Nothing Special   »   [go: up one dir, main page]

CN111146456B - 一种燃料电池用复合阴极材料的制备方法 - Google Patents

一种燃料电池用复合阴极材料的制备方法 Download PDF

Info

Publication number
CN111146456B
CN111146456B CN202010075108.2A CN202010075108A CN111146456B CN 111146456 B CN111146456 B CN 111146456B CN 202010075108 A CN202010075108 A CN 202010075108A CN 111146456 B CN111146456 B CN 111146456B
Authority
CN
China
Prior art keywords
solution
powder
composite cathode
cathode
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010075108.2A
Other languages
English (en)
Other versions
CN111146456A (zh
Inventor
陈孔发
蒋文俊
逄舒淇
江丽贞
邵艳群
王欣
唐电
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuzhou University
Original Assignee
Fuzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuzhou University filed Critical Fuzhou University
Priority to CN202010075108.2A priority Critical patent/CN111146456B/zh
Publication of CN111146456A publication Critical patent/CN111146456A/zh
Application granted granted Critical
Publication of CN111146456B publication Critical patent/CN111146456B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • C01G51/006
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/40Complex oxides containing cobalt and at least one other metal element
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8647Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites
    • H01M4/8657Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites layered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9016Oxides, hydroxides or oxygenated metallic salts
    • H01M4/9025Oxides specially used in fuel cell operating at high temperature, e.g. SOFC
    • H01M4/9033Complex oxides, optionally doped, of the type M1MeO3, M1 being an alkaline earth metal or a rare earth, Me being a metal, e.g. perovskites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

本发明公开了一种燃料电池用复合阴极材料的制备方法,属于燃料电池电极材料制备技术领域。其是通过GdzCe1‑zO2(z为0~1)复合增强LaxSr1‑xCoyFe1‑yO3‑δ(x为0~1,y为0~1)的性能。本发明获得的阴极颗粒对原有结构有较大的改善,并能够表现出显著的高催化活性。本发明制备原料简单易得,工艺稳定,可达到工业化生产的要求。

