一个实施例中,本公开涉及一种薄膜太阳能电池,该薄膜太阳能电池包括:第一基板;金属接触,其结合到所述第一基板;有源光伏区,其结合到所述金属接触;一个或多个第一保护层;AlAs层;一个或多个第二保护层;第二基板,其中,所述第二基板。
在另一个实施例中,本公开涉及一种薄膜太阳能电池,该薄膜太阳能电池包括:第一基板;金属接触,其结合到所述第一基板;有源光伏区,其结合到所述金属接触;一个或多个第一保护层,其中,所述第一保护层中的至少一个包括从InGaP、GaAs、InGaAs、InP和InAlP中选择的至少一种化合物;AlAs层;一个或多个第二保护层,其中,所述第二保护层中的至少一个包括从InGaP、GaAs、InGaAs、InP和InAlP中选择的至少一种化合物;第二基板,其中,所述第二基板包括从GaAs和InP中选择的至少一种化合物。
在又一个实施例中,本公开涉及一种执行外延剥离工艺的方法,该方法包括:在第一基板上生长一个或多个第一保护层;生长AlAs层;生长一个或多个第二保护层;在所述第二保护层的顶部上沉积至少一个有源光伏电池层;用金属涂敷顶部的有源光伏电池层;用金属涂敷第二基板;将两个金属表面压到一起,以形成冷焊结合;用选择性化学蚀刻剂去除AlAs层。
在另一个实施例中,本公开涉及一种执行外延剥离工艺的方法,该方法包括:在第一基板上生长一个或多个第一保护层,其中,所述保护层中的至少一个包括从InGaP、GaAs、InGaAs、InP和InAlP中选择的化合物;生长AlAs层;生长一个或多个第二保护层,其中,所述保护层中的至少一个包括从InGaP、GaAs、InGaAs、InP和InAlP中选择的化合物;在第二保护层的顶部上沉积至少一个有源光伏电池层;用金属涂敷顶部的有源光伏电池层;用金属涂敷第二基板;将两个金属表面压到一起,以形成冷焊结合;用选择性化学蚀刻剂去除AlAs层。
附图说明
除了以上讨论的主题之外,本发明包括多个其它示例性特征,诸如下文中说明的示例性特征。要理解,以上描述和以下描述都只是示例性的。
附图被合并并且构成本说明书的一部分。
图1是示出针对基于InP的太阳能电池的根据本公开的ELO工艺的示意图。
图2是两英寸的InP外延层被剥离并且结合到涂敷有Au的Kaption片材。ITO接触件形成肖特基太阳能电池。
图3是在使用保护层和不使用保护层的情况下,在第一ELO工艺和第二ELO工艺之后的原始开盒即用(epi-ready)InP基板和被恢复表面的原子力显微图像。
图4是表示电池参数的测试数据和代表性GaAs PV电池层结构。
图5是示出23.9%效率的首次生长电池和在再使用的晶片上生长的22.8%效率的电池的四象限电流电压和外量子效率(插图)。
图6是示出根据本公开的应用于InP材料的ELO工艺的示意图。
图7是使用AlAs层和AlAs剥离层的三层保护方案的示意图。
图8是根据本公开提出的多结电池结构的示意图。
图9是(a)传统N/P隧道结和示出减小的隧穿势垒的(b)N/ErP/P结的示意图。
图10是冷焊结合的ELO多结电池的集成反射器的示意图。
具体实施方式
在图1中示意性示出ELO工艺的一个实施例。先开始外延生长化学形式上不同的、由InGaAs和Inp组成的薄“保护层”、AlAs的牺牲层、InP和InGaAs的第二组保护层和最终的有源光伏电池层。接下来,顶部外延层被涂敷有Au,作为非常薄的塑料(例如,KaptonTM,由DuPont注册商标的聚酰亚胺膜)主基板。通过仅用几千帕的压力将这两个干净Au表面压到一起,它们在电子上形成连续、永久的、无粘合剂的冷焊结合,这种结合的性质与单个体的Au膜无差别。
一旦结合到塑料柄部,晶片就为ELO做好准备。冷焊结合只用于ELO工艺(外延层在进行剥离从而剥脱母基板以备最终再使用之前永久地附着到箔基板),但还用作最终在上面制作太阳能电池的新主基板的粘合剂。
用冷焊取代剥离中传统使用的粘合剂具有几点益处:(1)附着于箔基板变得简单并且是制作工序的一体化部分,(ii)它的重量轻,因为它完全去除了粘合剂层,(iii)它在热学上和电学上是“透明的”,因为冷焊界面与膜的主体是不可区分的,(iv)它是耐用的并且耐受故障。使用诸如HF:H2O,1:10的选择性化学蚀刻剂去除4nm至10nm厚的AlAs牺牲ELO层,将整个晶片与光伏外延层分开,从而使保护层被暴露。最靠近AlAs ELO层(在这种情况下,InP)的保护层的目的在于提供>108:1的蚀刻选择性,并且通过突然止于InGaAs保护层表面的第二湿蚀刻(HCl:H3PO4,3:1)被从基板和分开的外延层两者去除。第二保护层的要求是,它可以通过突然止于InP基板的湿蚀刻剂被去除。使用H2SO4:H2O2:H2O(1:1:10)之后用C6H8O7:H2O2(20:1)从晶片去除InGaAs层,H2SO4:H2O2:H2O(1:1:10)和C6H8O7:H2O2(20:1)对于InP基板、InP缓冲层和外延层都具有高选择性,并且都有助于去除在上一个蚀刻之后保留下来的任何碎屑或凹凸不平。通过溅射氧化铟锡(ITO)肖特基接触,在附着于KaptonTM柄部的外延层上制作太阳能电池。在图2中示出在1倍太阳光强(1sun)AM1.5G照射下效率为~15%的所得的柔性InP-TIO肖特基太阳能电池。这些结合的外延片材已经重复循环至>200℃,而没有层离。
在后续生长之前,用溶剂清洁基板,经由曝光于UV/O区生长意图的氧化物,然后返回至生长腔室。已经对单个基板采用多次该处理,以验证InP晶片的无劣化再使用,并且如图3中所示,可以提高表面的光滑度,使其优于在允许无限再使用的原则下初始使用的商用开盒即用晶片的光滑度。
发明人近期已经将这种无损伤再生长工艺扩展到在母晶片上制作的基于GaAs的单p-n结光伏电池,从而导致23.9%的效率。图4是这种电池的示意性表示。剥离工艺与用于InP电池的工艺类似,尽管用三层(InGaP/GaAs/InGaP)全晶格匹配(与AlAs牺牲层匹配)系统取代用于InP的两个保护层方案。这允许提高层之间的蚀刻选择性,同时去除在ELO工艺中遭致的碎屑或表面凹凸不平。在HF中去除AlAs层,之后分别用HCl:H3PO4(1:1)和H3PO4:H2O2:H2O(3:1:25)去除InGaP和GaAs保护层。
在这个工艺之后,在母晶片上生长第二电池,从而达到22.8%的效率。第一生长和第二生长之间的功率转换效率的略微(1%)减小是由于干台面绝缘蚀刻配方造成的,从而导致填充因子的略微减小(参见图4)。此外,抗反射涂层厚度不是最佳的,从而减小了外量子效率和短路电流,如图5中所示。然而,当涂层厚度最佳时,期望的是甚至更高的效率,例如,大于25%的效率。
在一个实施例中,可以使用基于全晶格匹配InGaP/GaAs/InGaP三层的保护层方案。这三层提供了蚀刻化学性,具有再生产地去除保护层并且暴露原始(物理和化学上未受损)表面所需的、层之间的充分比率选择性。在一个实施例中,再生长的薄膜电池经由冷焊结合到涂敷Au的塑料(KaptonTM)基板。已经表明,对于第一生长晶片可以实现PCE=23.9%,并且对于再使用晶片可以实现PCE=22.8%,这超过了20%的下一代光伏II标准(参见图5)。在图6中示出实际ELO工艺设备和方法的绘图。
在各次再使用之后,可以彻底研究母晶片和被剥离的外延层二者的损伤或微小劣化。这些方法包括用于确定生长和再生长表面的化学变化的X射线光电子能谱仪(XPS)、原子力显微镜、扫描电子显微镜、用于确定表面形态变化的表面轮廓曲线仪、用于检验外延主体内遭致的缺陷的剖面透射电子显微镜、使用二次离子质谱学(SIMS)的组分深度分布。
还可以使用标准照射条件(1倍太阳光强,AM 1.5G光谱)对包括抗反射涂层的成品电池进行电学测试。将被测量的参数包括PCE、填充因子(FF)、开路电压(VOC)、短路电流(JSC)、串联和并联电阻。
已经发现,将含Ga化合物(即,GaAs,并且较小程度上,InGaP)延长暴露于HF导致难以去除的表面污染。然而,对于暴露于HF超过7天的InP表面不存在这种反应。在一个实施例中,位于AlAs牺牲层正下方的应变InP的薄层将提高表面的保真度,如图7中所示。
InP的厚度限于防止应变松弛,应变松弛会降低后续生长的PV层质量。GaAs上的InP的临界厚度在5单层和6单层之间,对应于~1.7nm。在这种情况下,保护层方案将包括InGaP/GaAs/InP或InGaP/GaAs/InGaP/InP,其中,后一结构中的附加InGaP层提供对GaAs的改进保护。
在另一个实施例中,通过使用另外的材料组合,例如,通过取代与InAlP相邻的InGaP层,执行蚀刻选择性和保持原来购买的晶片质量。InAlP/InGaP/GaAs/InAlP结构会是有利的,因为可以用突然止于GaAs(>400:1蚀刻率)的HCl:H2O(1:5)蚀刻InAlP,而用于蚀刻InGaP的HCl:H3PO4(1:1)缓慢地侵袭GaAs,从而导致凹凸不平。通过取代与AlAs层相邻的InAlP,InAlP被HF侵袭并且减少氧化砷的集结,这样可以减缓剥离工艺。另外,InGaP可以被用作GaAs蚀刻(H3PO4:H2O2:H2O,3:1:25)的蚀刻停止件,以确保在最终蚀刻步骤中去除下面的InAlP层。
通过结合到诸如涂敷Au的Cu箔的金属箔基板,使用用于冷焊的低价格金属(例如,用Ag代替Au)、减少的HF消耗、减小保护层厚度并且加速剥离过程,可以另外降低成本。延长暴露于用于溶解AlAs牺牲层的HF限制了对可以采用的金属主基板的选择。在一个实施例中,使用可以用于冷焊的铜箔增大了在暴露于HF时的抗性,因为它们的使用可以比用诸如Au的贵金属涂敷的箔简单。使用Cu箔的另外的益处是其高导热率(~4W cm-1℃-1),可以利用该导热率从聚能电池中提取热。
还公开了满足图8中示出的两个电池示例结构的非常高效的多结(GaAs/InGaP)太阳能电池。
设计相对于传统多结电池生长工序被颠倒,以适应无粘合剂冷焊工艺中使用的“颠倒”结合几何体;该结构包括25%GaAs电池构架。在这种情况下,GaAs电池厚度减小至2μm(基于传统基板的电池的50%),因为反射性的全覆盖欧姆接触允许入射光两次穿过器件有源区。主要的焦点将是为了效率最大而优化串联PV结构,包括InGaP电池设计(层厚度,窗口层、层组分等),从而改进堆叠中元件之间的宽间隙隧道结(TJ),并且这个多结电池的大面积内完成多剥离工艺。
将用n型材料在p型层的顶部上生长太阳能电池,而必须用相反极性生长隧道结。电池可以采用在所有或许多p型层中进行碳掺杂,因为碳不容易像传统p掺杂物Be一样迁移至生长表面。因为串联电池通常受GaAs电池中的电流限制,所以InGaP电池厚度需要被调节成与InGaP电池和GaAs电池电流匹配;期望InGaP层的厚度在0.55μm至0.80μm的范围内。
对于高性能串联电池,有效隧道结(TJ)是必要的。它们需要在电压和吸收方面都几乎无损失。有利的是,在MJ电池中使用InGaP TJ以避免会高达3%的GaAs TJ吸收。传统TJ是突变P+/N+结,其中,电子可以直接从n型侧的导带直接隧穿至p型侧的价带(图9(a))。对于MBE生长宽带隙TJ几乎没有执行工作,尽管使用MBE已经报道了高得足以传输在1倍太阳光强照射下产生的电流的掺杂水平。
一个实施例涉及在1倍太阳光强下具有几十毫伏压降的InGaP隧结。研究表明,Be和Si是合适的掺杂物(分别实现3.7x1019和1.8x1019cm-3的密度)。然而,如果需要减小的隧穿电阻,诸如通过向GaAs隧结添加ErAs,可以完成在P+/N+界面处使用经设计的缺陷。在这种情况下,可以如图9b中所示使用ErP或LuP。ErP或LuP在半导体表面上形成外延岛,该外延岛是~4单层厚,是金属,并且将隧穿过程分成两个步骤使隧穿可能性显著更高。通过在TJ中采用ErP,会导致隧穿电流中的大小增加几个数量级,并且造成所制作的PV电池中预期电流的亚毫伏范围内的压降。
如单结电池的情况中一样,可以在生长ELO再使用循环的每次重复之后,微观并且化学地检验多结电池。可以使用标准照明条件(AM1.5G光谱)但是在高达10倍太阳光强的强度范围内电学地测试包括抗反射涂层的成品电池。将被测量的参数包括PCE、填充因子、开路电压、短路电流、串联和并联电阻,如单结电池的情况中一样。
结合到反射性和柔性基板的薄膜多结电池提供将太阳能收集器与薄膜电池集成而没有引入明显附加成本的独特机会。图10示出由ELO多结电池组成的带结合到较大的、柔性的反射膜的中心。然后,将膜模制(通过在导热或有源冷却预型件中放置)成复合抛物线收集器(例如,CPC、或温斯顿收集器)的形状。这种几何体将平行的阳光光线会聚到其焦点处的电池带,并且将漫射光收集到接受光锥内。
圆柱形温斯顿型收集器中通常使用的小会聚水平(4-10X)允许会聚器高度有效,并且引导显著量将光漫射到电池中。通过CEff=TCPCγ给出收集效率,其中,TCPC是CPC的有效透射率,包括公共反射器材料的~2%的多次反射损失。漫射光的校正是γ=1-(1-1/C)Gdiff/Gdir,其中,C是意图会聚度,Gdiff/Gdir是漫射光与总入射光的比率。通常,对于少云天,Gdiff/Gdir是~0.11。然后,对于C=4,AM 1.5G下γ=90%,这与AM 1.5D下可用的功率相当。
对于4X CPC,并且假设太阳能电池带宽度是1cm,然后孔是4cm宽×10cm深,从而提供与单个家庭居所中使用的面板相兼容的实际形式因子。在较高会聚度下,聚能器的尺寸增大相当多。例如,相同1cm宽的电池带使用的10X会聚度需要10cm且深度~55cm的孔。这可以减小至~40cm,并且对会聚效率的作用可忽略不计。[25]所需要的反射材料的量对于4X会聚度是4至5倍大并且对于10X会聚度是8至11倍大。
所使用的小会聚度的附加益处包括允许使用单轴追踪(按天或按季节,取决于收集器的方位),并且需要的无源冷却与较高会聚度需要的无源冷却相比简化。事实上,所使用的非常薄的基板大大简化了热传递:计算表明,抵靠无源冷却的Cu散热器放置的10X会聚度且25mm厚的KaptonTM基板只造成温度上升5-20℃,从而不需要更具攻击性的冷却方法。
注意的是,ELO电池技术还可以应用于具有大会聚因子的系统;然而,这里,本公开只关注造成可应用于居住系统的简单且经济的设计的较小会聚度。期望这种集成的太阳能收集器+ELO多结聚能器电池组件的成本降低会完全降低会聚系统以及它们封装(归因于高PCE)的成本。
除非另外指明,否则说明书和权利要求书中使用的表示成分、反应条件等的所有数字将被理解为在所有情形下被术语“大约”修饰。因此,除非相反地指明,否则下面的说明书和所附的权利要求书中阐述的数字参数是可以取决于本发明企图得到的所需性质而变化的近似值。
通过考虑本文公开的本发明的说明书和实践,本领域的技术人员将清楚本发明的其它实施例。说明书和实例旨在只被视为是示例性的,本发明的真实范围由随后的权利要求书指示。
Claims (20)
1.一种薄膜太阳能电池,包括:
有源光伏区;
金属接触,所述金属接触被结合到所述有源光伏区;
基板,所述基板被结合到所述金属接触,其中所述基板被成形为能够将电磁辐射会聚到所述有源光伏区上的复合抛物线收集器。
2.根据权利要求1所述的薄膜太阳能电池,其中,所述基板包括塑料膜或金属箔。
3.根据权利要求2所述的薄膜太阳能电池,其中,所述塑料膜包括聚酰亚胺。
4.一种薄膜太阳能电池,包括:
电池,所述电池包括有源光伏区,被结合到所述有源光伏区的金属接触,和被结合到所述金属接触的基板;以及
被结合到所述电池的反射膜,其中所述膜被成形为能够将电磁辐射会聚到所述电池的所述有源光伏区上的复合抛物线收集器。
5.根据权利要求4所述的薄膜太阳能电池,其中,所述基板包括塑料膜或金属箔。
6.根据权利要求5所述的薄膜太阳能电池,其中,所述塑料膜包括聚酰亚胺。
7.一种形成薄膜太阳能电池的方法,包括:
提供电池,所述电池包括有源光伏区,被结合到所述有源光伏区的金属接触,和被结合到所述金属接触的基板;以及
将所述基板模制成能够将电磁辐射会聚到所述有源光伏区上的复合抛物线收集器。
8.根据权利要求7所述的方法,其中通过将所述基板放置到导热或有源冷却预型件中来模制所述基板。
9.根据权利要求7所述的方法,其中,所述基板包括塑料膜或金属箔。
10.根据权利要求9所述的方法,其中,所述塑料膜包括聚酰亚胺。
11.一种形成薄膜太阳能电池的方法,包括:
提供电池,所述电池包括有源光伏区,被结合到所述有源光伏区的金属接触,和被结合到所述金属接触的基板;
将所述电池结合到反射膜;以及
将所述反射膜模制为能够将电磁辐射会聚到所述有源光伏器件区上的复合抛物线收集器。
12.根据权利要求11所述的方法,其中通过将所述基板放置到导热或有源冷却预型件中来模制所述反射膜。
13.根据权利要求11所述的方法,其中,所述基板包括塑料膜或金属箔。
14.根据权利要求13所述的方法,其中,所述塑料膜包括聚酰亚胺。
15.一种用集成太阳能收集器来形成薄膜太阳能电池的方法,包括:
在第一基板上生长一个或多个保护层;
生长牺牲层
生长一个或多个第二保护层;
通过将至少一个有源光伏电池层沉积在所述第二保护层的顶部,利用金属涂敷顶部的有源光伏电池层,利用金属涂敷第二基板,并且将两个金属表面压到一起以形成冷焊结合,来沉积电池;
通过蚀刻来去除所述牺牲层,来释放所述电池;
将所述电池结合到反射膜;以及
将所述反射膜模制为能够将电磁辐射会聚到所述有源光伏器件区的复合抛物线收集器。
16.根据权利要求15所述的方法,其中通过将所述基板放置到导热或有源冷却预型件中来模制所述反射膜。
17.根据权利要求15所述的方法,其中,所述第二基板包括塑料膜或金属箔。
18.根据权利要求17所述的方法,其中,所述塑料膜包括聚酰亚胺。
19.根据权利要求15所述的方法,其中,所述金属接触包括从Au、Ag和Cu中选择的至少一种金属。
20.根据权利要求15所述的方法,其中,所述牺牲层是AlAs。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201161505014P | 2011-07-06 | 2011-07-06 | |
US61/505,014 | 2011-07-06 | ||
CN201280042064.7A CN103890974A (zh) | 2011-07-06 | 2012-07-06 | 使用外延剥离和冷焊结合的半导体太阳能电池的集成太阳能收集器 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201280042064.7A Division CN103890974A (zh) | 2011-07-06 | 2012-07-06 | 使用外延剥离和冷焊结合的半导体太阳能电池的集成太阳能收集器 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106098842A true CN106098842A (zh) | 2016-11-09 |
CN106098842B CN106098842B (zh) | 2018-12-18 |
Family
ID=46584346
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610486903.4A Expired - Fee Related CN106098842B (zh) | 2011-07-06 | 2012-07-06 | 使用外延剥离和冷焊结合的半导体太阳能电池的集成太阳能收集器 |
CN201280042064.7A Pending CN103890974A (zh) | 2011-07-06 | 2012-07-06 | 使用外延剥离和冷焊结合的半导体太阳能电池的集成太阳能收集器 |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201280042064.7A Pending CN103890974A (zh) | 2011-07-06 | 2012-07-06 | 使用外延剥离和冷焊结合的半导体太阳能电池的集成太阳能收集器 |
Country Status (11)
Country | Link |
---|---|
US (3) | US20130037095A1 (zh) |
EP (1) | EP2729968B1 (zh) |
JP (1) | JP6312257B2 (zh) |
KR (1) | KR101996607B1 (zh) |
CN (2) | CN106098842B (zh) |
AU (2) | AU2012280933A1 (zh) |
CA (1) | CA2840968A1 (zh) |
ES (1) | ES2834435T3 (zh) |
HK (1) | HK1197315A1 (zh) |
TW (1) | TWI693722B (zh) |
WO (1) | WO2013006803A2 (zh) |
Families Citing this family (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10741712B2 (en) * | 2012-02-15 | 2020-08-11 | Alta Devices, Inc. | Photovoltaic module containing shingled photovoltaic tiles and fabrication processes thereof |
US9087905B2 (en) * | 2012-10-03 | 2015-07-21 | International Business Machines Corporation | Transistor formation using cold welding |
US9666739B2 (en) * | 2013-06-28 | 2017-05-30 | Sunpower Corporation | Photovoltaic cell and laminate metallization |
KR20160084858A (ko) * | 2013-11-11 | 2016-07-14 | 더 리젠츠 오브 더 유니버시티 오브 미시간 | 에픽택셜 리프트 오프 공정을 위한 열적 보조 냉간 용접 본딩 |
US10637391B2 (en) | 2013-11-29 | 2020-04-28 | The Regents Of The University Of Michigan | Autonomous solar tracking in flat-plate photovoltaic panels using kirigami-inspired microstructures |
TWI660520B (zh) * | 2014-01-15 | 2019-05-21 | 美國密西根州立大學 | 經由印刷方法整合磊晶剝離太陽能電池與小型拋物線集光器陣列 |
TWI681565B (zh) * | 2014-01-15 | 2020-01-01 | 美國密西根州立大學 | 利用超晶格磊晶層對磊晶剝離薄膜裝置行非破壞性晶圓回收 |
WO2015154080A1 (en) | 2014-04-04 | 2015-10-08 | The Regents Of The University Of Michigan | Epitaxial lift-off processed gaas thin-film solar cells integrated with non-tracking mini-compound parabolic concentrators |
US10141465B2 (en) | 2014-04-04 | 2018-11-27 | The Regents Of The University Of Michigan | Epitaxial lift-off processed GaAs thin-film solar cells integrated with non-tracking mini-compound parabolic concentrators |
US20170033247A1 (en) | 2014-04-29 | 2017-02-02 | The Regents Of The University Of Michigan | Flexible antenna integrated with an array of solar cells |
USRE49869E1 (en) * | 2015-02-10 | 2024-03-12 | iBeam Materials, Inc. | Group-III nitride devices and systems on IBAD-textured substrates |
CN107534066A (zh) * | 2015-02-27 | 2018-01-02 | 密歇根大学董事会 | 具有中间光学滤波器的机械堆叠串列光伏电池 |
WO2016149629A1 (en) | 2015-03-18 | 2016-09-22 | The Regents Of The University Of Michigan | Strain relief epitaxial lift-off via pre-patterned mesas |
KR101743017B1 (ko) | 2015-05-19 | 2017-06-05 | 한국과학기술연구원 | 고속 에피택셜 리프트오프와 iii-v족 직접 성장용 템플릿을 이용한 반도체 소자의 제조 방법 및 이에 의해 제조된 반도체 소자 |
JP6738051B2 (ja) | 2015-09-24 | 2020-08-12 | ハント テクノロジーズ,エルエルシー | 感光装置劣化を試験するシステム及び方法 |
WO2017057029A1 (ja) | 2015-09-28 | 2017-04-06 | シャープ株式会社 | 薄膜化合物太陽電池、薄膜化合物太陽電池の製造方法、薄膜化合物太陽電池アレイおよび薄膜化合物太陽電池アレイの製造方法 |
FR3047350B1 (fr) * | 2016-02-03 | 2018-03-09 | Soitec | Substrat avance a miroir integre |
KR102559479B1 (ko) * | 2018-03-16 | 2023-07-26 | 상라오 징코 솔라 테크놀러지 디벨롭먼트 컴퍼니, 리미티드 | 화합물 반도체 태양전지의 제조 방법 |
DE102018002426A1 (de) * | 2018-03-26 | 2019-09-26 | Azur Space Solar Power Gmbh | Stapelförmiges III-V-Halbleiterzeug und Herstellungsverfahren |
KR20200021772A (ko) * | 2018-08-21 | 2020-03-02 | 엘지전자 주식회사 | 화합물 반도체 태양전지 및 이의 제조 방법 |
KR20200023068A (ko) * | 2018-08-24 | 2020-03-04 | 엘지전자 주식회사 | 화합물 반도체 태양전지의 제조 방법 |
US11137784B2 (en) * | 2018-09-07 | 2021-10-05 | The George Washington University | Linear voltage regulator circuit incorporating light emitting and photovoltaic devices |
JP7316638B2 (ja) * | 2019-05-15 | 2023-07-28 | パナソニックIpマネジメント株式会社 | 樹脂組成物、樹脂被覆基板および素子チップの製造方法 |
WO2022173467A2 (en) * | 2020-09-23 | 2022-08-18 | Antora Energy, Inc. | Structures and methods for producing an optoelectronic device |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN2613726Y (zh) * | 2003-04-17 | 2004-04-28 | 北京工业大学 | 复合抛物面聚光热电综合利用装置 |
TW200946775A (en) * | 2008-02-27 | 2009-11-16 | Brilliant Film Llc | Concentrators for solar power generating systems |
WO2010026415A2 (en) * | 2008-09-04 | 2010-03-11 | Barry Clive | Photovoltaic cell apparatus |
TW201034223A (en) * | 2008-12-30 | 2010-09-16 | 3M Innovative Properties Co | Broadband reflectors, concentrated solar power systems, and methods of using the same |
US20110108081A1 (en) * | 2006-12-20 | 2011-05-12 | Jds Uniphase Corporation | Photovoltaic Power Converter |
CN102082195A (zh) * | 2010-09-30 | 2011-06-01 | 南通大学 | 自动跟踪双抛物面聚光发电供热系统 |
WO2011066029A2 (en) * | 2009-09-10 | 2011-06-03 | The Regents Of The University Of Michigan | Methods of preparing flexible photovoltaic devices using epitaxial liftoff, and preserving the integrity of growth substrates used in epitaxial growth |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5324365A (en) * | 1991-09-24 | 1994-06-28 | Canon Kabushiki Kaisha | Solar cell |
US5288337A (en) * | 1992-06-25 | 1994-02-22 | Siemens Solar Industries, L.P. | Photovoltaic module with specular reflector |
JP3467153B2 (ja) * | 1996-08-30 | 2003-11-17 | 株式会社リコー | 半導体素子 |
US6333458B1 (en) | 1999-11-26 | 2001-12-25 | The Trustees Of Princeton University | Highly efficient multiple reflection photosensitive optoelectronic device with optical concentrator |
US6440769B2 (en) * | 1999-11-26 | 2002-08-27 | The Trustees Of Princeton University | Photovoltaic device with optical concentrator and method of making the same |
DE102004023856B4 (de) * | 2004-05-12 | 2006-07-13 | Rwe Space Solar Power Gmbh | Solarzelle mit integrierter Schutzdiode und zusätzlich auf dieser angeordneten Tunneldiode |
US7319189B2 (en) * | 2004-10-27 | 2008-01-15 | Universite De Liege | Solar concentrator |
HRPK20050434B3 (en) * | 2005-05-16 | 2008-06-30 | Urli Natko | Stationary photovoltaic module with low concentration ratio of solar radiation |
KR20090015019A (ko) * | 2006-01-17 | 2009-02-11 | 솔리안트 에너지, 아이엔씨 | 태양 집광 패널, 관련 장치 및 방법 |
US7638708B2 (en) * | 2006-05-05 | 2009-12-29 | Palo Alto Research Center Incorporated | Laminated solar concentrating photovoltaic device |
US20100047959A1 (en) * | 2006-08-07 | 2010-02-25 | Emcore Solar Power, Inc. | Epitaxial Lift Off on Film Mounted Inverted Metamorphic Multijunction Solar Cells |
WO2009005825A1 (en) * | 2007-07-03 | 2009-01-08 | Microlink Devices, Inc. | Methods for fabricating thin film iii-v compound solar cell |
US20090283133A1 (en) * | 2008-05-14 | 2009-11-19 | 3M Innovative Properties Company | Solar concentrating mirror |
AU2009230775B1 (en) * | 2009-10-26 | 2010-03-04 | Mip, Llc | Asymmetric parabolic compound concentrator with photovoltaic cells |
JP5170073B2 (ja) * | 2009-12-24 | 2013-03-27 | セイコーエプソン株式会社 | 接合体の形成方法、接合体およびインクジェット記録ヘッド |
JP5215284B2 (ja) * | 2009-12-25 | 2013-06-19 | シャープ株式会社 | 多接合型化合物半導体太陽電池 |
CN103650193A (zh) | 2011-04-18 | 2014-03-19 | 密歇根大学董事会 | 用于光伏和光检测器应用的光捕获架构 |
-
2012
- 2012-07-06 TW TW101124535A patent/TWI693722B/zh active
- 2012-07-06 JP JP2014519072A patent/JP6312257B2/ja active Active
- 2012-07-06 AU AU2012280933A patent/AU2012280933A1/en not_active Abandoned
- 2012-07-06 CA CA2840968A patent/CA2840968A1/en not_active Abandoned
- 2012-07-06 US US13/543,450 patent/US20130037095A1/en not_active Abandoned
- 2012-07-06 ES ES12740782T patent/ES2834435T3/es active Active
- 2012-07-06 CN CN201610486903.4A patent/CN106098842B/zh not_active Expired - Fee Related
- 2012-07-06 WO PCT/US2012/045778 patent/WO2013006803A2/en active Application Filing
- 2012-07-06 CN CN201280042064.7A patent/CN103890974A/zh active Pending
- 2012-07-06 EP EP12740782.3A patent/EP2729968B1/en not_active Not-in-force
- 2012-07-06 KR KR1020147002202A patent/KR101996607B1/ko active IP Right Grant
-
2014
- 2014-10-24 HK HK14110688.0A patent/HK1197315A1/zh unknown
-
2015
- 2015-09-14 US US14/853,317 patent/US20160141431A1/en not_active Abandoned
-
2016
- 2016-01-27 AU AU2016200455A patent/AU2016200455A1/en not_active Abandoned
-
2021
- 2021-09-24 US US17/484,342 patent/US12132127B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN2613726Y (zh) * | 2003-04-17 | 2004-04-28 | 北京工业大学 | 复合抛物面聚光热电综合利用装置 |
US20110108081A1 (en) * | 2006-12-20 | 2011-05-12 | Jds Uniphase Corporation | Photovoltaic Power Converter |
TW200946775A (en) * | 2008-02-27 | 2009-11-16 | Brilliant Film Llc | Concentrators for solar power generating systems |
WO2010026415A2 (en) * | 2008-09-04 | 2010-03-11 | Barry Clive | Photovoltaic cell apparatus |
TW201034223A (en) * | 2008-12-30 | 2010-09-16 | 3M Innovative Properties Co | Broadband reflectors, concentrated solar power systems, and methods of using the same |
WO2011066029A2 (en) * | 2009-09-10 | 2011-06-03 | The Regents Of The University Of Michigan | Methods of preparing flexible photovoltaic devices using epitaxial liftoff, and preserving the integrity of growth substrates used in epitaxial growth |
CN102082195A (zh) * | 2010-09-30 | 2011-06-01 | 南通大学 | 自动跟踪双抛物面聚光发电供热系统 |
Also Published As
Publication number | Publication date |
---|---|
KR20140043805A (ko) | 2014-04-10 |
WO2013006803A3 (en) | 2013-05-10 |
CN106098842B (zh) | 2018-12-18 |
WO2013006803A8 (en) | 2013-06-06 |
TW201320369A (zh) | 2013-05-16 |
ES2834435T3 (es) | 2021-06-17 |
HK1197315A1 (zh) | 2015-01-09 |
US12132127B2 (en) | 2024-10-29 |
EP2729968B1 (en) | 2020-09-02 |
AU2016200455A1 (en) | 2016-02-18 |
EP2729968A2 (en) | 2014-05-14 |
US20220013672A1 (en) | 2022-01-13 |
JP6312257B2 (ja) | 2018-04-18 |
US20160141431A1 (en) | 2016-05-19 |
CN103890974A (zh) | 2014-06-25 |
AU2012280933A1 (en) | 2014-01-23 |
JP2014523132A (ja) | 2014-09-08 |
US20130037095A1 (en) | 2013-02-14 |
KR101996607B1 (ko) | 2019-10-01 |
CA2840968A1 (en) | 2013-01-10 |
TWI693722B (zh) | 2020-05-11 |
WO2013006803A2 (en) | 2013-01-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106098842B (zh) | 使用外延剥离和冷焊结合的半导体太阳能电池的集成太阳能收集器 | |
KR101129145B1 (ko) | 유기 감광성 장치 | |
CN102804408B (zh) | 使用外延剥离制备柔性光伏器件以及保持在外延生长中使用的生长基板的完整性的方法 | |
Kayes et al. | 27.6% conversion efficiency, a new record for single-junction solar cells under 1 sun illumination | |
KR101086129B1 (ko) | 개선된 태양 전지 | |
US11088338B2 (en) | Excitonic energy transfer to increase inorganic solar cell efficiency | |
US20110303268A1 (en) | HIGH EFFICIENCY InGaAsN SOLAR CELL AND METHOD OF MAKING | |
JP2004523129A (ja) | 有機光起電力素子 | |
JP2013543278A (ja) | 多接合型太陽電池に関してInP格子定数を有する広バンドギャップのタイプIIトンネル接合 | |
KR101783971B1 (ko) | 금속 디스크 어레이를 구비한 적층형 태양전지 | |
US20090007956A1 (en) | Distributed coax photovoltaic device | |
CN103875081A (zh) | 聚焦发光和热辐射聚光器 | |
Veinberg-Vidal et al. | Manufacturing and characterization of III-V on silicon multijunction solar cells | |
JP2013537366A (ja) | 無機太陽電池のための窓層としての有機半導体 | |
Egbe | Solar Cells: From Sunlight into Electricity |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20181218 Termination date: 20190706 |