Nothing Special   »   [go: up one dir, main page]

CN105665013B - 一种基于消除反射和双层p/n异质结的三维仿生复合材料及应用 - Google Patents

一种基于消除反射和双层p/n异质结的三维仿生复合材料及应用 Download PDF

Info

Publication number
CN105665013B
CN105665013B CN201511002798.4A CN201511002798A CN105665013B CN 105665013 B CN105665013 B CN 105665013B CN 201511002798 A CN201511002798 A CN 201511002798A CN 105665013 B CN105665013 B CN 105665013B
Authority
CN
China
Prior art keywords
tio
pani
silicon chip
silicon
junctions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201511002798.4A
Other languages
English (en)
Other versions
CN105665013A (zh
Inventor
石刚
何飞
李赢
倪才华
王大伟
迟力峰
吕男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangnan University
Original Assignee
Jiangnan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangnan University filed Critical Jiangnan University
Priority to CN201511002798.4A priority Critical patent/CN105665013B/zh
Priority to AU2016380409A priority patent/AU2016380409B2/en
Priority to PCT/CN2016/081792 priority patent/WO2017113564A1/zh
Publication of CN105665013A publication Critical patent/CN105665013A/zh
Application granted granted Critical
Publication of CN105665013B publication Critical patent/CN105665013B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/06Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing polymers
    • B01J31/069Hybrid organic-inorganic polymers, e.g. silica derivatized with organic groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24
    • B01J31/38Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24 of titanium, zirconium or hafnium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/12Oxidising
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultraviolet light
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Hydrology & Water Resources (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Toxicology (AREA)
  • Composite Materials (AREA)
  • Water Supply & Treatment (AREA)
  • General Physics & Mathematics (AREA)
  • Metallurgy (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Catalysts (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明涉及一种基于消除反射和双层P/N异质结的三维仿生复合材料,依以下方法制备:(1)首先用一定浓度的碱液,对硅片进行各向异性刻蚀,在其表面形成紧密排列的四方锥形貌;(2)然后将步骤(1)刻蚀后的硅片进行亲水处理,在其表面生长而二氧化钛晶种,并置于马弗炉内煅烧;(3)再将步骤(2)中所得到的表面具有二氧化钛晶种的硅片置于反应釜中,采用水热合成的方法在硅锥的侧壁上生长二氧化钛纳米棒;(4)最后在步骤(3)中得到的二氧化钛纳米棒上沉积聚苯胺纳米粒子。本发明所涉及的三维仿生复合材料兼具优异消反射和高效分离光生电荷的能力,可以应用到光催化、光电转化器件和太阳能电池等领域。