Description

一种燃料电池用复合阴极材料的制备方法
技术领域
本发明属于燃料电池电极材料制备技术领域,具体涉及一种高效的燃料电池用复合阴极材料的制备方法。
背景技术
燃料电池是一种电化学发电装置,可以高效、清洁的将燃料化学能转化为电能,其中固体氧化物燃料电池(SOFC)具有独特的优势,如采用全固态的陶瓷装置,不会出现电解质腐蚀、泄漏现象;还可以采用模块化设计,降低了设计和生产成本。阴极是SOFC重要的组成部件,SOFC的性能与阴极的催化活性、导电性质和微结构都紧紧相连。理想的高性能阴极需具有优良的电化学催化活性、高的电化学反应面积及良好的电子导电性与离子混合导电属性。近年来,研究人员尝试多种方法制备高性能的SOFC阴极材料,例如通过添加离子导体构建复合阴极。
氧化钆掺杂的氧化铈(GdzCe1-zO2,GDC,z为0~1)是一种广泛应用的中低温SOFC电解质材料,具有优异的离子导电性和表面交换系数。专利CN 110098410A使用胶体修饰法将GDC纳米颗粒应用于双层钙钛矿阴极材料PrBa1-λCaλCo2O5+δ(PBCC)(其中,λ为0~1)中,明显提升了PBCC的氧还原反应(ORR)电化学催化活性。然而PBCC材料尚处于实验开发阶段,仍有诸多技术问题有待解决,例如,其所需烧结温度过高、与电解质材料的热膨胀系数匹配性差(Hou J, Miao L, Hui J, et al. A novel in situ diffusion strategy to fabricatehigh performance cathodes for low temperature proton-conducting solid oxidefuel cells[J]. Journal of Materials Chemistry A, 2018, 6(22): 10411-10420)。
LaxSr1-xCoyFe1-yO3-δ(LSCF,x为0~1,y为0~1)是目前最为成功的中温SOFC阴极材料,其具有优异的电子/离子导电性、电化学催化活性,已经达到工业化使用的条件(ConceiOLD, Silva A M , Ribeiro N F P , et al. Combustion synthesis ofLa0.7Sr0.3Co0.5Fe0.5O3 (LSCF) porous materials for application as cathode in IT-SOFC[J]. Materials Research Bulletin, 2011, 46(2):308-314)。然而,传统电极制备过程需经过高温烧结(900-1200℃),这增大了LSCF电极颗粒尺寸,降低了电极的反应表面积。通过浸渍方法可以制备纳米尺度的包覆电极,但过程较为复杂,需经历多次的浸渍-预烧过程(Tomov R I, Mitchel-Williams T B, Maher R, et al. The synergisticeffect of cobalt oxide and Gd-CeO2 dual infiltration in LSCF/CGO cathodes[J].Journal of Materials Chemistry A, 2018, 6(12): 5071-5081)。专利CN 108091885A通过浸渍方法将钙钛矿氧化物或萤石氧化物制备在阴极上,所采用方法是先将阴极浆料涂覆到电解质上,进行高温烧结,随后将硝酸盐溶液滴入阴极,其与前述的浸渍方法同样存在制备过程复杂,浸渍浓度梯度不均的现象。而专利CN 102420332A在LaNi0.6Fe0.4O3-δ阴极上包覆CeO2以制备耐Cr毒化阴极,所采用方法也是先将阴极浆料涂覆到电解质上,再进行高温烧结,随后将阴极浸润于CeO2溶液中,但其在浸润过程中未进行均匀搅拌,且LaNi0.6Fe0.4O3-δ电极在包覆之前已经经过高温烧结处理,易存在阴极颗粒较大且包覆不均匀等现象。
本发明通过溶胶凝胶法,将GDC纳米颗粒修饰到未经过高温烧结的LSCF颗粒上,从而形成精细的复合阴极,在后续电池的装配过程中,于中温(600-850℃)条件下通过电化学极化法将其制备到电解质表面,避免了高温烧结过程,抑制了电极颗粒的长大,改善了阴极的有效反应面积与离子导电性,提高电池的输出性能。
发明内容
本发明的目的在于针对现有技术的不足,提供一种高效的燃料电池用复合阴极材料的制备方法。其通过溶胶修饰过程构筑复合阴极粉体,以此来改善阴极微结构,显著提高LSCF阴极的有效反应面积和表面交换系数,进而提高其电化学催化性能。
为实现上述目的,本发明采用如下技术方案:
一种燃料电池用复合阴极材料的制备方法,其是将纳米尺度氧化钆稳定的氧化铈(GdzCe1-zO2,z为0~1)修饰在LaxSr1-xCoyFe1-yO3-δ(x为0~1,y为0~1)上,制得离子导电增强型复合阴极材料。其具体步骤如下:
(1)称取一定量的Ce(NO3)3·6H2O与Gd(NO3)3·6H2O固体粉末,倒入烧杯中,加去离子水混合后,加入一定量的络合剂和氨水溶液,所得混合物倒于装有去离子水的烧杯中,在室温下混合搅拌,得到有色澄清溶液;
(2)将步骤(1)所得有色澄清溶液于20~600℃下加热,待溶液余量为50~100mL时,加入LaxSr1-xCoyFe1-yO3-δ(LSCF)粉体,搅拌混合得到有色凝胶;此过程中盐溶液中Ce3+与Gd3+附着于LSCF表层;
