CN105092535B - Distributed surface plasma resonance optical fiber sensor - Google Patents
Distributed surface plasma resonance optical fiber sensor Download PDFInfo
- Publication number
- CN105092535B CN105092535B CN201510400263.6A CN201510400263A CN105092535B CN 105092535 B CN105092535 B CN 105092535B CN 201510400263 A CN201510400263 A CN 201510400263A CN 105092535 B CN105092535 B CN 105092535B
- Authority
- CN
- China
- Prior art keywords
- optical fiber
- groove
- spr
- distributed
- core
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000013307 optical fiber Substances 0.000 title claims abstract description 61
- 239000000835 fiber Substances 0.000 claims abstract description 34
- 238000001228 spectrum Methods 0.000 claims description 7
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical group [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 5
- 229910052737 gold Inorganic materials 0.000 claims description 5
- 239000010931 gold Substances 0.000 claims description 5
- 230000003287 optical effect Effects 0.000 claims description 5
- 239000000463 material Substances 0.000 claims description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 3
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 3
- 229910052782 aluminium Inorganic materials 0.000 claims description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 3
- 229910052802 copper Inorganic materials 0.000 claims description 3
- 239000010949 copper Substances 0.000 claims description 3
- 229910052709 silver Inorganic materials 0.000 claims description 3
- 239000004332 silver Substances 0.000 claims description 3
- 238000009826 distribution Methods 0.000 claims description 2
- 230000011514 reflex Effects 0.000 claims 2
- 208000032370 Secondary transmission Diseases 0.000 claims 1
- 239000004411 aluminium Substances 0.000 claims 1
- 238000002198 surface plasmon resonance spectroscopy Methods 0.000 abstract description 47
- 238000005259 measurement Methods 0.000 abstract description 6
- 229910052751 metal Inorganic materials 0.000 description 7
- 239000002184 metal Substances 0.000 description 7
- 230000000694 effects Effects 0.000 description 5
- 238000005253 cladding Methods 0.000 description 4
- 238000001514 detection method Methods 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000005284 excitation Effects 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 230000035945 sensitivity Effects 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 230000003595 spectral effect Effects 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229920001169 thermoplastic Polymers 0.000 description 2
- 239000004416 thermosoftening plastic Substances 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 235000011187 glycerol Nutrition 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000002372 labelling Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 238000011897 real-time detection Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 230000004936 stimulating effect Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000000411 transmission spectrum Methods 0.000 description 1
Landscapes
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
本发明提供的是一种分布式表面等离子体共振光纤传感器。在一段双芯光纤上加工有成对分布的V型槽,V型槽的深度超过纤芯,每对V型槽中的两个V型槽相互错位布置,V型槽的斜面上镀有传感层;在每对V型槽中,从第一纤芯入射的宽谱光在第一V型槽斜面处激发SPR并发生全反射,反射至第二V型槽斜面处也激发SPR并反射至第二纤芯;光在各对V型槽中依次传递实现分布式传感。本发明的传感器能够很好的与全光纤系统进行低损耗连接,具有体积小,结构简单等突出优点。本发明的分布式SPR光纤传感器在光纤侧面制作多组传感区,利用光纤的特殊结构将多个传感区串联,实现了实时的多通道分布式测量。
The invention provides a distributed surface plasmon resonance optical fiber sensor. Pairs of V-shaped grooves are processed on a section of dual-core optical fiber. The depth of the V-shaped grooves exceeds the fiber core. Sensitive layer; in each pair of V-shaped grooves, the broad-spectrum light incident from the first fiber core excites the SPR at the slope of the first V-shaped groove and undergoes total reflection, and when reflected to the slope of the second V-shaped groove, it also excites the SPR and reflects to the second fiber core; the light is sequentially transmitted in each pair of V-shaped grooves to realize distributed sensing. The sensor of the invention can be well connected with an all-fiber system with low loss, and has outstanding advantages such as small size and simple structure. In the distributed SPR optical fiber sensor of the present invention, multiple sets of sensing areas are made on the side of the optical fiber, and the special structure of the optical fiber is used to connect the plurality of sensing areas in series to realize real-time multi-channel distributed measurement.
Description
技术领域technical field
本发明涉及的是一种光纤传感器,特别是一种主要用于外界环境折射率、空气浓度等传感测量的分布式SPR光纤传感器。The invention relates to an optical fiber sensor, in particular to a distributed SPR optical fiber sensor mainly used for sensing and measuring external environment refractive index, air concentration and the like.
背景技术Background technique
表面等离子体共振(Surface Plasmon Resonance,SPR)效应是一种对外界环境变化非常敏感的发生于金属与电介质分界面的物理光学现象。光波在金属和电介质的交界面发生全内反射,产生倏逝波,倏逝波在入射光沿交界面方向的波矢与表面等离子体波的波矢相等时,引起表面等离子体共振,导致光波在传输过程中产生能量损失,即在光谱中出现明显的共振波谷。外界环境折射率或气体浓度的改变能够引起共振波谷位置的偏移,所以通过对共振波谷进行实时监测可以实现对外界环境折射率或气体浓度的传感。The Surface Plasmon Resonance (SPR) effect is a physical optical phenomenon that is very sensitive to changes in the external environment and occurs at the interface between a metal and a dielectric. The total internal reflection of the light wave at the interface between the metal and the dielectric produces an evanescent wave. When the wave vector of the incident light along the direction of the interface is equal to the wave vector of the surface plasmon wave, the evanescent wave causes surface plasmon resonance, resulting in a light wave An energy loss occurs during the transmission, i.e. a distinct resonant trough appears in the spectrum. Changes in the refractive index or gas concentration of the external environment can cause a shift in the position of the resonance trough, so the sensing of the refractive index or gas concentration of the external environment can be realized by real-time monitoring of the resonance trough.
SPR传感技术具有灵敏度高、易于实现、无需标记等优点,已经被广泛的应用于多种检测领域中。最早实现的SPR传感器是棱镜式SPR传感器,但由于其具有成本高、系统复杂、体积大、不方便携带等缺点限制了这种传感器的应用。1993年美国的R.C.Jorgenson博士提出了光纤SPR传感器(Ralph Corleissen Jorgenson.Fiber-optic chemical sensorbased on surface plasmon resonance.Sensors and Actuator[J]s,B:Chemical,v B12,n 3,Apr 151993,p 213-220),自此开创了光纤SPR传感器的新篇章。因为光纤SPR传感器具有体积小、易集成、不受机械振动和光源波动干扰等优点,目前已经成为SPR传感器研究的主流方向。SPR sensing technology has the advantages of high sensitivity, easy implementation, and no labeling, and has been widely used in various detection fields. The earliest realized SPR sensor is a prism-type SPR sensor, but its application is limited due to its disadvantages such as high cost, complex system, large volume, and inconvenient portability. In 1993, Dr. R.C.Jorgenson of the United States proposed the fiber optic SPR sensor (Ralph Corleissen Jorgenson. Fiber-optic chemical sensor based on surface plasmon resonance. Sensors and Actuator[J]s, B: Chemical, v B12, n 3, Apr 151993, p 213 -220), which has since opened a new chapter in fiber optic SPR sensors. Because the optical fiber SPR sensor has the advantages of small size, easy integration, and no interference from mechanical vibration and light source fluctuation, it has become the mainstream direction of SPR sensor research.
2003年曹振新等人成功研制出纵向分布式SPR光纤传感器,并申请了名为“纵向分布式表面等离子体波传感器”的发明专利(专利申请号为:03113077.1),这种纵向分布式SPR光纤传感器制作原理与传统形式的单通道SPR传感器相同,由于其光纤侧面的传感区域形式固定,传感器仅能通过改变膜厚来调节共振波长,其对应的探测光谱为多个入射角度产生效果的叠加,导致测量信号半带宽和强度都不够理想;2005年彭伟等人使用纤芯直径为600μm的多模光纤研制出了多通道SPR光纤传感器,并申请了名为“角度调谐式多通道光纤表面等离子体共振传感探头”的发明专利(专利申请号为:201110089650.4),这种SPR光纤传感器在一个光纤端集成了多个传感通道,但是其只能进行单一通道的实时检测,对于多个参量需要分时检测。In 2003, Cao Zhenxin and others successfully developed a longitudinally distributed SPR fiber optic sensor, and applied for an invention patent named "Longitudinal Distributed Surface Plasmon Wave Sensor" (patent application number: 03113077.1), this longitudinally distributed SPR fiber optic sensor The production principle is the same as that of the traditional single-channel SPR sensor. Since the sensing area on the side of the optical fiber is fixed, the sensor can only adjust the resonance wavelength by changing the film thickness. The corresponding detection spectrum is the superposition of the effects of multiple incident angles. As a result, the half-bandwidth and intensity of the measurement signal are not ideal; in 2005, Peng Wei et al. developed a multi-channel SPR fiber sensor using a multi-mode fiber with a core diameter of 600 μm, and applied for a patent called "angle-tuned multi-channel fiber surface plasmon Body Resonance Sensing Probe" patent (patent application number: 201110089650.4), this SPR fiber optic sensor integrates multiple sensing channels at one fiber end, but it can only perform real-time detection of a single channel, for multiple parameters Time-sharing testing is required.
发明内容Contents of the invention
本发明的目的在于提供一种结构简单,灵敏度高,能够实现多通道实时测量的分布式表面等离子体共振光纤传感器。The purpose of the present invention is to provide a distributed surface plasmon resonance optical fiber sensor with simple structure, high sensitivity and the ability to realize multi-channel real-time measurement.
本发明的目的是这样是实现的:The object of the present invention is to realize like this:
在一段双芯光纤上加工有成对分布的V型槽,V型槽的深度超过纤芯,每对V型槽中的两个V型槽相互错位布置,V型槽的斜面上镀有传感层;在每对V型槽中,从第一纤芯入射的宽谱光在第一V型槽斜面处激发SPR并发生全反射,反射至第二V型槽斜面处也激发SPR并反射至第二纤芯;光在各对V型槽中依次传递实现分布式传感。Pairs of V-shaped grooves are processed on a section of dual-core optical fiber. The depth of the V-shaped grooves exceeds the fiber core. Sensitive layer; in each pair of V-shaped grooves, the broad-spectrum light incident from the first fiber core excites the SPR at the slope of the first V-shaped groove and undergoes total reflection, and when reflected to the slope of the second V-shaped groove, it also excites the SPR and reflects to the second fiber core; the light is sequentially transmitted in each pair of V-shaped grooves to realize distributed sensing.
本发明还可以包括:The present invention may also include:
1、每对V型槽中的两个V型槽的错位量L满足L=d*cotΦ,其中d为两纤芯间距、Φ为V型槽的顶角角度。1. The misalignment L of the two V-shaped grooves in each pair of V-shaped grooves satisfies L=d*cotΦ, where d is the distance between two fiber cores, and Φ is the apex angle of the V-shaped grooves.
2、所述的传感层的厚度为35-65纳米,传感层的材料金、银、铝或铜。2. The thickness of the sensing layer is 35-65 nanometers, and the material of the sensing layer is gold, silver, aluminum or copper.
本发明提供了一种结构简单,灵敏度高,能够实现多通道实时测量的分布式SPR光纤传感器。一段双芯光纤1侧面加工有多组V型槽对2,V型槽对2的斜面上镀有传感层3,从第一纤芯4入射的宽谱光在第一V型槽斜面5处激发SPR并发生全反射,由于错位相对的两个V型槽角度相同,因此光会反射至第二V型槽斜面6处,也会激发SPR并反射至第二纤芯7,依次类推实现分布式传感。双芯光纤1的两纤芯间距为d。每组V型槽对2是由两个具有相同角度Φ、错位量L为d*cotΦ的V型槽组成,V型槽的深度超过纤芯。V型槽对2可以具有相同的角度,也可以具有不同的角度,但是应当满足激励SPR的角度条件。传感层)在不同V型槽对2上可以具有相同厚度,也可以具有不同厚度,但具有相同角度的V型槽对2,应当镀制不同厚度的传感层3。传感层3可以是厚度为35-65纳米的金、银、铝或铜,也可以是其他能够激励SPR的材料。The invention provides a distributed SPR optical fiber sensor with simple structure, high sensitivity and the ability to realize multi-channel real-time measurement. A section of dual-core optical fiber 1 is processed with multiple sets of V-groove pairs 2 on the side. The slopes of the V-groove pairs 2 are coated with a sensing layer 3 . The SPR is excited at the position and total reflection occurs. Since the angles of the two V-shaped grooves opposite to each other are the same, the light will be reflected to the slope 6 of the second V-shaped groove, and the SPR will also be excited and reflected to the second core 7, and so on. distributed sensing. The distance between two cores of the dual-core optical fiber 1 is d. Each V-shaped groove pair 2 is composed of two V-shaped grooves with the same angle Φ and a displacement L of d*cotΦ, and the depth of the V-shaped groove exceeds the fiber core. The V-groove pair 2 may have the same angle or different angles, but the angle condition for exciting the SPR should be met. The sensing layer) can have the same thickness or different thicknesses on different V-shaped groove pairs 2, but the V-shaped groove pairs 2 with the same angle should be plated with sensing layers 3 of different thicknesses. The sensing layer 3 can be gold, silver, aluminum or copper with a thickness of 35-65 nanometers, or other materials capable of stimulating SPR.
其工作原理为:Its working principle is:
如图3所示,SPR传感原理为入射光场以金属/光学介质为激励结构,在介质与金属膜界面发生全反射,产生倏逝波,倏逝波的波矢KEW与金属表面等离子体波的波矢Kspz相匹配时,两种电磁波模式会强烈耦合,导致一部分入射光的能量被表面等离子体波吸收,导致反射光的强度明显降低。SPR传感器正是基于这种现象实现对外部环境参量的检测。As shown in Figure 3, the principle of SPR sensing is that the incident light field uses metal/optical medium as the excitation structure, total reflection occurs at the interface between the medium and the metal film, and evanescent waves are generated. The wave vector K EW of the evanescent wave and the metal surface plasmon When the wave vector K spz of the bulk wave matches, the two electromagnetic wave modes will be strongly coupled, causing a part of the energy of the incident light to be absorbed by the surface plasmon wave, resulting in a significant decrease in the intensity of the reflected light. SPR sensor is based on this phenomenon to realize the detection of external environmental parameters.
SPR波矢匹配公式为:The SPR wave vector matching formula is:
式中,ω为光频,c为光速,θ为入射角,ε0、ε1、ε2、分别为波导介质、金属膜、待测介质的介电常数,Δk为材料引起的波矢失配量。In the formula, ω is the light frequency, c is the speed of light, θ is the incident angle, ε 0 , ε 1 , ε 2 are the dielectric constants of the waveguide medium, the metal film, and the medium to be measured, respectively, and Δk is the wave vector loss caused by the material. Dosing.
光纤SPR传感器中,光纤作为光学介质与金属膜相结合形成了SPR效应的激励面,在分布式SPR光纤传感器中,镀有传感层的V形槽斜面就是SPR效应的激励面。宽谱光照射在V型槽的斜面上,当光的入射角度(V型槽斜面角度)、传感层的厚度和环境介质折射率合适时,光在斜面上发生全内反射并产生倏逝场,并且使得KEW与Kspz相匹配,产生SPR效应,表面等离子体波会吸收部分入射光的能量,导致某一波长的光强度明显降低。光经过多组V型槽对,光线在两个纤芯中交替传播,由于不同的V型槽对具有不同角度的斜面或不同厚度的传感层,出射光谱会出现多处吸收谷,当改变外界某一介质折射率时,相应光谱吸收谷会有明显的移动,根据光谱的变化即可判断介质折射率的改变,同一传感器上的多组V型槽对能够实现多通道的实时监测,即分布式传感。In the optical fiber SPR sensor, the optical fiber is used as the optical medium and the metal film is combined to form the excitation surface of the SPR effect. In the distributed SPR optical fiber sensor, the inclined surface of the V-shaped groove coated with the sensing layer is the excitation surface of the SPR effect. Broad-spectrum light is irradiated on the slope of the V-groove. When the incident angle of the light (V-groove slope angle), the thickness of the sensing layer and the refractive index of the ambient medium are appropriate, the light will undergo total internal reflection on the slope and evanescent Field, and make K EW and K spz match, produce SPR effect, the surface plasmon wave will absorb part of the energy of the incident light, resulting in a significant decrease in the light intensity of a certain wavelength. The light passes through multiple V-groove pairs, and the light propagates alternately in the two cores. Since different V-groove pairs have different angles of slope or different thickness of the sensing layer, there will be multiple absorption valleys in the outgoing spectrum. When changing When the refractive index of a certain medium in the outside world, the corresponding spectral absorption valley will move obviously, and the change of the refractive index of the medium can be judged according to the change of the spectrum. Multiple sets of V-groove pairs on the same sensor can realize multi-channel real-time monitoring, namely distributed sensing.
与现有技术相比,本发明的优点为:Compared with prior art, the advantage of the present invention is:
1、本发明给出了一种新颖的基于双芯光纤的分布式SPR光纤传感器,该传感器能够很好的与全光纤系统进行低损耗连接,具有体积小,结构简单等突出优点。1. The present invention provides a novel distributed SPR optical fiber sensor based on dual-core optical fiber. The sensor can be well connected with an all-fiber system with low loss, and has outstanding advantages such as small size and simple structure.
2、分布式SPR光纤传感器在光纤侧面制作多组传感区,利用光纤的特殊结构将多个传感区串联,实现了实时的多通道分布式测量。2. Distributed SPR optical fiber sensor makes multiple sets of sensing areas on the side of the optical fiber, and uses the special structure of the optical fiber to connect multiple sensing areas in series to realize real-time multi-channel distributed measurement.
附图说明Description of drawings
图1为分布式SPR光纤传感器三维结构示意图。Figure 1 is a schematic diagram of a three-dimensional structure of a distributed SPR fiber optic sensor.
图2为分布式SPR光纤传感器光路示意图。Figure 2 is a schematic diagram of the optical path of the distributed SPR fiber optic sensor.
图3为KretschnLann三层介质波导模型图。Figure 3 is a KretschnLann three-layer dielectric waveguide model diagram.
具体实施方式detailed description
下面举例对本发明做更详细的描述。The following examples describe the present invention in more detail.
如图1所示,一种分布式SPR光纤传感器包括一段双芯光纤1,双芯光纤1的包层直径为125微米,包层中具有两个对称分布的纤芯,两个纤芯直径为6-10微米、纤芯的中心间距d为30-100微米。双芯光纤1侧面具有两个或两个以上的V型槽对2,每组V型槽对中的V型槽角度为Φ,错位量L为d*cotΦ,V型槽的斜面角度应能够满足实际需求并符合光线全内反射条件,V型槽的斜面上应镀制35-65纳米厚的传感层3;V型槽的深度应当过对应纤芯1-10微米。本发明中的SPR光纤传感器也可以选用光纤纤芯对称分布的其他多芯光纤,其对称分布的两个纤芯应当满足上述双芯光纤1纤芯的基本分布条件。As shown in Figure 1, a kind of distributed SPR optical fiber sensor comprises a section of dual-core optical fiber 1, and the cladding diameter of dual-core optical fiber 1 is 125 microns, has two symmetrically distributed cores in the cladding, and the diameters of the two cores are 6-10 microns, and the distance d between centers of the fiber cores is 30-100 microns. There are two or more V-groove pairs 2 on the side of the dual-core optical fiber 1, the V-groove angle in each V-groove pair is Φ, the misalignment L is d*cotΦ, and the slope angle of the V-groove should be able to To meet the actual needs and meet the conditions of total internal reflection of light, the V-groove slope should be plated with a sensing layer 3 with a thickness of 35-65 nanometers; the depth of the V-groove should be 1-10 microns deeper than the corresponding fiber core. The SPR optical fiber sensor in the present invention can also use other multi-core optical fibers with symmetrically distributed optical fiber cores, and the two symmetrically distributed cores should meet the basic distribution conditions of the above-mentioned dual-core optical fiber 1 core.
本发明的分布式SPR光纤传感器的具体制作方法为:利用飞秒激光器制作分布式SPR光纤传感器。步骤如下:The specific manufacturing method of the distributed SPR optical fiber sensor of the present invention is: using a femtosecond laser to manufacture a distributed SPR optical fiber sensor. Proceed as follows:
1、光纤预处理:取一段直径为125微米的双芯光纤1,使用米勒钳在光纤的某一位置剥除光纤涂覆层25毫米并用酒精将裸露的光纤包层清洗干净。1. Optical fiber pretreatment: Take a section of dual-core optical fiber 1 with a diameter of 125 microns, use Miller pliers to strip 25 mm of the optical fiber coating at a certain position of the optical fiber, and clean the exposed optical fiber cladding with alcohol.
2、将双芯光纤1放置在飞秒激光器的固定架上,使光纤的裸露部分处于激光器的工作区,并保证光纤的两个纤芯所在平面垂直于水平面。2. Place the dual-core optical fiber 1 on the fixed frame of the femtosecond laser, so that the exposed part of the optical fiber is in the working area of the laser, and ensure that the plane where the two cores of the optical fiber are located is perpendicular to the horizontal plane.
3、使用飞秒激光器在双芯光纤1侧面裸纤处烧写第一V型槽,由于双芯光纤1的纤芯间距为35微米,V型槽角度为150°,经计算第一组将V型槽错位量L控制在60微米左右,V型槽过纤芯约10微米,为使表面等离子体共振波长为650纳米左右,因此在距第一V型槽40微米且更靠近光线入射端的位置烧写第二V形槽。3. Use a femtosecond laser to write the first V-groove at the bare fiber on the side of the dual-core fiber 1. Since the core spacing of the dual-core fiber 1 is 35 microns and the V-groove angle is 150°, the first group will be The V-groove misalignment L is controlled at about 60 microns, and the V-groove crosses the fiber core by about 10 microns. In order to make the surface plasmon resonance wavelength about 650 nanometers, it is 40 microns away from the first V-groove and closer to the light incident end. position to program the second V-groove.
4、按照相同的原理重复步骤1、2、3,烧写完成其他V型槽对2。4. Repeat steps 1, 2, and 3 according to the same principle, and complete the programming of other V-groove pairs 2.
5、使用去离子水和超声清洁器清洗光纤上的V型槽区域。5. Use deionized water and an ultrasonic cleaner to clean the V-groove area on the fiber.
6、使V型槽向上,将光纤固定在载玻片上,使用溅射镀膜技术镀膜3.5分钟,使V型槽的斜面上镀制50纳米厚的金膜。6. Make the V-shaped groove upward, fix the optical fiber on the glass slide, and use the sputtering coating technology to coat the film for 3.5 minutes, so that the slope of the V-shaped groove is plated with a 50 nm thick gold film.
7、重复步骤6,在每个V形槽上都镀制金膜。7. Repeat step 6 to plate gold film on each V-shaped groove.
8、将双芯光纤1的V型槽对2部分置于U型石英槽中并使用环氧树脂固定,即形成分布式SPR光纤传感器。8. Place the V-shaped groove pair 2 of the dual-core optical fiber 1 in the U-shaped quartz groove and fix it with epoxy resin to form a distributed SPR optical fiber sensor.
利用分布式SPR光纤传感器实现液体折射率的测量。步骤如下:The measurement of liquid refractive index is realized by distributed SPR optical fiber sensor. Proceed as follows:
1、取一段标准单模光纤和一个制作完成的分布式SPR光纤传感器,使用米勒钳去除光纤两端涂覆层约30毫米并用酒精将裸露的光纤包层清洗干净,使用光纤切割刀在光纤两端进行切割,使光纤的两端端面形成垂直于光纤轴线且平整的断面。1. Take a standard single-mode optical fiber and a finished distributed SPR optical fiber sensor, use Miller pliers to remove about 30mm of the coating at both ends of the optical fiber and clean the exposed optical fiber cladding with alcohol, use a fiber cutter The two ends are cut so that the end faces of the two ends of the optical fiber form a flat section perpendicular to the axis of the optical fiber.
2、利用光纤熔接机使单模光纤的纤芯与双芯光纤1的第一纤芯正对,使用合适的熔接电流将两根光纤焊接在一起。2. Use an optical fiber fusion splicer to make the core of the single-mode optical fiber face the first core of the dual-core optical fiber 1, and weld the two optical fibers together with a suitable welding current.
3、将两根光纤的焊接点放置在热塑封管中,对热塑封管加热,确保焊点能够得到良好的保护。3. Place the welding points of the two optical fibers in a thermoplastic sealing tube, and heat the thermoplastic sealing tube to ensure that the soldering points can be well protected.
4、使用光谱范围为400~1200纳米的超连续谱光源,将光源输出的光注入到单模光纤中。4. Using a supercontinuum light source with a spectral range of 400-1200 nanometers, injecting light output by the light source into a single-mode optical fiber.
5、将双芯光纤1的未焊接一端接入OSA光谱仪,并调整光谱仪的探测波长范围为400~1200纳米。5. Connect the unwelded end of the dual-core optical fiber 1 to the OSA spectrometer, and adjust the detection wavelength range of the spectrometer to 400-1200 nanometers.
6、将传感器的传感部分(V型槽对(2))放入折射率约为1.333(蒸馏水)的待测液体中。6. Put the sensing part of the sensor (V-groove pair (2)) into the liquid to be tested with a refractive index of about 1.333 (distilled water).
7、接通光源,观测传感器的透射光谱,由于SPR现象的发生,光谱中会出现某些波长光强度的明显减弱。7. Turn on the light source and observe the transmission spectrum of the sensor. Due to the occurrence of the SPR phenomenon, the light intensity of certain wavelengths will be significantly weakened in the spectrum.
8、利用向水中滴加甘油的方法改变待测液体的折射率,通过观测光谱的改变量,就能够推算出待测液体的折射率变化量。8. Change the refractive index of the liquid to be measured by adding glycerin to the water, and calculate the change in refractive index of the liquid to be measured by observing the change in the spectrum.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510400263.6A CN105092535B (en) | 2015-07-09 | 2015-07-09 | Distributed surface plasma resonance optical fiber sensor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510400263.6A CN105092535B (en) | 2015-07-09 | 2015-07-09 | Distributed surface plasma resonance optical fiber sensor |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105092535A CN105092535A (en) | 2015-11-25 |
CN105092535B true CN105092535B (en) | 2017-10-03 |
Family
ID=54573451
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510400263.6A Expired - Fee Related CN105092535B (en) | 2015-07-09 | 2015-07-09 | Distributed surface plasma resonance optical fiber sensor |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105092535B (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105954235B (en) * | 2016-04-26 | 2018-12-07 | 哈尔滨工程大学 | A kind of hole helps twin-core fiber interference-type index sensor |
CN105954231B (en) * | 2016-04-26 | 2018-10-26 | 哈尔滨工程大学 | A kind of hole based on Mode Coupling mechanism helps twin-core fiber sensor |
CN106066313A (en) * | 2016-05-25 | 2016-11-02 | 哈尔滨工程大学 | Distributed surface plasma resonance optical fiber sensor and the method for measuring refractive indexes of liquid |
CN105866070A (en) * | 2016-05-27 | 2016-08-17 | 哈尔滨工程大学 | Distributed liquid refractive index sensing device based on optical fiber surface plasma resonance |
CN106525775A (en) * | 2016-10-20 | 2017-03-22 | 重庆三峡学院 | Multichannel SPR sensor for single-mode fiber and multi-mode fiber cascade application |
CN106289340B (en) * | 2016-11-02 | 2019-10-15 | 中国计量大学 | A Multi-channel Optical Fiber Sensor Based on TFBG-SPR |
CN108414453B (en) * | 2018-01-23 | 2020-09-11 | 大连理工大学 | A multi-channel optical fiber SPR system integrating time division multiplexing and wavelength division multiplexing technology |
CN110132893B (en) * | 2019-05-16 | 2021-12-28 | 江苏科信光电科技有限公司 | Gas detector based on optical fiber structure |
CN112461795A (en) * | 2020-12-08 | 2021-03-09 | 桂林电子科技大学 | Plastic optical fiber SPR array sensor and preparation method thereof |
CN112432929A (en) * | 2020-12-08 | 2021-03-02 | 桂林电子科技大学 | V-groove structure plastic optical fiber SPR sensor and preparation method thereof |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001165852A (en) * | 1999-12-10 | 2001-06-22 | Japan Science & Technology Corp | SPR sensor and method of manufacturing the same |
CN101369084A (en) * | 2008-10-07 | 2009-02-18 | 哈尔滨工程大学 | Interferometric integrated optical signal modulator and manufacturing method thereof |
CN102213675A (en) * | 2011-03-31 | 2011-10-12 | 大连理工大学 | Angle adjustable multichannel optical fiber surface plasmon resonance sensing probe |
CN104215610A (en) * | 2014-06-16 | 2014-12-17 | 中国计量学院 | Plasma resonance chamber-based fiber surface plasma sensor |
CN204389758U (en) * | 2015-02-03 | 2015-06-10 | 湖南神通光电科技有限责任公司 | Twin fiber cable |
-
2015
- 2015-07-09 CN CN201510400263.6A patent/CN105092535B/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001165852A (en) * | 1999-12-10 | 2001-06-22 | Japan Science & Technology Corp | SPR sensor and method of manufacturing the same |
CN101369084A (en) * | 2008-10-07 | 2009-02-18 | 哈尔滨工程大学 | Interferometric integrated optical signal modulator and manufacturing method thereof |
CN102213675A (en) * | 2011-03-31 | 2011-10-12 | 大连理工大学 | Angle adjustable multichannel optical fiber surface plasmon resonance sensing probe |
CN104215610A (en) * | 2014-06-16 | 2014-12-17 | 中国计量学院 | Plasma resonance chamber-based fiber surface plasma sensor |
CN204389758U (en) * | 2015-02-03 | 2015-06-10 | 湖南神通光电科技有限责任公司 | Twin fiber cable |
Non-Patent Citations (3)
Title |
---|
A. DõÂez等.In-line ®ber-optic sensors based on the excitation of surface plasma modes in metal-coated tapered bers.《Sensors and Actuators》.2001,第95-99页. * |
Fabrication and modeling of uniform-waist single-mode tapered optical fiber sensors;Joel Villatoro等;《APPLIED OPTICS》;20030501;第2278-2283页 * |
Twin-core fiber SPR sensor等;ZHIHAI LIU等;《Optics Letters》;20150610;第2826-2829页 * |
Also Published As
Publication number | Publication date |
---|---|
CN105092535A (en) | 2015-11-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105092535B (en) | Distributed surface plasma resonance optical fiber sensor | |
CN105954236B (en) | A kind of fiber integrates more helical-core fiber SPR sensorgram array chips | |
CN109187440B (en) | Single-mode-few-mode/multi-mode fiber SPR sensor based on mode excitation | |
CN206618529U (en) | A kind of simple reflective interference-type optical fiber baroceptor | |
CN103344277B (en) | A kind of Fabry-Perot sensor and pick-up unit that simultaneously can detect two parameter | |
CN105954231B (en) | A kind of hole based on Mode Coupling mechanism helps twin-core fiber sensor | |
CN105092536A (en) | Multimode-single- fiber surface plasma mode structured optical resonance sensor and detection method thereof | |
CN108731712B (en) | A fiber-optic Mach-Zehnder interferometer based on femtosecond laser-engraved waveguide | |
CN105954235A (en) | Hole-assisted dual-core optical fiber interferential refractive index sensor | |
CN103063238A (en) | Full-fiber sensor based on Mach-Zehnder interference | |
CN104897302A (en) | Temperature sensor of photonic crystal optical fiber Michelson interferometer based on corrosion processing | |
CN103364370A (en) | Annular core optical fiber sensor based on annular chamber decline | |
CN111457862A (en) | Optical fiber SPR curvature sensor for direction recognition and using and manufacturing method | |
CN108414474A (en) | A kind of SPR fibre optical sensors and preparation method thereof based on temperature self-compensation | |
CN204807233U (en) | Temperature sensor of photonic crystal optic fibre michelson interferometer based on corrosion treatment | |
CN112254840A (en) | An optical fiber SPR sensor for measuring magnetic field and temperature based on STS structure | |
CN113702339B (en) | Parallel SPR sensor based on capillary optical fiber | |
CN110823808B (en) | Tapered side-polished optical fiber biosensor and method for preparing tapered side-polished optical fiber | |
CN114111857A (en) | Vernier effect based optical fiber FPI cascaded MI sensing device | |
CN214539244U (en) | Temperature compensated large measuring range SPR sensor | |
CN210604364U (en) | Detection photonic crystal fiber and optical fiber sensor | |
CN111928880B (en) | Mach-Zehnder Interferometric Fiber and Its Sensor Based on Surface Plasmon Effect | |
CN212539081U (en) | An Optical Fiber SPR Curvature Sensor for Direction Recognition | |
CN118882711A (en) | A miniature optical fiber MI sensing device | |
CN108051020A (en) | Mach-Zehnder interferometer in the optical fiber cable led based on a pair of of shortwave |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20171003 |
|
CF01 | Termination of patent right due to non-payment of annual fee |