Description

一种基于消除反射和双层P/N异质结的三维仿生复合材料及 应用
技术领域
本发明涉及一种基于消除反射和双层P/N异质结的三维仿生复合材料即硅-二氧化钛-聚苯胺复合材料,同时此类复合物可以用于光电转化和光催化材料,属于光电材料技术领域。
背景技术
光在我们的生活中随处可见,其中最大的自然光源便是太阳。太阳光中的能量是巨大的,寻找高效的光电转化材料,已经成为人们研究的热点。其光电转化效率主要受到入射光吸收量、材料的带隙、光生电子与空穴的分离效率等因素的影响。由于单一光电材料通常受带隙宽度及光生电荷分离效率的影响,限制了单一光电材料的应用范围。因此,人们通过多种光电材料复合物解决上述的问题。其中,二氧化钛和聚苯胺的复合已成为该领域研究的热点。
二氧化钛纳米材料由于具有催化活性高、稳定性好、高羟基自由基产率、光照不腐蚀等优点,在防腐涂料、污水净化、抗菌杀菌等方面表现出尤为突出的应用前景。聚苯胺具有良好的环境稳定性,在可见光区有很强烈的吸收,是强的供电子体和优良的空穴传输材料。当两者有效的进行复合,接触界面处将会形成异质结,不仅能提高光生电荷的分离效率,而且可将复合材料的光谱响应范围,从而提高太阳光的利用率。专利CN102432876A和CN102866181A公开了一种制备聚苯胺/二氧化钛纳米复合物的方法;专利CN104084241A公开了一种3D花型结构的二氧化钛/聚苯胺光催化剂及制备方法;专利CN102389836A公开了一种聚苯胺/二氧化钛/粘土纳米复合光催化剂及其制备方法;以上一定程度解决了二氧化钛禁带宽度大、光谱响应范围小,光生电子-空穴对易复合等问题。然而,聚苯胺/二氧化钛复合物仍然存在着有序性较差、易团聚、光生电荷易复合、回收利用率较低等问题,同时也没有考虑复合材料表面对入射光的吸收率,限制了聚苯胺/二氧化钛复合物的推广应用。
发明内容
本发明目的是为了克服传统的二氧化钛/聚苯胺纳米复合物无序、易团聚、难回收和光电转化效率低等缺点,提供了一种基于消除反射和双层P/N异质结的三维仿生复合材料,兼具良好的消反射性能和高效分离光生电荷能力,提高了材料的光电转化效率,表现出优异的光催化能力,同时该复合材料以单晶硅为载体,有利于材料的回收再利用。
按照本发明提供的技术方案,所述一种基于消除反射和双层P/N异质结的三维仿生复合材料,即是硅/二氧化钛/聚苯胺(Si/TiO2/PANI)。Si是表面具有锥形微结构的100型单晶硅,为P型半导体,硅锥结构形状为四方锥,高度为4~10μm,紧密排列;TiO2是金红石相的TiO2纳米棒,为N型半导体,四棱柱形状,高度为500~4000nm,直径为40~250nm,有序垂直生长在硅锥的侧壁上;PANI是聚苯胺纳米粒子,为P型半导体,粒径为10~60nm,均匀生长在TiO2纳米棒表面;Si/TiO2/PANI三维复合材料中的Si与TiO2界面、TiO2与PANI界面形成双P/N异质结,可以高效分离光生电荷,同时具有三维的仿生复合结构,可以有效降低入射光在表面的反射率。
所制备的一种基于消除反射和双层P/N异质结的三维仿生复合材料的制备方法,其特征是,包括以下步骤:
(1)首先用一定浓度的碱液,在搅拌的条件下,对硅片进行各向异性刻蚀,在硅片表面形成紧密排列的四方锥形貌;
(2)然后将步骤(1)刻蚀后的硅片进行亲水处理,在其表面生长TiO2晶种,并置于马弗炉内煅烧一段时间后自然冷却;