(3)将步骤(2)所得有色凝胶放入50~600℃烘箱中干燥0.1~50小时,随后将干燥好的黑色膨松凝胶转移至研钵中研磨,再放入坩埚中于高温炉中,400~1200℃煅烧0.1~20小时,此过程中表层盐离子与氧气反应形成萤石型结构氧化物,之后取出研磨精细,得到GDC修饰的LSCF离子增强型阴极粉末。
步骤(1)中所加入Ce(NO3)3·6H2O与Gd(NO3)3·6H2O的摩尔比为(0.1~0.9):(0.01~0.5)。
步骤(1)中络合剂的加入量为溶液中金属阳离子总摩尔数的1~15倍;所述络合剂为柠檬酸和EDTA的混合物,两者摩尔比为(0.1~1.5):(0.1~1)。
步骤(1)中去离子水的总用量与络合剂的质量比为(1~15):1。
步骤(1)加入氨水溶液以调节溶液pH为2~12,所用氨水溶液的质量浓度为25%。
步骤(2)中LaxSr1-xCoyFe1-yO3-δ粉体的加入量为所得复合阴极材料质量的1%~99%。
本发明的显著优点在于
1. 本发明中溶胶凝胶法合成的GDC/LSCF复合阴极具有高的反应面积,能显著提高固体氧化物燃料电池阴极性能。
2. 通常具有纳米结构的颗粒容易团聚,从而影响其分散性和利用率。本发明以LSCF作为骨架而起到均匀分散的作用,并发挥聚合物载体的柔韧性和易操作性,降低了阴极团聚的概率,还可以利用聚合物微纳米尺寸的表面复合产生较强的协同效应,提高催化效能。
3. 本发明提供的复合阴极材料的制备方法原料易得,制备工艺简单、稳定。
附图说明
图1是纯LSCF阴极粉体的SEM表面形貌图。
图2是实施例1得到10wt% GDC修饰的LSCF复合阴极粉体的SEM图。
图3是实施例2得到20wt% GDC修饰的LSCF复合阴极粉体的XRD图。
图4是实施例2得到20wt% GDC修饰的LSCF复合阴极粉体与纯LSCF阴极粉体于750℃工作条件下的单电池性能对比图。
具体实施方式
为了使本发明所述的内容更加便于理解,下面结合具体实施方式对本发明所述的技术方案做进一步的说明,但是本发明不仅限于此。
LSCF粉末的制备:
(1)将5.1g La(NO3)3·6H2O、1.7g Sr(NO3)2、1.2g Co(NO3)2·6H2O、6.5g Fe(NO3)3·9H2O和11.5g柠檬酸、11.7g EDTA粉末加入烧杯,与500mL的去离子水混合,随后缓慢倒入24mL浓度为25%的氨水溶液,不断搅拌使之充分溶解,此时测得pH=5;
(2)将搅拌后的有色溶液再加热至300℃,待溶液完全转变为凝胶后放入烘箱干燥,然后在950℃煅烧5小时,制得纯LSCF阴极粉体。
图1是所制备纯LSCF阴极粉体的SEM表面形貌图。如图所示,其颗粒大小不均匀,团聚现象严重,分散不均。
实施例1 LSCF/GDC复合粉体的制备
(1)称取0.02g(4.6×10-5mol)Gd(NO3)3·6H2O、0.22g(4.8×10-4mol)Ce(NO3)3·6H2O、0.33g(1.7×10-3mol)柠檬酸、0.33g(1.1×10-3mol) EDTA于烧杯中,倒入100mL的去离子水,缓慢倒入0.7mL浓度为25%的氨水溶液,在室温下不断搅拌使其充分溶解,检测溶液pH值为6;
(2)将所得淡黄色溶液在180℃下加热搅拌,随着水分残余至50mL时加入一定量的LSCF阴极粉体,随后保持温度不变,搅拌混合得到黑色膨松状阴极前驱体凝胶;
(3)将所得前驱体凝胶放入180℃烘箱中干燥10小时,随后取出块状前驱体研磨成粉末,再装入坩埚中,在高温炉中于750℃下煅烧2小时,之后取出研磨精细,便可得到10wt%GDC包覆的LSCF离子增强型燃料电池阴极粉末。
图2是实施例1得到10wt%GDC修饰的LSCF燃料电池阴极粉体的SEM图。如图所示,其为纳米尺度且GDC与LSCF颗粒互相有序堆叠,分布均匀,说明本发明方法能够改善阴极粉体微结构。
实施例2 LSCF/GDC复合粉体的制备
(1)称取0.04g(9.2×10-5mol)Gd(NO3)3·6H2O、0.44g(9.6×10-4mol)Ce(NO3)3·6H2O、0.66g(3.4×10-3mol)柠檬酸、0.68g(2.2×10-3mol)EDTA于烧杯中,倒入200mL的去离子水,缓慢倒入0.14mL的氨水溶液(浓度为25%),在室温不断搅拌使其充分溶解,检测溶液pH值为6;
(2)将所得淡黄色溶液在180℃下加热搅拌,随着水分残余至50mL时加入一定量的LSCF阴极粉体,随后保持温度不变,搅拌混合得到黑色膨松状阴极前驱体凝胶;
(3)将所得前驱体凝胶放入180℃烘箱中干燥10小时,随后取出块状前驱体研磨成粉末,装入坩埚中在高温炉中于750℃下煅烧2小时,之后取出研磨精细,便可得到20wt%GDC包覆的LSCF离子增强型燃料电池阴极粉末。
图3是实施例2得到20wt%GDC修饰的LSCF燃料电池阴极粉体的XRD图。如图所示,GDC与LSCF均已成相且无杂项生成。
图4是实施例2得到20wt% GDC修饰的LSCF复合阴极粉体与纯LSCF阴极粉体于750℃工作条件下的单电池性能对比图。如图所示,GDC修饰的LSCF的最高功率密度为0.91W·cm-2,纯LSCF的最高功率密度为0.60W·cm-2,可见,本发明制得的复合阴极材料的功率有较为明显的提升。
以上所述仅为本发明的较佳实施例,凡依本发明申请专利范围所做的均等变化与修饰,皆应属本发明的涵盖范围。

