Nothing Special   »   [go: up one dir, main page]

CN105742646B - 具有石榴果实结构的固体氧化物燃料电池阴极材料及制备 - Google Patents

具有石榴果实结构的固体氧化物燃料电池阴极材料及制备 Download PDF

Info

Publication number
CN105742646B
CN105742646B CN201410747199.4A CN201410747199A CN105742646B CN 105742646 B CN105742646 B CN 105742646B CN 201410747199 A CN201410747199 A CN 201410747199A CN 105742646 B CN105742646 B CN 105742646B
Authority
CN
China
Prior art keywords
ysz
lscf
gdc
sintering
membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201410747199.4A
Other languages
English (en)
Other versions
CN105742646A (zh
Inventor
程谟杰
张小敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian Institute of Chemical Physics of CAS
Original Assignee
Dalian Institute of Chemical Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian Institute of Chemical Physics of CAS filed Critical Dalian Institute of Chemical Physics of CAS
Priority to CN201410747199.4A priority Critical patent/CN105742646B/zh
Publication of CN105742646A publication Critical patent/CN105742646A/zh
Application granted granted Critical
Publication of CN105742646B publication Critical patent/CN105742646B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

本发明涉及一种具有石榴果实结构的高性能中低温固体氧化物燃料电池复合阴极,具体为LSCF‑GDC“石榴籽”层叠附着在YSZ骨架“隔膜”上的LSCF‑GDC&YSZ纳米复合阴极。其中“石榴籽”LSCF‑GDC颗粒尺寸为10~20nm,YSZ“隔膜”是由200nm左右的颗粒连接而成。这种结构的阴极具有较长的三相界,YSZ“隔膜”经高温烧结后与电解质膜“长”在一起形成畅通的离子导电通道,并且LSCF‑GDC纳米复合颗粒中GDC的加入抑制了Sr在LSCF表面的富集,从而抑制了高阻相SrZrO3的生成,显著提高了电极的性能和稳定性。

Description

具有石榴果实结构的固体氧化物燃料电池阴极材料及制备
技术领域
本发明涉及一种具有石榴果实结构的高性能中低温固体氧化物燃料电池复合阴极,具体为LSCF-GDC“石榴籽”层层叠叠附着在YSZ骨架“隔膜”上的LSCF-GDC&YSZ纳米复合阴极。
背景技术
固体氧化物燃料电池(SOFC)是一种将燃料中的化学能直接转化为电能的能源转化装置,可以用于便携式电源,热电联供以及大型发电设备,其效率高,无污染,燃料选择范围广,氢气、甲烷,生物气等碳氢化合物都可以用作固体氧化物燃料电池的燃料,应用前景广阔,因而成为众多学者研究的热点。高温固体氧化物燃料电池由于需要昂贵的铬酸镧作为连接体,成本极高,不利于固体氧化物燃料电池的应用。为了降低固体氧化物燃料电池的成本,需要将其工作温度降到700℃以下来利用廉价的金属连接体,但是随着工作温度的降低,SOFC经典的阴极材料LSM/YSZ复合阴极的性能急剧降低,主要原因是LSM材料在低温下催化氧还原的能力较低,产生的极化损失较大,因而成为制约电池性能的主要因素【V.A.C.Haanappel et al./Journal of Power Sources,141,(2005),216–226;Y.J.Lenget al./International Journal of Hydrogen Energy 29,(2004),1025–1033.】。为了提高电池在中低温下的性能,开发研制出了一系列新的阴极材料,如(La1-xSrx)CoO3-δ(LSC)【O.Yamamoto;Y.Takeda;R.Kanno;M.Noda./Solid State Ionics,22,(1987),241–246.】,(La1-xSrx)(Co1-yFey)O3-δ(LSCF)【H.Y.Tu;Y.Takeda;N.Imanishi;O.Yamamoto/Solid StateIonics,117,(1999),277–281.】,(Ba1-xSrx)(Co1-yFey)O3-δ(BSCF)【Z.P.Shao;S.M.Haile./Nature,431,(2004),170-173.】等,其中低温下的性能较LSM都有很大的提高,但是这些材料Sr元素容易在表面偏析,与常用电解质YSZ反应生成La2Zr2O7和SrZrO3等高阻相,因而需要使用铈基电解质或在YSZ电解质上添加一层铈基氧化物隔层来阻止该反应。由于电极的烧结温度较高,铈基电解质也会和YSZ反应生成高阻相铈锆固溶体,降低电池性能。
本专利提供一种具有石榴果实结构的高性能中低温固体氧化物燃料电池复合阴极,具体为LSCF-GDC“石榴籽”层层叠叠附着在YSZ骨架“隔膜”上的LSCF-GDC&YSZ纳米复合阴极。该阴极是通过将LSCF-GDC的原驱体溶液浸渍到高温烧结好的YSZ骨架表面,600~900℃烧结后得到的,其中“石榴籽”LSCF-GDC颗粒尺寸为10~20nm,YSZ“隔膜”是由200nm左右的颗粒连接而成,“长”在YSZ电解质膜(“石榴皮”)上。采用该阴极进行电池测试,700℃和600℃在0.7V的输出功率分别达到1.88W cm-2和0.85W cm-2(空气为氧化气,氢气为燃料气),远远高于文献报道的电池性能。原因是LSCF-GDC纳米复合材料颗粒密布在YSZ骨架表面,氧还原反应发生的活性位-三相界面大大增加,YSZ“隔膜”经高温烧结后与电解质膜“长”在一起形成畅通的离子导电通道,并且LSCF-GDC纳米复合颗粒中且GDC的加入抑制了Sr在LSCF表面的富集,从而抑制了高阻相SrZrO3的生成,显著提高了电极的性能和稳定性,600℃,0.8V定电压放电,300h无明显衰减。
发明内容
本专利提出一种具有石榴果实结构的高性能中低温固体氧化物燃料电池LSCF-GDC&YSZ纳米复合阴极。
1.具有石榴果实结构的固体氧化物燃料电池阴极材料,具体为LSCF-GDC&YSZ纳米复合阴极:LSCF-GDC为纳米复合颗粒,其组成为La1-xSrxCoyFe1-yO3-GdzCe1-zO2-0.5z,其中x=0.1~0.4,y=0.2~0.8,z=0.1~0.3;YSZ为多孔骨架,其组成为Y0.15Zr0.85O1.93或Y0.06Zr0.94O1.94;LSCF-GDC纳米复合颗粒中LSCF:GDC=40:60~60:40(质量比);LSCF-GDC&YSZ纳米复合阴极中LSCF-GDC:YSZ=50:50~70:30(质量比);纳米复合颗粒填充于多孔骨架的孔道内。
2.从整体上看,以纳米复合颗粒为籽,以YSZ多孔骨架为隔膜,籽附着于隔膜上,形成去皮后的石榴果实结构,其中LSCF-GDC纳米复合颗粒如石榴籽般层层叠叠附着在YSZ“隔膜”上。
3.LSCF-GDC&YSZ纳米复合阴极的组成优选La0.6Sr0.4Co0.2Fe0.8O3-Gd0.2Ce0.8O1.9&Y0.15Zr0.85O1.93;优选LSCF:GDC=50:50(质量比);优选LSCF-GDC:YSZ=60:40(质量比)。
4.LSCF-GDC&YSZ纳米复合阴极的具体制备方法如下:
1)首先制备YSZ骨架:将YSZ材料与正丁醇、聚乙烯醇缩丁醛(PVB)、鱼油、造孔剂和粘结剂超声混合均匀后,涂覆在阳极电解质膜二合一组件的电解质膜表面,高温烧结得到多孔的YSZ骨架“隔膜”;
YSZ材料与正丁醇、PVB、鱼油、造孔剂和粘结剂的用量为(质量比),17.3:40.6:17.3:0.6:17.3:6.9或11.0:51.2:22.0:0.4:11.0:4.4;
2)制备原驱体溶液:首先按照化学计量比称取Gd2O3溶于稀硝酸(摩尔浓度为10~1mol/L)中,其中HNO3的摩尔量为Gd3+的6~9倍,60-80℃加热搅拌完全溶解后,依次加入Ce、La、Sr、Co、Fe、Zr金属离子的硝酸盐,完全溶解后加入络合剂柠檬酸铵,调节体系的pH为1~2或7~9使柠檬酸铵完全溶解,60-80℃热络合2~3h后;
3)将步骤2)中所配置的原驱体溶液真空浸渍到步骤1)中制备的YSZ骨架中,然后在400~500℃烧结1-3小时,分解硝酸盐并除去浸渍液中的有机物;
4)重复步骤3)的浸渍和烧结过程2-10次直到达到所需要的浸渍量后,最后在600~800℃烧结1~2h,于阳极电解质膜二合一组件的电解质膜表面得到LSCF-GDC&YSZ纳米复合阴极。
5.所述步骤1)中,制备YSZ骨架时所用造孔剂为石墨、聚苯乙烯(PS)、聚甲基丙烯酸甲酯(PMMA)中的一种或二种以上的混合物;粘结剂为6%(质量比)的乙基纤维素溶液,溶剂为松油醇;高温烧结为程序升温烧制,程序升温烧制YSZ骨架时,从室温至400℃的升温速率为0.5-1℃/min,从400℃至800℃的升温速率为2-5℃/min,从800℃到烧结温度的升温速率为1-2℃/min;YSZ骨架的烧结温度为1100~1300℃,优选1180℃;烧结时间1-4小时;多孔的YSZ骨架厚度约10-50微米。
6.所述步骤2)中,原驱体中金属离子的总浓度为1.5~3mol/L,优选2mol/L;络合剂与复合阴极材料中金属离子总数的摩尔比为1:1~1:2,优选1:1。
7.所述步骤4)中,优选烧结温度为700~800℃;所制备的纳米复合阴极中LSCF-GDC复合材料颗粒尺寸在10~20nm。
本发明的有益效果:
具有石榴果实结构的高性能中低温固体氧化物燃料电池LSCF-GDC&YSZ纳米复合阴极:该阴极采用共浸渍的方法将LSCF-GDC的前驱体溶液引入到阳极电解质膜二合一组件的电解质膜表面的YSZ骨架中,较低温度下烧结制得LSCF-GDC&YSZ纳米复合阴极,避免了GDC隔层的使用以及La2Zr2O7和SrZrO3等高阻相的生成;LSCF-GDC颗粒尺寸在10~20nm,大大增加了氧还原反应活性位三相界面的浓度,氧还原活性明显提高;YSZ“隔膜”经高温烧结后与电解质膜“长”在一起形成畅通的离子导电通道;并且LSCF-GDC纳米复合颗粒中且GDC的加入抑制了Sr在LSCF表面的富集,从而抑制了高阻相SrZrO3的生成;显著提高了电极的性能和稳定性,600℃,0.8V定电压放电,300h无明显衰减。
附图说明
图1是800℃烧结的LSCF-GDC&YSZ纳米复合阴极的电镜照片。
具体实施实式
实施例1制备具有LSCF-GDC&YSZ纳米复合阴极的电池。
1)首先制备YSZ骨架,采用NiO:YSZ=45:55的复合物为阳极基底,(Y2O3)0.08(ZrO2)0.92为电解质膜的阳极电解质膜二合一组件,在其电解质膜上制备YSZ骨架,YSZ的组成为(Y2O3)0.08(ZrO2)0.92。YSZ材料与正丁醇、PVB、鱼油、造孔剂【片状石墨:PMMA=50:50%(质量比)】和粘结剂的用量为(质量比),11.0:51.2:22.0:0.4:11.0:4.4,将上述混合物超声混合均匀后,涂覆于阳极电解质膜二合一组件的电解质膜一侧,置于高温炉中程序升温烧结,程序升温制度如下:升温速率1℃/min从室温升至280℃,保温30min;从280℃以1℃/min的升温速率升温至280℃,保温60min;从400℃以2℃/min的升温速率升温至800℃,保温120min;从800℃以2℃/min的升温速率升温至1180℃,保温120min后随炉冷却。
2)其次配制LSCF(La0.6Sr0.4Co0.2Fe0.8O3-δ)/GDC(Ce0.8Gd0.2O1.9)=50:50wt%的浸渍液50ml:其中LSCF浓度为0.5mol L-1,称取1.1619g的Gd2O3溶于6ml硝酸中,搅拌加热完全溶解后加水稀释至40ml,依次加入11.2388g Ce(NO3)3·6H2O(分析纯),6.4959g La(NO3)3·6H2O(分析纯),2.1269g Sr(NO3)2(分析纯),1.4698g Co(NO3)2·6H2O(分析纯),8.2030g Fe(NO3)3·6H2O(分析纯),完全溶解后搅拌3h,然后按照柠檬酸铵:金属离子总摩尔数=1:1(摩尔比)的比例加入20.2552g柠檬酸铵(分析纯),搅拌使其溶解,加热至80℃络合3h后用50ml容量瓶定容。
3)最后,将上述浸渍液浸渍到第一步中烧结好的YSZ骨架中,每次浸渍后在500℃焙烧分解硝酸盐和除去有机物,8次浸渍达到所需浸渍量后,800℃焙烧2小时得到LSCF-GDC&YSZ纳米复合电极。XRD结果表明纳米复合电极没有其它杂相,说明LSCF-GDC纳米复合粒子与YSZ骨架之没有发生反应生成高阻相。其电镜照片如图1所示,可以看出:纳米复合阴极中LSCF-GDC颗粒尺寸在10~20nm,如石榴籽般层层叠叠附着在YSZ骨架“隔膜”表面,界面接触良好。对具有该纳米复合阴极的电池进行电化学性能测试,在阳极侧,加湿的氢气作为燃料(体积浓度3%H2O,100ml min-1),在阴极侧,空气作为氧化剂(100ml min-1),Au集流。电压0.7V时,700℃和600℃的功率密度分别为1.88W cm-2和0.85W cm-2,远远高于文献报道的LSCF浸渍YSZ阴极电池【M.F.Han./ECS Transactions,35,(2011),2295-2303.】和LSCF-GDC纳米线阴极电池【M.J.Zhang et al./Energy&Environmental Science,5,(2012),7066–7071.】在相同测试条件下的功率密度。将该LSCF-GDC&YSZ纳米复合阴极电池置于电池稳定性装置上测试,600℃,0.8V定电压放电300h无明显衰减。

Claims (8)

1.具有石榴果实结构的固体氧化物燃料电池阴极材料,具体为LSCF-GDC&YSZ纳米复合阴极:LSCF-GDC为纳米复合颗粒,其组成为La1-xSrxCoyFe1-yO3-GdzCe1-zO2-0.5z,其中x=0.1~0.4,y=0.2~0.8,z=0.1~0.3;YSZ为多孔骨架,其组成为Y0.15Zr0.85O1.93或Y0.06Zr0.94O1.94;LSCF-GDC纳米复合颗粒中LSCF与GDC质量比为40:60~60:40;LSCF-GDC&YSZ纳米复合阴极中LSCF-GDC与YSZ质量比为50:50~70:30;纳米复合颗粒填充于多孔骨架的孔道内。
2.根据权利要求1所述阴极材料,其特征在于:从整体上看,以纳米复合颗粒为籽,以YSZ多孔骨架为隔膜,籽附着于隔膜上,形成去皮后的石榴果实结构,其中LSCF-GDC纳米复合颗粒如石榴籽般层层叠叠附着在YSZ“隔膜”上。
3.根据权利要求1所述阴极材料,其特征在于:LSCF-GDC&YSZ纳米复合阴极的组成La0.6Sr0.4Co0.2Fe0.8O3-Gd0.2Ce0.8O1.9&Y0.15Zr0.85O1.93,LSCF与GDC质量比=50:50;LSCF-GDC与YSZ质量比为60:40。
4.一种权利要求1所述具有石榴果实结构的固体氧化物燃料电池阴极材料的制备方法,其特征在于:所述的LSCF-GDC&YSZ纳米复合阴极的具体制备方法如下:1)首先制备YSZ骨架:将YSZ材料与正丁醇、聚乙烯醇缩丁醛(PVB)、
鱼油、造孔剂和粘结剂超声混合均匀后,涂覆在阳极电解质膜二合一组件的电解质膜表面,高温烧结得到多孔的YSZ骨架“隔膜”;YSZ材料与正丁醇、PVB、鱼油、造孔剂和粘结剂的质量比为17.3:40.6:17.3:0.6:17.3:6.9或11.0:51.2:22.0:0.4:11.0:4.4;
2)制备原驱体溶液:首先按照化学计量比称取Gd2O3溶于稀硝酸中,硝酸摩尔浓度为10~1mol/L,其中HNO3的摩尔量为Gd3+的6~9倍,60-80℃加热搅拌完全溶解后,依次加入Ce、La、Sr、Co、Fe金属离子的硝酸盐,完全溶解后加入络合剂柠檬酸铵,调节体系的pH为1~2或7~9使柠檬酸铵完全溶解,60-80℃热络合2~3h后;
3)将步骤2)中所配置的原驱体溶液真空浸渍到步骤1)中制备的YSZ骨架中,然后在400~500℃烧结1-3小时,分解硝酸盐并除去浸渍液中的有机物;
4)重复步骤3)的浸渍和烧结过程2-10次直到达到所需要的浸渍量后,最后在600~800℃烧结1~2h,于阳极电解质膜二合一组件的电解质膜表面得到LSCF-GDC&YSZ纳米复合阴极。
5.根据权利要求4所述的制备方法,其特征在于:所述步骤1)中,制备YSZ骨架时所用造孔剂为石墨、聚苯乙烯(PS)、聚甲基丙烯酸甲酯(PMMA)中的一种或二种以上的混合物;粘结剂为乙基纤维素与松油醇质量比为6%的溶液;高温烧结为程序升温烧制,程序升温烧制YSZ骨架时,从室温至400℃的升温速率为0.5-1℃/min,从400℃至800℃的升温速率为2-5℃/min,从800℃到烧结温度的升温速率为1-2℃/min;YSZ骨架的烧结温度为1100~1300℃;烧结时间1-4小时;多孔的YSZ骨架厚度10-50微米。
6.根据权利要求4所述的制备方法,其特征在于:所述步骤2)中,原驱体中金属离子的总浓度为1.5~3mol/L;络合剂与复合阴极材料中金属离子总数的摩尔比为1:1~1:2。
7.根据权利要求4所述的制备方法,其特征在于:所述步骤1)中,YSZ骨架的烧结温度1180℃;所述步骤2)中,原驱体中金属离子的总浓度2mol/L;络合剂与复合阴极材料中金属离子总数的摩尔比1:1。
8.根据权利要求4所述的制备方法,其特征在于:所述步骤4)中,烧结温度为700~800℃;所制备的纳米复合阴极中LSCF-GDC复合材料颗粒尺寸在10~20nm。
CN201410747199.4A 2014-12-08 2014-12-08 具有石榴果实结构的固体氧化物燃料电池阴极材料及制备 Expired - Fee Related CN105742646B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410747199.4A CN105742646B (zh) 2014-12-08 2014-12-08 具有石榴果实结构的固体氧化物燃料电池阴极材料及制备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410747199.4A CN105742646B (zh) 2014-12-08 2014-12-08 具有石榴果实结构的固体氧化物燃料电池阴极材料及制备

Publications (2)

Publication Number Publication Date
CN105742646A CN105742646A (zh) 2016-07-06
CN105742646B true CN105742646B (zh) 2018-04-24

Family

ID=56237165

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410747199.4A Expired - Fee Related CN105742646B (zh) 2014-12-08 2014-12-08 具有石榴果实结构的固体氧化物燃料电池阴极材料及制备

Country Status (1)

Country Link
CN (1) CN105742646B (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108091884B (zh) * 2016-11-21 2020-04-28 中国科学院大连化学物理研究所 一种固体氧化物燃料电池阴极及应用
CN109841841B (zh) * 2017-11-29 2021-08-31 中国科学院大连化学物理研究所 一种高温燃料电池阴极材料及其制备和应用
CN109904470B (zh) * 2017-12-11 2021-05-11 中国科学院大连化学物理研究所 一种固体氧化物燃料电池阴极材料
CN109721044B (zh) * 2018-12-24 2022-02-15 哈尔滨工业大学 一种源自球果的三维多孔生物炭的制备方法及其应用
CN111146456B (zh) * 2020-01-22 2022-05-31 福州大学 一种燃料电池用复合阴极材料的制备方法
CN111574244B (zh) * 2020-04-30 2022-05-13 南京理工大学 一种固体氧化物电池阻隔层致密化的方法
CN114497573A (zh) * 2020-10-27 2022-05-13 中国科学院宁波材料技术与工程研究所 一种中温固体氧化物燃料电池复合阴极及其制备方法、固体氧化物燃料电池

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1553538A (zh) * 2003-06-06 2004-12-08 中国科学院过程工程研究所 一种新型中温固体氧化物燃料电池材料组合系统
CN101246980A (zh) * 2008-03-26 2008-08-20 中国矿业大学(北京) 固体氧化物燃料电池与热电材料联合发电系统

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6594116B2 (ja) * 2015-08-31 2019-10-23 キヤノン株式会社 画像表示装置及びその制御方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1553538A (zh) * 2003-06-06 2004-12-08 中国科学院过程工程研究所 一种新型中温固体氧化物燃料电池材料组合系统
CN101246980A (zh) * 2008-03-26 2008-08-20 中国矿业大学(北京) 固体氧化物燃料电池与热电材料联合发电系统

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Calcium doped Y3Fe5O12 as a new cathode material for intermediate temperature;Wei zhong etal;《Journal of Power Sources》;20120421;第213卷;140-144 *
Effect of polarization on Sr and Zr diffusion behavior in;Fangfang Wang etal;《Solid State Ionics》;20140503;第262卷;第454-459页 *
Synthesis and evaluation of (La0.6Sr0.4)(Co0.2Fe0.8)O3;Hyun Jun Ko etal;《i n t e r n a t i o n a l j ournal o f hydrogen energy》;20120913;第37卷;17209-17216 *

Also Published As

Publication number Publication date
CN105742646A (zh) 2016-07-06

Similar Documents

Publication Publication Date Title
CN105742646B (zh) 具有石榴果实结构的固体氧化物燃料电池阴极材料及制备
Tahir et al. A review on cathode materials for conventional and proton-conducting solid oxide fuel cells
Wang et al. A review on unitized regenerative fuel cell technologies, part B: Unitized regenerative alkaline fuel cell, solid oxide fuel cell, and microfluidic fuel cell
Qiu et al. Materials of solid oxide electrolysis cells for H 2 O and CO 2 electrolysis: A review.
Hu et al. Visiting the roles of Sr‐or Ca‐doping on the oxygen reduction reaction activity and stability of a perovskite cathode for proton conducting solid oxide fuel cells
CN102610842B (zh) 中高温碳-空气电池
Yang et al. Electrochemical performance of a Ni0. 8Co0. 15Al0. 05LiO2 cathode for a low temperature solid oxide fuel cell
CN102683722A (zh) 一种固体氧化物燃料电池复合阴极及其制备方法
Li et al. Advanced Architectures of Air Electrodes in Zinc–Air Batteries and Hydrogen Fuel Cells
Xing et al. High-performance and CO2-durable composite cathodes toward electrocatalytic oxygen reduction: Ce0. 8Sm0. 2O1. 9 nanoparticle-decorated double perovskite EuBa0. 5Sr0. 5Co2O5+ δ
Zhang et al. Nanostructured GDC-impregnated La0. 7Ca0. 3CrO3− δ symmetrical electrodes for solid oxide fuel cells operating on hydrogen and city gas
CN101662033A (zh) 一种固体氧化物燃料电池以及这种电池的制备方法
Chen et al. Tailored double perovskite with boosted oxygen reduction kinetics and CO2 durability for solid oxide fuel cells
CN108103524A (zh) 一种固体氧化物电解池及其制备方法
Lou et al. Preparation and electrochemical characterization of Ruddlesden–Popper oxide La 4 Ni 3 O 10 cathode for IT-SOFCs by sol–gel method
Zeng et al. Enhancing the oxygen reduction reaction activity and durability of a solid oxide fuel cell cathode by surface modification of a hybrid coating
Yang et al. Tuning Ba0. 5Sr0. 5Co0. 8Fe0. 2O3-δ cathode to high stability and activity via Ce-doping for ceramic fuel cells
Xi et al. Enhanced reaction kinetics of BCFZY-GDC-PrOx composite cathode for low-temperature solid oxide fuel cells
Yusoff et al. Recent advances and influencing parameters in developing electrode materials for symmetrical solid oxide fuel cells
Song et al. A novel triple-conductive cathode with high efficiency and stability for protonic ceramic fuel cells
Ko et al. Synthesis of LSM–YSZ–GDC dual composite SOFC cathodes for high-performance power-generation systems
CN103165930A (zh) 提高质子导体固体氧化物燃料电池电解质烧结性能的方法
CN103794804B (zh) 用于对称型固体氧化物燃料电池的电极及复合电极材料
CN112349913B (zh) 一种高性能可逆固体氧化物电池电极材料组成及其制备方法
Song et al. A-Site Deficiency Ba0. 9La0. 1Co0. 7Fe0. 2Nb0. 1O3-δ Perovskite as Highly Active and Durable Oxygen Electrode for High-Temperature H2O Electrolysis

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180424

CF01 Termination of patent right due to non-payment of annual fee