(3)再将步骤(2)中所得到的表面具有TiO2晶种的硅片置于反应釜中,采用水热合成的方法在硅锥的侧壁上生长TiO2纳米棒;
(4)最后在步骤(3)中得到的TiO2纳米棒上沉积导电PANI纳米粒子,得到Si/TiO2/PANI三维仿生复合材料。
进一步的,步骤(1)所述的碱液为氢氧化钾、四甲基氢氧化铵、氢氧化钠、氨水、EDP(乙二胺、邻苯二酚和水的混合溶液),碱液的pH=12~14,刻蚀温度50~90℃,刻蚀时间5~60min,搅拌的方式为机械搅拌或磁力搅拌。
进一步的,步骤(2)所述的亲水处理操作为将步骤(1)得到的硅片置于NH3H2O、H2O2和H2O的混合溶液中,体积比为1:1:5,温度为90℃,加热时间30min。
进一步的,步骤(2)所述的生长TiO2晶种条件为将亲水处理后的硅片浸于浓度为0.05~1mol/L的钛酸四丁酯的异丙醇溶液中进行提拉或旋涂,提拉的速度是1~10mm/s,重复提拉5~30次,旋涂的速度是500~7000转/min,最后将上述样品在450~500℃马弗炉中煅烧约30~60min。
进一步的,步骤(3)所述的水热合成条件为80~200℃的温度下,在装有10~20mL去离子水、6~17mL质量分数为37%的浓盐酸和0.5~5mL钛酸四丁酯的反应釜中处理2~19h,然后取出样品用氮气吹干。
进一步的,步骤(4)所述的在TiO2纳米棒上沉积PANI纳米粒子,是指利用原位氧化法在TiO2纳米棒上组装PANI导电高分子颗粒,反应条件为:配制100mL的0.2~0.5mol/L苯胺盐酸盐溶液,并加入3~7g过硫酸铵和4g聚乙烯吡咯烷酮k-30,混合均匀;将面积为1.5cm×1.0cm的表面生长有TiO2纳米棒的硅片置于反应液中,保持室温下搅拌1~8h,得到Si/TiO2/PANI三维仿生复合材料。
进一步的,Si/TiO2/PANI三维仿生复合材料用作光催化降解有机污染物的应用,将1.5cm×1.0cm面积的三维Si/TiO2/PANI复合材料放置于5mL的亚甲基蓝溶液,浓度为1.0×10-5mol/L,然后将其置于暗处1h让其达到吸附-解吸平衡,之后用光源对溶液进行光照,对亚甲基蓝进行降解。同时,该种仿生复合材料并不局限于应用在光催化降解有机污染物,也适合于其他光催化领域,及光电转化器件、太阳能电池领域。
本发明具有以下优越性:
(1)在硅锥表面层级有序组装TiO2纳米棒和PANI纳米粒子,形成三维的仿生复合结构,具有优异的消反射性能。
(2)硅锥侧壁与TiO2纳米棒接触及TiO2纳米棒与PANI纳米粒子接触,能形成双层纳米P/N异质结结构,有效的分离光生载流子,减小电子-空穴对的复合,具有优异的光电转化效率。
(3)三维的Si/TiO2/PANI复合材料具有高的比表面积,增加了表面有效的催化活性点,在光催化降解污染物方面具有一定的使用价值。
(4)该种三维的Si/TiO2/PANI复合材料制备方法简便,条件温和易控,对反应设备要求低,同时使用过程中利于回收再使用,满足大规模生产的要求。
附图说明
图1为实施例1中经过碱液各向异性刻蚀的单晶硅扫描电镜图片;
图2为实施例1中在硅锥表面组装TiO2纳米棒扫描电镜图片。
图3为实施例1中在硅锥表面层级组装得到的Si/TiO2/PANI三维仿生复合材料扫描电镜图片。
具体实施方式
实施例1:
步骤一:硅锥的制备
配置pH=13的KOH溶液100mL,向其中添加25mL异丙醇,将硅片置于溶液中,70℃下刻蚀30min,在刻蚀的过程中用机械搅拌的方式连续搅拌。刻蚀完后,硅片用蒸馏水冲洗,然后用氮气吹干。
步骤二:硅锥侧壁生长TiO2晶种
将步骤一中得到的呈硅锥结构的硅片置于NH3H2O、H2O2和H2O的混合溶液中,体积比为1:1:5,温度为80℃,加热时间30min。然后,浸于浓度为0.075mol/L的钛酸四丁酯的异丙醇溶液中进行提拉,提拉的速度是2mm/s,重复提拉20次,最后将上述样品在450℃马弗炉中煅烧约30min。
步骤三:TiO2晶种诱导TiO2纳米棒的制备
将步骤二中得到的表面附有TiO2晶种的硅片置于水热条件下进行生长TiO2纳米棒。水热合成条件为130℃的温度下,在装有10mL去离子水、10mL质量分数为37%的浓盐酸和0.5mL钛酸四丁酯的反应釜中处理8h,然后取出样品用氮气吹干。
步骤四:TiO2纳米棒表面原位制备PANI纳米粒子
利用原位氧化法在步骤二中所得到的TiO2纳米棒上沉积PANI纳米粒子。反应条件为:配制100mL的0.3mol/L苯胺盐酸盐溶液,并加入5g过硫酸铵和4g聚乙烯吡咯烷酮k-30,混合均匀;将面积为1.5cm×1.0cm的表面生长有TiO2纳米棒的硅片置于反应液中,保持室温下搅拌3h,得到Si/TiO2/PANI三维仿生复合材料。
上述得到的三维Si/TiO2/PANI复合材料中,PANI纳米粒子的平均粒径是44nm,TiO2纳米棒的平均直径为83nm,平均高度为818nm,硅锥的平均高度4.1μm。通过紫外漫反射测试可知,Si/TiO2/PANI层级复合材料表现出优秀的消反射性能,光反射率为4%;通过光电流测试,Si/TiO2/PANI层级复合材料的光电流约分别为纯TiO2纳米棒和纯PANI的20倍和14倍;通过模拟太阳光环境,Si/TiO2/PANI层级复合材料光催化降解亚甲基蓝,结合紫外分光光度计考察亚甲基蓝浓度随时间的变化,在5h内将染料亚甲基蓝完全降解,且降解效率高于纯TiO2纳米棒和纯PANI。
实施例2:
步骤一:硅锥的制备
配置pH=13的KOH溶液100mL,向其中添加25mL异丙醇,将硅片置于溶液中,70℃下刻蚀30min,在刻蚀的过程中用机械搅拌的方式连续搅拌。刻蚀完后,硅片用蒸馏水冲洗,然后用氮气吹干。
步骤二:硅锥侧壁生长TiO2晶种
将步骤一中得到的呈硅锥结构的硅片置于NH3H2O、H2O2和H2O的混合溶液中,体积比为1:1:5,温度为80℃,加热时间30min。然后,浸于浓度为0.075mol/L的钛酸四丁酯的异丙醇溶液中进行提拉,提拉的速度是2mm/s,重复提拉20次,最后将上述样品在450℃马弗炉中煅烧约30min。
步骤三:TiO2晶种诱导TiO2纳米棒的制备
将步骤二中得到的表面附有TiO2晶种的硅片置于水热条件下进行生长TiO2纳米棒。水热合成条件为130℃的温度下,在装有10mL去离子水、10mL质量分数为37%的浓盐酸和0.5mL钛酸四丁酯的反应釜中处理8h,然后取出样品用氮气吹干。
步骤四:TiO2纳米棒表面原位制备PANI纳米粒子
利用原位氧化法在步骤二中所得到的TiO2纳米棒上沉积PANI纳米粒子。反应条件为:配制100mL的0.3mol/L苯胺盐酸盐溶液,并加入7g过硫酸铵和4g聚乙烯吡咯烷酮k-30,混合均匀;将面积为1.5cm×1.0cm的表面生长有TiO2纳米棒的硅片置于反应液中,保持室温下搅拌4h,得到Si/TiO2/PANI三维仿生复合材料。
上述得到的三维Si/TiO2/PANI复合材料中,PANI纳米粒子的平均粒径是44nm,TiO2纳米棒的平均直径为83nm,平均高度为818nm,硅锥的平均高度4.1μm。通过紫外漫反射测试可知,Si/TiO2/PANI层级复合材料表现出优秀的消反射性能,光反射率为6%;通过光电流测试,Si/TiO2/PANI层级复合材料的光电流约分别为纯TiO2纳米棒和纯PANI的18倍和11倍;通过模拟太阳光环境,Si/TiO2/PANI层级复合材料光催化降解亚甲基蓝,结合紫外分光光度计考察亚甲基蓝浓度随时间的变化,在5.5h内将染料亚甲基蓝完全降解,且降解效率高于纯TiO2纳米棒和纯PANI。
实施例3:
步骤一:硅锥的制备
配置pH=14的KOH溶液100mL,向其中添加25mL异丙醇,将硅片置于溶液中,50℃下刻蚀15min,在刻蚀的过程中用机械搅拌的方式连续搅拌。刻蚀完后,硅片用蒸馏水冲洗,然后用氮气吹干。
步骤二:硅锥侧壁生长TiO2晶种
将步骤一中得到的呈硅锥结构的硅片置于NH3H2O、H2O2和H2O的混合溶液中,体积比为1:1:5,温度为90℃,加热时间30min。然后,浸于浓度为0.1mol/L的钛酸四丁酯的异丙醇溶液中进行提拉,提拉的速度是2mm/s,重复提拉10次,最后将上述样品在500℃马弗炉中煅烧约30min。
步骤三:TiO2晶种诱导TiO2纳米棒的制备
将步骤二中得到的表面附有TiO2晶种的硅片置于水热条件下进行生长TiO2纳米棒。水热合成条件为120℃的温度下,在装有10mL去离子水、10mL质量分数为37%的浓盐酸和0.5mL钛酸四丁酯的反应釜中处理8h,然后取出样品用氮气吹干。
步骤四:TiO2纳米棒表面原位制备PANI纳米粒子
利用原位氧化法在步骤二中所得到的TiO2纳米棒上沉积PANI纳米粒子。反应条件为:配制100mL的0.3mol/L苯胺盐酸盐溶液,并加入7g过硫酸铵和4g聚乙烯吡咯烷酮k-30,混合均匀;将面积为1.5cm×1.0cm的表面生长有TiO2纳米棒的硅片置于反应液中,保持室温下搅拌5h,得到Si/TiO2/PANI三维仿生复合材料。
上述得到的三维Si/TiO2/PANI复合材料中,PANI纳米粒子的平均粒径是52nm,TiO2纳米棒的平均直径为83nm,平均高度为818nm,硅锥的平均高度3.3μm。通过紫外漫反射测试可知,Si/TiO2/PANI层级复合材料表现出优秀的消反射性能,光反射率为9%;通过光电流测试,Si/TiO2/PANI层级复合材料的光电流约分别为纯TiO2纳米棒和纯PANI的10倍和6倍;通过模拟太阳光环境,Si/TiO2/PANI层级复合材料光催化降解亚甲基蓝,结合紫外分光光度计考察亚甲基蓝浓度随时间的变化,在7h内将染料亚甲基蓝完全降解,且降解效率高于纯TiO2纳米棒和纯PANI。
以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的人员来说,在不脱离本发明构思的前提下,还可做出很多简单推演或替换,都应当视为属于本发明的保护范围。