Claims (1)

1.一种燃料电池用复合阴极材料的制备方法,其特征在于:采用GdzCe1-zO2对LaxSr1- xCoyFe1-yO3-δ进行修饰,制得离子导电增强型复合阴极材料;其中,z为0~1,x为0~1,y为0~1;
具体步骤如下:
(1)称取一定量的Ce(NO3)3·6H2O与Gd(NO3)3·6H2O固体粉末,加去离子水混合后,加入一定量的络合剂和氨水溶液,所得混合物倒于装有去离子水的烧杯中,在室温下混合搅拌,得到有色澄清溶液;
(2)将步骤(1)所得有色澄清溶液于20~600℃下加热,待溶液余量为50~100mL时,加入LaxSr1-xCoyFe1-yO3-δ粉体,搅拌混合得到有色凝胶;
(3)将步骤(2)所得有色凝胶经干燥、研磨、煅烧、再次研磨得到离子增强型复合阴极粉末;
步骤(1)中所加入Ce(NO3)3·6H2O与Gd(NO3)3·6H2O的摩尔比为(0.1~0.9):(0.01~0.5);
步骤(1)中络合剂的加入量为溶液中金属阳离子总摩尔数的1~15倍;
所述络合剂为柠檬酸和EDTA的混合物,两者摩尔比为(0.1~1.5):(0.1~1);
步骤(1)中去离子水的总用量与络合剂的质量比为(1~15):1;
步骤(1)加入氨水溶液以调节溶液pH为2~12,所用氨水溶液的质量浓度为25%;
步骤(2)中LaxSr1-xCoyFe1-yO3-δ粉体的加入量为所得复合阴极材料质量的1%~99%;
步骤(3)中干燥的温度为50~600℃,时间为0.1~50小时;煅烧的温度为400~1200℃,时间为0.1~20小时。
CN202010075108.2A 2020-01-22 2020-01-22 一种燃料电池用复合阴极材料的制备方法 Active CN111146456B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010075108.2A CN111146456B (zh) 2020-01-22 2020-01-22 一种燃料电池用复合阴极材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010075108.2A CN111146456B (zh) 2020-01-22 2020-01-22 一种燃料电池用复合阴极材料的制备方法

Publications (2)

Publication Number Publication Date
CN111146456A CN111146456A (zh) 2020-05-12
CN111146456B true CN111146456B (zh) 2022-05-31

Family

ID=70526844

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010075108.2A Active CN111146456B (zh) 2020-01-22 2020-01-22 一种燃料电池用复合阴极材料的制备方法

Country Status (1)

Country Link
CN (1) CN111146456B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112290034B (zh) * 2019-07-26 2022-09-20 南京理工大学 固体氧化物燃料电池阳极材料及其制备方法
CN112670521A (zh) * 2020-12-28 2021-04-16 哈尔滨工业大学 基于应力设计提高固体氧化物燃料电池阴极稳定性的方法
CN113555562B (zh) * 2021-06-29 2022-09-06 南京理工大学 一种在宽氧气氛工作的复合阴极结构及其制备方法
CN115064712B (zh) * 2022-08-03 2023-11-17 盐城工学院 一种纳米颗粒包覆复合阴极材料的制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105742646A (zh) * 2014-12-08 2016-07-06 中国科学院大连化学物理研究所 具有石榴果实结构的固体氧化物燃料电池阴极材料及制备
CN107004841A (zh) * 2014-12-05 2017-08-01 株式会社Lg 化学 正极活性材料、制备其的方法以及包含其的锂二次电池

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004013882A2 (en) * 2001-06-29 2004-02-12 Nextech Materials, Ltd. Nano-composite electrodes and method of making the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107004841A (zh) * 2014-12-05 2017-08-01 株式会社Lg 化学 正极活性材料、制备其的方法以及包含其的锂二次电池
CN105742646A (zh) * 2014-12-08 2016-07-06 中国科学院大连化学物理研究所 具有石榴果实结构的固体氧化物燃料电池阴极材料及制备

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Ce0.8Gd0.2O2 modification on La0.6Sr0.4Co0.2Fe0.8O3 cathode for improving a cell performance in intermediate temperature solid oxide fuel cells";Jeong Woo Yun et al.;《Journal of Industrial and Engineering Chemistry》;20110428;摘要,第440页 *
"In Situ Synthesized La0.6Sr0.4Co0.2Fe0.8O3−δ-Gd0.1Ce0.9O1.95 Nanocomposite Cathodes via a Modified Sol−Gel Process for Intermediate Temperature Solid Oxide Fuel Cells";Dong Woo Joh et al.;《ACS Appl. Nano Mater.》;20180503;摘要,第2935页 *
"核壳结构的LSCF-GDC 复合阴极的合成研究";石纪军等;《人工晶体学报》;20181231;摘要,第2505-2506页 *

Also Published As

Publication number Publication date
CN111146456A (zh) 2020-05-12

Similar Documents

Publication Publication Date Title
CN111146456B (zh) 一种燃料电池用复合阴极材料的制备方法
CN111477881B (zh) 一种NiFe合金纳米颗粒包覆Pr0.8Sr1.2(FeNi)O4-δ材料及其制法
CN110797542B (zh) 一种对称固体氧化物燃料电池电极材料及其制备方法
CN111430734B (zh) (Pr0.5Sr0.5)xFe1-yRuyO3-δ钙钛矿材料及其制备方法与应用
CN108649235A (zh) 一种a位层状钙钛矿型电极材料及其制备方法
CN106498435A (zh) 一种固体氧化物电解池阴极材料及其制备方法
CN113745540B (zh) 一种直接醇类燃料电池阳极重整层及其制备方法和应用
Lian et al. Electrochemical performance of Li13. 9Sr0. 1Zn (GeO4) 4 prepared by sol-gel for solid oxide fuel cell electrolyte
CN113991122B (zh) 一种对称固体氧化物燃料电池核壳结构电极材料及其制备方法和应用
CN113964331B (zh) 一种纳米-微米多级结构锶钴基钙钛矿复合阴极及制备方法
CN113258086B (zh) 一种三相导体质子导体复合阴极材料及其制备方法
CN108511750B (zh) 一种锂空气电池用多元金属硫化物催化剂及其制备方法
CN115241471A (zh) 一种固体氧化物燃料电池阴极材料及其制法与应用
CN113233518B (zh) 一种具有多碳燃料催化制氢功能的固体氧化物燃料电池阳极催化材料及其制备方法
CN102658152B (zh) 一种氧电极钙钛矿型催化剂的制备方法
CN115321611A (zh) Ba掺杂一步法制备原位析出纳米颗粒的RP相氧化物及其应用
CN114635150A (zh) 一种新型的固体氧化物电解池氧电极及其制备方法
CN113968596A (zh) 一种铁基双钙钛矿型电极粉末材料及制备方法、基于其的燃料电池电极材料及制备方法
CN109301297B (zh) 一种复合型陶瓷粉体及由其制备的复合型固体氧化物燃料电池
CN112928314A (zh) 一种固体氧化物燃料电池的制备方法
CN114400332B (zh) 一种可逆固体氧化物电池的电极材料的复合材料、制备方法
CN111370740B (zh) 氧化钆掺杂氧化铈纳米复合材料的制备方法及其应用
CN114976066B (zh) 一种层状结构的Lan+1NinO3n+1固体氧化物燃料电池阳极催化剂
Klein Opportunities for sol-gel materials in fuel cells
CN108550868B (zh) 一种固体燃料电池阳极纳米金属氧化物的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant