Nothing Special   »   [go: up one dir, main page]

CN105390681A - 一种无粘接剂锂离子电池负极材料及其制备方法 - Google Patents

一种无粘接剂锂离子电池负极材料及其制备方法 Download PDF

Info

Publication number
CN105390681A
CN105390681A CN201510876628.2A CN201510876628A CN105390681A CN 105390681 A CN105390681 A CN 105390681A CN 201510876628 A CN201510876628 A CN 201510876628A CN 105390681 A CN105390681 A CN 105390681A
Authority
CN
China
Prior art keywords
nio
ion battery
lithium ion
foamed nickel
nickel foam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201510876628.2A
Other languages
English (en)
Inventor
倪世兵
张继成
唐俊
杨学林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Three Gorges University CTGU
Original Assignee
China Three Gorges University CTGU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Three Gorges University CTGU filed Critical China Three Gorges University CTGU
Priority to CN201510876628.2A priority Critical patent/CN105390681A/zh
Publication of CN105390681A publication Critical patent/CN105390681A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/523Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明提供一种无粘接剂NiO/C-Ni锂离子电池负极材料及其制备方法,NiO/C均匀生长在泡沫镍表面,具体制备工艺是取去离子水和双氧水混合均匀,充分搅拌得到均匀溶液;将均匀溶液转移到水热反应釜内胆中,取若干片泡沫镍放入其中,于90~150℃下水热反应12~24小时,自然冷却后取出泡沫镍,并用去离子水冲洗干净。再将泡沫镍放入柠檬酸葡萄糖或者蔗糖溶液中,静置5~10h后取出置于70℃烘箱中烘干,最后在N2气氛中于300~400℃烧结5h,自然冷却得到NiO/C-Ni复合结构。电极制备方法简单,成本低,可控性强,所制备NiO/C-Ni中NiO/C均匀生长在泡沫镍表面,与泡沫镍接触良好,所制备NiO/C-Ni电极充、放电容量较高,循环性能优异。

Description

一种无粘接剂锂离子电池负极材料及其制备方法
技术领域
本发明涉及一种锂离子电池负极材料,特别涉及一种NiO/C-Ni锂离子电池负极材料的制备工艺,属于电化学电源领域。
技术背景
锂离子电池具有能量密度高、价格低、环境影响小、无记忆效应等优点,已经成为一种非常重要的电化学储能器件。目前,锂离子电池已经广泛应用于便携电子设备中,也是未来混合动力汽车与纯电动汽车的理想电源。这对锂离子电池在安全性、成本、能量密度、功率密度等方面提出了新的要求,开发新型、高性能锂离子电池具有举足轻重的意义,这依赖于高性能电极材料的研发。
目前,商用锂离子电池负极主要是石墨类碳材料。但其理论容量较低(372mAh/g),且存在枝晶锂析出带来的电池短路甚至爆炸等安全问题。在各类新型负极材料中,转换型负极材料具有理论容量较高(500~1000mAh/g),合成方法简单,材料制备成本低等优点,在锂离子电池中具有重要的应用价值。其中,NiO具有理论高容量718mAh/g。然而,其循环稳定性较差。主要问题在于:其导电性较差,且循环过程中会材料形貌与结构会发生破坏,导致电化学性能不理想。传统提升NiO的电化学性能的方法主要包括:(1):与碳复合,从而增强材料导电性;(2)将NiO原位生长在导电基体上,有效增强材料在循环过程中的形貌与结构稳定性。其中,原位生长在导电基体上的NiO可以直接用作锂离子电池负极,不需使用任何粘结剂和电极制备工艺,且能够有效避免粉体材料电极制备过程中的形貌破坏,在锂离子电池中具有重要的应用价值。目前,关于NiO/C-Ni复合结构的制备及其在锂离子电池中的应用研究开展得较少。基于以上背景,本专利发明一种结合原位生长和炭复合方法制备NiO/C-Ni复合结构,以其作为锂离子电池负极显示出较高的比容量和优异的循环稳定性,相关研究未见报道。
发明目的
本发明的目的就是以泡沫镍、双氧水为原料,通过水热反应制备Ni(OH)2-Ni、然后引入碳源前驱体,通过烧结过程制备无粘结剂NiO/C-Ni锂离子电池负极。
本发明所涉及的NiO/C-Ni复合材料制备的原材料是双氧水、泡沫镍、柠檬酸(葡萄糖或者蔗糖)。材料制备过程中,取一定量的去离子水和双氧水混合均匀充分搅拌,将搅拌均匀的溶液转移至水热反应釜内胆中,取若干片泡沫镍片放入其中,于90~150℃水热反应12~24小时,自然冷却后取出泡沫镍,并用去离子水冲洗干净。将冲洗干净的泡沫镍放入一定浓度的柠檬酸(葡萄糖或者蔗糖)溶液中,静置5~10h后取出置于70℃烘箱中烘干。然后将烘干的泡沫镍放在管式炉中,在N2气氛中于300~400℃烧结5h,自然冷却后便得到NiO/C-Ni复合结构
本发明所涉及NiO/C-Ni负极及制备方法具有以下几个显著特点:
(1)电极制备方法简单,成本低,可控性强;
(2)所制备NiO/C-Ni中NiO/C均匀生长在泡沫镍表面,与泡沫镍接触良好;
(3)所制备NiO/C-Ni电极充、放电容量较高,循环性能优异。
附图说明
图1实施例1所制备样品的(a)XRD图谱和(b)Raman图谱;
图2实施例1所制备样品的SEM图谱;
图3实施例1所制备样品的(a)首次充、放电曲线和(b)循环性能图;
图4实施例2所制备样品的(a)首次充、放电曲线和(b)循环性能图;
图5实施例3所制备样品的(a)首次充、放电曲线和(b)循环性能图。
具体实施方式
实施例1
取一定量的去离子水和双氧水混合均匀,充分搅拌,将搅拌均匀的溶液转移至水热反应釜内胆中,取若干片泡沫镍片放入其中,于120℃水热反应24小时,自然冷却后取出泡沫镍,并用去离子水清洗。将清洗后的泡沫镍放入浓度为0.002g/ml的柠檬酸溶液中,静置5~10h后取出置于70℃烘箱中烘干。然后将烘干的泡沫镍放在管式炉中,在N2气氛中于350℃烧结5h,自然冷却后便得到NiO/C-Ni复合结构。所制备的样品经过XRD和Raman分析,图1(a)中XRD图谱衍射峰与NiO(XRD卡片JCPDS,No.47-1049)和Ni(04-0850)对应;图1(b)拉曼图谱中,拉曼峰与NiO(○)和C(△)对应。XRD和Raman结果表明成功制备了NiO/C-Ni复合结构。图2是样品SEM图谱,可以看出NiO/C均匀生长在泡沫镍表面,与泡沫镍接触良好。将实施例1所得NiO/C-Ni按如下方法制成纽扣电池:将制得的NiO/C-Ni样品裁剪成直径为14mm的电极片,在120℃下真空干燥12h。以金属锂片为对电极,Celgard膜为隔膜,溶解有LiPF6(1mol/L)的EC+DMC+DEC(体积比为1:1:1)的溶液为电解液,在氩气保护的手套箱中组装成CR2025型电池。电池组装完后静置8h,再用CT2001A电池测试系统进行恒流充放电测试,测试电压为3~0.02V。图3表明,实施例1所制备的NiO/C-Ni电极首次充、放电容量分别为783和1136mAh/g,80次循环之后充、放电容量均为735和772mAh/g,显示了较高的比容量和优异的循环稳定性能。
实施例2
取一定量的去离子水和双氧水混合均匀,充分搅拌,将搅拌均匀的溶液转移至水热反应釜内胆中,取若干片泡沫镍片放入其中,于120℃水热反应24小时,自然冷却后取出泡沫镍,并用去离子水清洗。将清洗后的泡沫镍放入浓度为0.002g/ml的葡萄糖溶液中,静置5~10h后取出置于70℃烘箱中烘干。然后将烘干的泡沫镍放在管式炉中,在N2气氛中于350℃烧结5h,自然冷却后便得到NiO/C-Ni复合结构。以所制备的NiO/C-Ni为负极,按实施例1中步骤制备成纽扣电池并对其电化学性能进行分析。如图4所示,实施例2所制备的NiO/C-Ni负极首次充、放电容量分别为871和1202mAh/g,80次循环之后充、放电容量分别为633和642mAh/g。
实施例3
取一定量的去离子水和双氧水混合均匀,充分搅拌,将搅拌均匀的溶液转移至水热反应釜内胆中,取若干片泡沫镍片放入其中,于120℃水热反应24小时,自然冷却后取出泡沫镍,并用去离子水清洗。将清洗后的泡沫镍放入浓度为0.002g/ml的蔗糖溶液中,静置5~10h后取出置于70℃烘箱中烘干。然后将烘干的泡沫镍放在管式炉中,在N2气氛中于400℃烧结5h,自然冷却后便得到NiO/C-Ni复合结构。以所制备的NiO/C-Ni为负极,按实施例1中步骤制备成纽扣电池并对其电化学性能进行分析。如图5所示,实施例3所制备的NiO/C-Ni作为锂离子电池负极首次充、放电容量分别为751和1059mAh/g,80次循环之后充、放电容量分别为657和695mAh/g。

Claims (3)

1.一种无粘接剂锂离子电池负极材料,其特征在于,该材料的结构为NiO/C均匀生长在泡沫镍表面而形成的NiO/C-Ni复合结构。
2.权利要求1所述的无粘接剂锂离子电池负极材料的制备方法,其特征在于,该NiO/C-Ni负极的制备工艺如下:
(1)取去离子水和双氧水混合均匀,充分搅拌得到均匀溶液;
(2)将步骤(1)得到的均匀溶液转移到水热反应釜内胆中,取若干片泡沫镍放入其中,于90~150℃下水热反应12~24小时,自然冷却后取出泡沫镍,并用去离子水冲洗干净;
(3)将步骤(2)得到的泡沫镍放入柠檬酸、葡萄糖或者蔗糖溶液中,静置5~10h后取出置于70℃烘箱中烘干;
(4)将步骤(3)中烘干的泡沫镍放在管式炉中,在N2气氛中于300~400℃烧结5h,自然冷却后便得到NiO/C-Ni复合结构。
3.根据权利要求2所述的无粘接剂锂离子电池负极材料的制备方法,其特征在于,双氧水、泡沫镍的质量比为1~2:200~400,柠檬酸、葡萄糖或者蔗糖浓度为0.001g/ml~0.004g/ml。
CN201510876628.2A 2015-12-03 2015-12-03 一种无粘接剂锂离子电池负极材料及其制备方法 Pending CN105390681A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510876628.2A CN105390681A (zh) 2015-12-03 2015-12-03 一种无粘接剂锂离子电池负极材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510876628.2A CN105390681A (zh) 2015-12-03 2015-12-03 一种无粘接剂锂离子电池负极材料及其制备方法

Publications (1)

Publication Number Publication Date
CN105390681A true CN105390681A (zh) 2016-03-09

Family

ID=55422722

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510876628.2A Pending CN105390681A (zh) 2015-12-03 2015-12-03 一种无粘接剂锂离子电池负极材料及其制备方法

Country Status (1)

Country Link
CN (1) CN105390681A (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106935807A (zh) * 2017-04-20 2017-07-07 陕西科技大学 一种钒酸铵/泡沫镍钠离子电池用自支撑正极的制备方法
CN107256962A (zh) * 2017-06-19 2017-10-17 上海纳米技术及应用国家工程研究中心有限公司 一种铝箔原位生长的三元正极材料镍钴铝及制备方法和应用
CN107317036A (zh) * 2017-06-27 2017-11-03 中南大学 一种具有超低电阻的极片、其制备方法以及含有这种极片的锂离子电池
CN107999075A (zh) * 2017-12-29 2018-05-08 济南大学 一种氧化镍纳米粒子掺杂碳氮杂化材料制备方法和应用
CN109841810A (zh) * 2019-01-07 2019-06-04 浙江工业大学 一种Ni-NiO/C复合材料的制备方法及应用
CN111554873A (zh) * 2020-06-04 2020-08-18 上海电气集团股份有限公司 一种锂电池负极极片的制备方法
CN113223871A (zh) * 2021-04-15 2021-08-06 山东科技大学 以泡沫镍片为基底的NiO/C复合电极材料的制备及应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104868119A (zh) * 2015-04-16 2015-08-26 三峡大学 无粘结剂Li3VO4/C锂离子电池负极材料及其制备方法
CN104868098A (zh) * 2015-05-15 2015-08-26 三峡大学 一种碳复合Cu3P-Cu锂离子电池负极及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104868119A (zh) * 2015-04-16 2015-08-26 三峡大学 无粘结剂Li3VO4/C锂离子电池负极材料及其制备方法
CN104868098A (zh) * 2015-05-15 2015-08-26 三峡大学 一种碳复合Cu3P-Cu锂离子电池负极及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SHIBING NI等: "A novel electrochemical reconstruction in nickel oxide nanowalls on Ni foam and the fine electrochemical performance as anode for lithium ion batteries", 《JOURNAL OF POWER SOURCES》 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106935807A (zh) * 2017-04-20 2017-07-07 陕西科技大学 一种钒酸铵/泡沫镍钠离子电池用自支撑正极的制备方法
CN106935807B (zh) * 2017-04-20 2019-07-30 陕西科技大学 一种钒酸铵/泡沫镍钠离子电池用自支撑正极的制备方法
CN107256962A (zh) * 2017-06-19 2017-10-17 上海纳米技术及应用国家工程研究中心有限公司 一种铝箔原位生长的三元正极材料镍钴铝及制备方法和应用
CN107317036A (zh) * 2017-06-27 2017-11-03 中南大学 一种具有超低电阻的极片、其制备方法以及含有这种极片的锂离子电池
CN107317036B (zh) * 2017-06-27 2021-03-02 中南大学 一种具有超低电阻的极片、其制备方法以及含有这种极片的锂离子电池
CN107999075A (zh) * 2017-12-29 2018-05-08 济南大学 一种氧化镍纳米粒子掺杂碳氮杂化材料制备方法和应用
CN107999075B (zh) * 2017-12-29 2019-09-27 济南大学 一种氧化镍纳米粒子掺杂碳氮杂化材料制备方法和应用
CN109841810A (zh) * 2019-01-07 2019-06-04 浙江工业大学 一种Ni-NiO/C复合材料的制备方法及应用
CN111554873A (zh) * 2020-06-04 2020-08-18 上海电气集团股份有限公司 一种锂电池负极极片的制备方法
CN111554873B (zh) * 2020-06-04 2021-11-19 上海电气集团股份有限公司 一种锂电池负极极片的制备方法
CN113223871A (zh) * 2021-04-15 2021-08-06 山东科技大学 以泡沫镍片为基底的NiO/C复合电极材料的制备及应用

Similar Documents

Publication Publication Date Title
CN105390681A (zh) 一种无粘接剂锂离子电池负极材料及其制备方法
CN102867940B (zh) 一种锂硫电池改性正极的工艺
CN105692576B (zh) 一种利用工业含铁废弃物制备电池级磷酸铁的方法
CN102201576B (zh) 一种多孔碳原位复合磷酸铁锂正极材料及其制备方法
CN103855431B (zh) 一种提高锂离子电池循环性能的化成方法
CN105789584A (zh) 一种硒化钴/碳钠离子电池复合负极材料及其制备方法与应用
CN102602978B (zh) 锂离子电池微/纳米CuO阵列电极的制备方法
CN101478039B (zh) 一种聚吡硌包覆磷酸铁锂的制备方法
CN104868119A (zh) 无粘结剂Li3VO4/C锂离子电池负极材料及其制备方法
CN105024071B (zh) 一种Cu2S/Cu锂离子电池负极材料及制备方法
CN102394305A (zh) 一种泡沫铜氧化物/铜锂离子电池负极及其制备方法
CN104409698B (zh) 一种复合锂离子电池负极材料及其制备方法
CN104868098A (zh) 一种碳复合Cu3P-Cu锂离子电池负极及其制备方法
CN111304679B (zh) 一种电化学离子提取法电解制备高纯六氟磷酸锂的装置和方法
CN103441263B (zh) 一种溶胶凝胶-固相烧结法合成镍钴锰酸锂的方法
CN104466122B (zh) 一种钴铝水滑石制备镍氢二次电池镍正极的方法及其应用
CN104577094A (zh) 一种锂离子电池正极材料及其制备方法
CN107492635B (zh) 一种复合钠离子电池正极材料Na3V2(PO4)3/C及其制备方法
CN102709521A (zh) 一种锂离子电池及其正极
CN104183836B (zh) 一种锂硫电池用正极复合材料
CN107069029B (zh) 一种锂电池用高电压正极材料及其制备方法
CN107293723B (zh) 一种无粘结剂Na3V2(PO4)3/C锂离子电池复合正极及其制备方法
CN103996823B (zh) 一种动力锂离子电池用三元聚阴离子磷酸盐/碳正极材料的快速微波反应制备方法
CN104993131B (zh) 一种锂离子电池负极材料NiS/Ni及其制备方法
CN102610804A (zh) 锂离子电池负极材料的制备方法、锂离子电池负极及锂离子电池

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20160309