Claims (10)

1.一种基于消除反射和双层P/N异质结的三维仿生复合材料,其特征在于:以单晶硅(Si)、二氧化钛(TiO2)和聚苯胺(PANI)有序层级组成(Si/TiO2/PANI),Si是表面具有锥形微结构的100型单晶硅,为N型半导体,硅锥结构形状为四方锥,高度为4~10μm,紧密排列;TiO2是金红石相的TiO2纳米棒,为N型半导体,四棱柱形状,高度为500~4000nm,直径为40~250nm,有序垂直生长在硅锥的侧壁上;PANI是聚苯胺纳米粒子,为P型半导体,粒径为10~60nm,均匀生长在TiO2纳米棒表面;Si/TiO2/PANI三维仿生复合材料中的Si与TiO2界面、TiO2与PANI界面形成双P/N异质结,可以高效分离光生电荷,同时具有三维的仿生复合结构,可以有效降低入射光在表面的反射率。
2.一种制备如权利要求1所述基于消除反射和双层P/N异质结的三维仿生复合材料的方法,其特征是,包括以下步骤:
(1)首先用一定浓度的碱液,在搅拌的条件下,对硅片进行各向异性刻蚀,在硅片表面形成紧密排列的四方锥形貌;
(2)然后将步骤(1)刻蚀后的硅片进行亲水处理,在其表面生长TiO2晶种,并置于马弗炉内煅烧一段时间后自然冷却;
(3)再将步骤(2)中所得到的表面具有TiO2晶种的硅片置于反应釜中,采用水热合成的方法在硅锥的侧壁上生长TiO2纳米棒;
(4)最后在步骤(3)中得到的TiO2纳米棒上沉积PANI纳米粒子,得到Si/TiO2/PANI三维仿生复合材料。
3.根据权利要求2所述的制备方法,其特征在于:步骤(1)所述的碱液为氢氧化钾、四甲基氢氧化铵、氢氧化钠、氨水、EDP(乙二胺、邻苯二酚和水的混合溶液),碱液的pH=12~14,刻蚀温度50~90℃,刻蚀时间5~60min,搅拌的方式为机械搅拌或磁力搅拌。
4.根据权利要求2所述的制备方法,其特征在于:步骤(2)所述的亲水处理操作为将步骤(1)得到的硅片置于NH3H2O、H2O2和H2O的混合溶液中,体积比为1:1:5,温度为90℃,加热时间30min。
5.根据权利要求2所述的制备方法,其特征在于:步骤(2)所述的生长TiO2晶种条件为将亲水处理后的硅片浸于浓度为0.05~1mol/L的钛酸四丁酯的异丙醇溶液中进行提拉或旋涂,提拉的速度是1~10mm/s,重复提拉5~30次,旋涂的速度是500~7000转/min,最后将上述样品在450~500℃马弗炉中煅烧约30~60min。
6.根据权利要求2所述的制备方法,其特征在于:步骤(3)所述的水热合成条件为80~200℃的温度下,在装有10~20mL去离子水、6~17mL质量分数为37%的浓盐酸和0.5~5mL钛酸四丁酯的反应釜中处理2-19h,然后取出样品用氮气吹干。
7.根据权利要求2所述的制备方法,其特征在于:步骤(4)所述的在TiO2纳米棒上沉积PANI纳米粒子,是指利用原位氧化法在TiO2纳米棒上组装PANI导电高分子颗粒,反应条件为:配制100mL的0.2~0.5mol/L苯胺盐酸盐溶液,并加入3~7g过硫酸铵和4g聚乙烯吡咯烷酮k-30,混合均匀;将面积为1.5cm×1.0cm的表面生长有TiO2纳米棒的硅片置于反应液中,保持室温下搅拌1~8h,得到Si/TiO2/PANI三维仿生复合材料。
8.如权利要求1所述一种基于消除反射和双层P/N异质结的三维仿生复合材料用作光催化降解有机污染物的应用,其特征在于:将1.5cm×1.0cm面积的Si/TiO2/PANI三维仿生复合材料放置于5mL的亚甲基蓝溶液,浓度为1.0×10-5mol/L,然后将其置于暗处1h让其达到吸附-解吸平衡,之后用光源对溶液进行光照,对亚甲基蓝进行降解。
9.如权利要求1所述一种基于消除反射和双层P/N异质结的三维仿生复合材料在光催化领域或光电转化器件领域的应用。
10.如权利要求1所述一种基于消除反射和双层P/N异质结的三维仿生复合材料在太阳能电池领域的应用。
CN201511002798.4A 2015-12-28 2015-12-28 一种基于消除反射和双层p/n异质结的三维仿生复合材料及应用 Active CN105665013B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201511002798.4A CN105665013B (zh) 2015-12-28 2015-12-28 一种基于消除反射和双层p/n异质结的三维仿生复合材料及应用
AU2016380409A AU2016380409B2 (en) 2015-12-28 2016-05-12 Three-dimensional bionic composite material based on eliminating reflection and double-layer P/N heterojunction, and application thereof
PCT/CN2016/081792 WO2017113564A1 (zh) 2015-12-28 2016-05-12 一种基于消除反射和双层p/n异质结的三维仿生复合材料及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201511002798.4A CN105665013B (zh) 2015-12-28 2015-12-28 一种基于消除反射和双层p/n异质结的三维仿生复合材料及应用

Publications (2)

Publication Number Publication Date
CN105665013A CN105665013A (zh) 2016-06-15
CN105665013B true CN105665013B (zh) 2017-12-26

Family

ID=56297850

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201511002798.4A Active CN105665013B (zh) 2015-12-28 2015-12-28 一种基于消除反射和双层p/n异质结的三维仿生复合材料及应用

Country Status (3)

Country Link
CN (1) CN105665013B (zh)
AU (1) AU2016380409B2 (zh)
WO (1) WO2017113564A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110120307A (zh) * 2019-04-03 2019-08-13 江汉大学 一种复合材料的制备方法、复合材料及超级电容器

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005000734A2 (en) * 2002-10-04 2005-01-06 The Ohio State University Research Foundation Method of forming nanostructures on ceramics and the ceramics formed
DE102004029303B4 (de) * 2004-06-17 2010-05-12 Ems-Chemie Ag Nanoskalige Titandioxid-Sole, Verfahren zu dessen Herstellung und seine Verwendung
CN100424908C (zh) * 2005-07-28 2008-10-08 吉林大学 导电态聚苯胺/纳米晶体TiO2异质结二极管及其制备方法
CN100523088C (zh) * 2007-04-21 2009-08-05 大连理工大学 氧化钛/聚苯胺纳米纤维杂化材料及其制备方法
CN102219178B (zh) * 2010-04-15 2013-01-16 中国科学院合肥物质科学研究院 二氧化钛聚苯胺复合纳米管阵列及其制备方法

Also Published As

Publication number Publication date
AU2016380409B2 (en) 2018-08-23
CN105665013A (zh) 2016-06-15
WO2017113564A1 (zh) 2017-07-06
AU2016380409A1 (en) 2017-08-17

Similar Documents

Publication Publication Date Title
CN105618153B (zh) 一种基于层级组装的硅‑二氧化钛‑聚吡咯三维仿生复合材料及应用
Lei et al. Fabrication, characterization, and photoelectrocatalytic application of ZnO nanorods grafted on vertically aligned TiO2 nanotubes
CN102086044B (zh) 一种空心球状二氧化锡纳米粉体的制备方法
CN106732708B (zh) 石墨相氮化碳纳米片负载单层钨酸铋纳米片异质结材料及其制备方法和应用
Harish et al. Synthesis of ZnO/SrO nanocomposites for enhanced photocatalytic activity under visible light irradiation
US20180072586A1 (en) Bismuth-titanium oxide nanowire material used for photocatalysis, and preparation method
CN105964233B (zh) 一种消反射异质结复合涂层及其制备方法
CN105609580A (zh) 一种基于p/n异质结协同消反射性能的硅/二氧化钛三维复合材料及应用
CN106475125A (zh) 石墨相氮化碳与纳米二氧化钛复合涂料添加剂及制备方法
CN104588004A (zh) 一种紫外光催化降解有机污染物催化剂及制备方法
CN106431005B (zh) 一种钛酸锶-二氧化钛复合纳米管阵列薄膜及其制备方法与应用
Reddy et al. Recent progress in TiO2-and ZnO-based nanostructured hybrid photocatalysts for water purification and hydrogen generation
CN105542456B (zh) 一种基于三元层级组装的硅‑二氧化钛‑聚苯胺复合材料及应用
CN110368962A (zh) 一种BiOI/WO3异质结高效光电催化电极的制备方法、产品及应用
CN104475116B (zh) 二氧化锡纳米线修饰的三氧化二铁纳米棒阵列的制备方法
CN102486967B (zh) 复合有序多孔纳米二氧化钛薄膜的制备方法
CN105771962A (zh) 一种近红外响应的碳量子点/Bi2MoO6光催化剂及制备方法
CN101866753A (zh) 染料敏化太阳能电池光阳极表面的处理方法
CN103920505A (zh) 一种可见光光催化高效产氢硫化镉反蛋白石结构及其制备方法
CN105642367B (zh) 一种以单晶硅为载体的消反射双层p/n异质结的层级复合材料及应用
CN105665013B (zh) 一种基于消除反射和双层p/n异质结的三维仿生复合材料及应用
CN109437292A (zh) 一种高效合成的超薄二维二氧化钛纳米片及制备方法
CN109289887B (zh) 一种氮、钒共掺杂二氧化钛/钽酸铋z型异质结光催化剂的制备方法及应用
Shrivastava et al. Materials for solar cell applications: an overview of TiO 2, ZnO, upconverting organic and polymer-based solar cells
CN104368324A (zh) 介孔石墨烯/二氧化钛纳米复合材料的制备方法和应用

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant