BR102016015733A2 - Simulador paciente-específico da aorta e sistema de reprodução - Google Patents
Simulador paciente-específico da aorta e sistema de reprodução Download PDFInfo
- Publication number
- BR102016015733A2 BR102016015733A2 BR102016015733-1A BR102016015733A BR102016015733A2 BR 102016015733 A2 BR102016015733 A2 BR 102016015733A2 BR 102016015733 A BR102016015733 A BR 102016015733A BR 102016015733 A2 BR102016015733 A2 BR 102016015733A2
- Authority
- BR
- Brazil
- Prior art keywords
- aorta
- patient
- reproduction system
- simulator
- specific simulator
- Prior art date
Links
- 210000000709 aorta Anatomy 0.000 claims abstract description 53
- 238000012549 training Methods 0.000 claims abstract description 35
- 238000000034 method Methods 0.000 claims abstract description 26
- 229920001296 polysiloxane Polymers 0.000 claims abstract description 21
- 229920005989 resin Polymers 0.000 claims abstract description 15
- 239000011347 resin Substances 0.000 claims abstract description 15
- 230000000541 pulsatile effect Effects 0.000 claims abstract description 10
- 238000002591 computed tomography Methods 0.000 claims abstract description 7
- 210000003090 iliac artery Anatomy 0.000 claims abstract description 7
- 238000005481 NMR spectroscopy Methods 0.000 claims abstract description 6
- 210000002376 aorta thoracic Anatomy 0.000 claims abstract description 6
- 210000000702 aorta abdominal Anatomy 0.000 claims abstract description 5
- 238000007639 printing Methods 0.000 claims abstract description 5
- 239000000463 material Substances 0.000 claims description 33
- 238000001356 surgical procedure Methods 0.000 claims description 18
- 206010002329 Aneurysm Diseases 0.000 claims description 16
- 238000010146 3D printing Methods 0.000 claims description 15
- 238000012805 post-processing Methods 0.000 claims description 10
- 238000012937 correction Methods 0.000 claims description 7
- 239000003814 drug Substances 0.000 claims description 6
- 229940079593 drug Drugs 0.000 claims description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 5
- 238000004891 communication Methods 0.000 claims description 3
- 238000003384 imaging method Methods 0.000 claims description 3
- 230000008569 process Effects 0.000 claims description 3
- 239000007787 solid Substances 0.000 claims description 3
- 208000007474 aortic aneurysm Diseases 0.000 description 7
- 238000005516 engineering process Methods 0.000 description 7
- 238000007631 vascular surgery Methods 0.000 description 6
- 201000010099 disease Diseases 0.000 description 5
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 5
- 230000006872 improvement Effects 0.000 description 5
- 230000005855 radiation Effects 0.000 description 4
- 238000011160 research Methods 0.000 description 4
- 238000003325 tomography Methods 0.000 description 4
- 208000002223 abdominal aortic aneurysm Diseases 0.000 description 3
- 230000010339 dilation Effects 0.000 description 3
- 230000036541 health Effects 0.000 description 3
- 238000004088 simulation Methods 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 241001489705 Aquarius Species 0.000 description 2
- 210000001015 abdomen Anatomy 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 230000000740 bleeding effect Effects 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000003745 diagnosis Methods 0.000 description 2
- 229920001971 elastomer Polymers 0.000 description 2
- 238000001727 in vivo Methods 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 231100000252 nontoxic Toxicity 0.000 description 2
- 230000003000 nontoxic effect Effects 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 230000008439 repair process Effects 0.000 description 2
- 229920000260 silastic Polymers 0.000 description 2
- 230000002792 vascular Effects 0.000 description 2
- 238000012800 visualization Methods 0.000 description 2
- 208000002251 Dissecting Aneurysm Diseases 0.000 description 1
- 238000012276 Endovascular treatment Methods 0.000 description 1
- 206010073306 Exposure to radiation Diseases 0.000 description 1
- 208000032984 Intraoperative Complications Diseases 0.000 description 1
- 208000031481 Pathologic Constriction Diseases 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 206010057765 Procedural complication Diseases 0.000 description 1
- 230000003187 abdominal effect Effects 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 239000002671 adjuvant Substances 0.000 description 1
- 210000001367 artery Anatomy 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 230000036772 blood pressure Effects 0.000 description 1
- 238000007889 carotid angioplasty Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 210000000038 chest Anatomy 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000002224 dissection Methods 0.000 description 1
- 239000000806 elastomer Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 230000000004 hemodynamic effect Effects 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 230000008676 import Effects 0.000 description 1
- 230000005865 ionizing radiation Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000002595 magnetic resonance imaging Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 210000003205 muscle Anatomy 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920006255 plastic film Polymers 0.000 description 1
- 239000002985 plastic film Substances 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000005060 rubber Substances 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 230000029305 taxis Effects 0.000 description 1
- 210000001519 tissue Anatomy 0.000 description 1
- 238000011282 treatment Methods 0.000 description 1
- 238000011277 treatment modality Methods 0.000 description 1
- 238000002604 ultrasonography Methods 0.000 description 1
- 208000019553 vascular disease Diseases 0.000 description 1
- 230000006439 vascular pathology Effects 0.000 description 1
- 210000003462 vein Anatomy 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y30/00—Apparatus for additive manufacturing; Details thereof or accessories therefor
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/10—Computer-aided planning, simulation or modelling of surgical operations
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09B—EDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
- G09B23/00—Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes
- G09B23/28—Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes for medicine
- G09B23/30—Anatomical models
- G09B23/303—Anatomical models specially adapted to simulate circulation of bodily fluids
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/02—Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
- A61B6/03—Computed tomography [CT]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C33/00—Moulds or cores; Details thereof or accessories therefor
- B29C33/44—Moulds or cores; Details thereof or accessories therefor with means for, or specially constructed to facilitate, the removal of articles, e.g. of undercut articles
- B29C33/46—Moulds or cores; Details thereof or accessories therefor with means for, or specially constructed to facilitate, the removal of articles, e.g. of undercut articles using fluid pressure
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C35/00—Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
- B29C35/02—Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
- B29C35/08—Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T17/00—Three dimensional [3D] modelling, e.g. data description of 3D objects
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T19/00—Manipulating 3D models or images for computer graphics
- G06T19/20—Editing of 3D images, e.g. changing shapes or colours, aligning objects or positioning parts
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09B—EDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
- G09B23/00—Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes
- G09B23/28—Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes for medicine
- G09B23/30—Anatomical models
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09B—EDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
- G09B9/00—Simulators for teaching or training purposes
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H20/00—ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance
- G16H20/40—ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to mechanical, radiation or invasive therapies, e.g. surgery, laser therapy, dialysis or acupuncture
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H30/00—ICT specially adapted for the handling or processing of medical images
- G16H30/40—ICT specially adapted for the handling or processing of medical images for processing medical images, e.g. editing
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H50/00—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
- G16H50/50—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for simulation or modelling of medical disorders
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/10—Computer-aided planning, simulation or modelling of surgical operations
- A61B2034/107—Visualisation of planned trajectories or target regions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y50/00—Data acquisition or data processing for additive manufacturing
- B33Y50/02—Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y80/00—Products made by additive manufacturing
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2210/00—Indexing scheme for image generation or computer graphics
- G06T2210/41—Medical
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16Z—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS, NOT OTHERWISE PROVIDED FOR
- G16Z99/00—Subject matter not provided for in other main groups of this subclass
Landscapes
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Medical Informatics (AREA)
- Theoretical Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Surgery (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Business, Economics & Management (AREA)
- Educational Administration (AREA)
- Educational Technology (AREA)
- Software Systems (AREA)
- Computer Graphics (AREA)
- Biomedical Technology (AREA)
- Geometry (AREA)
- Mathematical Physics (AREA)
- Mathematical Analysis (AREA)
- Mathematical Optimization (AREA)
- Pure & Applied Mathematics (AREA)
- Medicinal Chemistry (AREA)
- Algebra (AREA)
- Computational Mathematics (AREA)
- Epidemiology (AREA)
- Primary Health Care (AREA)
- Veterinary Medicine (AREA)
- Animal Behavior & Ethology (AREA)
- Molecular Biology (AREA)
- Heart & Thoracic Surgery (AREA)
- Radiology & Medical Imaging (AREA)
- Pathology (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Fluid Mechanics (AREA)
- Thermal Sciences (AREA)
- Biophysics (AREA)
- High Energy & Nuclear Physics (AREA)
Abstract
simulador paciente-específico da aorta e sistema de reprodução. a presente patente de invenção refere-se a simulador paciente-específico da aorta e sistema de reprodução, (1), o qual corresponde a equipamento e sistema destinado a produzir através da impressão 3d, utilizando impressora 3d, das imagens reais da aorta dos pacientes obtidas em exames como a tomografia computadorizada e/ou ressonância nuclear magnética com a finalidade de permitir aos médicos da área, adquirirem habilidades complexas e/ou re?narem as suas técnicas operatórias, treinando em um ambiente controlado, sob orientação adequada, sem expor o paciente a riscos, sendo caracterizado por ser constituído por conectores (2) feitos em silicone; bomba de fluxo pulsátil (3); negatoscópio (4); caixa preta (5); câmera (não mostrada) e monitor (6), de forrna a reproduzir, em silicone e/ou resina translúcida, a crossa da aorta, a aorta torácica, a aorta abdominal e as arterias ilíacas.
Description
(54) Título: SIMULADOR PACIENTEESPECÍFICO DA AORTA E SISTEMA DE REPRODUÇÃO (51) Int. Cl.: G09B 23/30; G09B 9/00; G06T 19/20; G06T 17/00; B33Y 50/02; (...) (52) CPC: G09B 23/303,G09B 9/00, G06T 19/20, G06T 17/00, B33Y 50/02, B33Y 80/00, B29C 67/0051 (73) Titular(es): INEZ OHASHI TORRES AYRES, NELSON DE LUCCIA (72) Inventor(es): INEZ OHASHI TORRES AYRES; NELSON DE LUCCIA (74) Procurador(es): CELSO DE CARVALHO MELLO (57) Resumo: SIMULADOR PACIENTEESPECÍFICODA AORTA E SISTEMA DE REPRODUÇÃO. A presente Patente de Invenção refere-se a Simulador PacienteEspecífico da Aorta e Sistema de Reprodução, (1), o qual corresponde a equipamento e sistema destinado a produzir através da impressão 3D, utilizando impressora 3D, das imagens reais da aorta dos pacientes obtidas em exames como a tomografia computadorizada e/ou ressonância nuclear magnética com a finalidade de permitir aos médicos da área, adquirirem habilidades complexas e/ou re?narem as suas técnicas operatórias, treinando em um ambiente controlado, sob orientação adequada, sem expor o paciente a riscos, sendo caracterizado por ser constituído por conectores (2) feitos em silicone; bomba de fluxo pulsátil (3); negatoscópio (4); caixa preta (5); câmera (não mostrada) e monitor (6), de forrna a reproduzir, em silicone e/ou resina translúcida, a Crossa da Aorta, a Aorta Torácica, a Aorta Abdominal e as Artérias ilíacas.
FIG.1
1/14
SIMULADOR PACIENTE-ESPECÍFICO DA AORTA E SISTEMA DE REPRODUÇÃO”.
1,- INTRODUÇÃO
001 O presente relatório descritivo de Patente de Invenção diz respeito ao desenvolvimento de aparelho denominado Simulador Paciente-Específico da Aorta e Sistema de Reprodução, que consiste em um equipamento produzido através da impressão 3D, utilizando impressora 3D, das imagens reais da aorta dos pacientes obtidas em exames como a tomografia computadorizada e/ou ressonância nuclear magnética.
002 Os simuladores tem como finalidade permitir que o médico adquira habilidades complexas e/ou refine sua técnica operatória. treinando em um ambiente controlado, sob orientação adequada, sem expor o paciente a riscos. Podem ser utilizados para fins didáticos, facilitando o entendimento de alunos de graduação sobre doenças complexas envolvendo a aorta. Serve também para realização de pesquisas estudando as alterações na dinâmica de fluidos ocasionados pelos aneurismas ou dissecçõcs de aorta.
003 O fato do simulador ser confeccionado a partir da tomografia computadorizada e/ou ressonância nuclear magnética do paciente, permite que o treinamento seja feito de acordo com as particularidades de cada caso. Entendendo as dificuldades inerentes a cada paciente e possibilitando estabelecer com antecedência a melhora estratégia e os materiais mais adequados para a cirurgia.
004 O Simulador Paciente-Específico da Aorta e Sistema de Reprodução consiste em uma reprodução da aorta feita em silicone ou resina, conectado a uma bomba de fluxo pulsátil, posicionado sobre uma luz fluorescente (negatoscópio). que permite que o treinamento seja feito sem uso de radiação. O treinamento pode ser feito por visão indireta, para isso o modelo é coberto por uma caixa escura, com uma câmera no seu interior.
005 Para a confecção do Simulador são necessários: computador provido de software específico para preparação dos dados
2/ 14 obtidos nos exames e impressora 3D.
2. - CAMPO DE APLICAÇÃO
006 O simulador da Aorta pode ser utilizado para ensino, pesquisa e melhora da assistência médica.
007 Durante a graduação pode ser utilizado para demonstração das características de várias doenças que acometem a aorta de pacientes reais sem expor os alunos (médicos, biomédicos, enfermeiros) a riscos biológicos ou radiação.
008 Nos programas de Residência Médica em Cirurgia Vascular permite o treinamento de cirurgiões em formação na correção endovascular de aneurisma da aorta sem expor o paciente a riscos.
009 Pode ser utilizado ainda para Programas de Educação Continuada, onde cirurgiões já experientes podem utilizar o Simulador para aperfeiçoamento técnico ou para atualizações em novos materiais ou novas tecnologias.
010 Para melhora a assistência ao paciente, o simulador pode ser utilizado para programação de cirurgia complexas, permitindo melhor entendimento de casos com variações ou distorções da anatomia, assim, ajudando a definir a melhor estratégia cirúrgica.
011 Além disso, o Simulador pode ser utilizado para realização de estudos hemodinâmicos nas diversas doenças envolvendo a aorta.
3, - FINALIDADES
012 O maior incentivo para o uso de impressão 3D na medicina têm sido a demanda pública e institucional por um aumento na segurança do paciente.
013 O Simulador da Pacienle-Específico da Aorta é um produto de alta qualidade, que irá contribuir para a formação técnica de médico cirurgião vascular, permitindo o treinamento de todos os passos da cirurgia em um modelo pulsátil e fidedigno anatomicamente ao paciente. Este tipo de treino permite o aperfeiçoamento da técnica operatória e possibilita
3/14 antever complicações, o que torna a cirurgia mais segura para o paciente.
014 Existe também uma preocupação crescente com a qualidade da formação médica no Brasil, principalmente após o recente aumento no número de Faculdades de Medicina. De acordo com pronunciamento do Conselho Federal de Medicina em 2015, metade dos municípios com escolas médicas não possui estrutura para formar adequadamente os profissionais e o número de hospitais-escola está abaixo das necessidades do sistema formador de futuros profissionais da saúde. Nestes casos, o simulador é uma ferramenta de ensino para alunos que, de outra maneira, não entrariam em contato com peças anatômicas com este tipo de doença.
015 Mesmo escolas conceituadas necessitam sempre se aprimorar. O Hospital das Clínicas da Faculdade de Medicina da USP forma mais de 1300 residentes todos os anos e sabe-se que existe uma curva de aprendizado para Iodas as cirurgias. O treinamento realizado em simulador antes de cirurgias maiores pode ajudar a encurtar a curva de aprendizado dos residentes, definir a melhor tática e técnica operatória e antever possíveis complicações.
4.- ESTADO DA TÉCNICA
4.1.- ANTECEDENTES GERAIS
016 A aorta é o maior vaso do corpo. Ela sai do seu coração, passa pelo seu peito e vai até o seu abdômen, onde se divide para fornecer sangue para suas pernas. Pode ser acometidas por várias doenças como estenoses, dissecçòes e aneurismas.
017 Um Aneurisma de Aorta (ΛΛ) é uma protuberância ou dilatação da Aorta. Com o tempo, essa protuberância na aorta pode tomar-se fraca, e a força da pressão arterial normal pode fazer com que ela se rompa. Isso pode levar a dor grave e sangramento interno maciço ou hemorragia.
018 Não se sabe o que exatamente causa um aneurisma de aorta em algumas pessoas. A dilatação pode ser causada por uma
4/ 14 fragilidade na parede da aorta, onde ela se incha. Alguns médicos acreditam que essa dilalação pode ser devida a artérias obstruídas (aterosclerosc), mas ela também pode estar relacionada à hereditariedade, lesões ou outras doenças.
019 A maioria dos aneurismas abdominais é identificada durante exames médicos de rotina.
020 Caso o médico veja os sinais de um aneurisma de aorta abdominal, ele poderá programar testes especiais para confirmar o diagnóstico. Geralmente, os testes envolverão a tomada de imagens do seu abdômen usando imagem por ressonância magnética (RM), tomografia computadorizada (TC) e imagens de ultrassom.
021 As imagens produzidas por esses métodos possibilitam o diagnóstico.
4.2.- OUTROS ANTECEDENTES
022 Atualmente, nas instituições de ensino que fazem o treinamento de novos cirurgiões através de programas de Residência Médica, o treinamento supervisionado com exposição progressiva do residente ao procedimento é a norma. Segundo este modelo, a aquisição das habilidades cirúrgicas, ocorre utilizando o paciente como material de ensino. Apesar da segurança do paciente estar garantida pelo fato de haver um cirurgião sênior para conduzir a cirurgia, esta forma de ensino não supre as prerrogativas do treinamento moderno das habilidades cirúrgicas.
023 O treinamento baseado em simulações pode permitir que parte da curva de aprendizado seja atingida sem expor o paciente a riscos desnecessários.
024 Na cirurgia vascular, uma nova tecnologia foi introduzida há cerca de 15 anos e permite correção de várias patologias vasculares complexas (aneurisma o obstruções) por via endovascular (técnicas minimamente invasivas baseadas no uso de cateteres endovasculares estão rapidamente se tomando a modalidade de tratamento preferencial dos pacientes com doenças vasculares).
5/ 14
025 Como por exemplo o Aneurisma de aorta, que é uma condição clínica comum que implica em considerável risco de vida. Antes do anos 2000, 99% dos reparos de aneurismas de aorta abdominal (AAA) eram feitos pela técnica aberta. Após 2004, a percentagem de pacientes submetidos a correção endovascular de ΑΛΑ aumentou para 52%. Essa mudança requer uma adaptação no treinamento dos cirurgiões.
026 Como qualquer nova tecnologia ou procedimento, existe uma curva de aprendizado a ser considerada ao realizar cirurgias endovasculares.
027 O beneficio do treinamento fora da sala de cirurgia é bem estabelecido para outras modalidades cirúrgicas.
028 A Food and Drug Administration (FDA) afirmou cm abril de 2004, que a simulação podería ter efeito benéfico como parte do programa de treinamento a ser realizado antes que um médico seja considerado apto a realizar uma angioplastia de carótida em um paciente.
029 A prototipagem rápida (ou impressão 3D) permite, a partir do objeto impresso, a construção de modelos em materiais flexíveis. Que podem ser utilizados para o treinamento prático de cirurgiões em formação simulando condições in vivo sem riscos para o paciente.
030 Realizar todos os passos cirúrgicos no modelo pode ajudar a antever complicações intra-operatórias resultando em redução do tempo cirúrgico, encurtamento da curva de aprendizado e melhora no resultado final do procedimento.
031 No entanto, praticar os passos dos procedimentos antes da intervenção no paciente ainda não é parte rotineira da prática médica no presente.
4.3.- SIMULADORES
032 Os simuladores para cirurgias vasculares estão disponíveis há cerca de cinco anos e sua tecnologia está evoluindo rapidamente, sendo que todos estes equipamentos são produzidos e fabricados no exterior,
6/ 14 destacando-se a empresa Elastrat estabelecida na Suiça e cuja página Web é www.elastrat.com, que produz modelos genéricos em Silicone, e a empresa Simbionix nos Estados Unidos, que produz simuladores virtuais.
Nome da Empresa | ELASTRAT | SJntbtente usa Corporation. |
Característica | Empresa suiça que atua na fabricação de moldes genéricos de silicone. | Produz o simulador virtual ôflfljfl mentor |
Valor | US$2.999 | US R$ 300.000.00 |
Fraqueza | Material importado sujeito a variação cambial e impostos de importação. Não apresenta possibilidade de customizar de acordo com cada caso. | E um simulador virtual, sujeito a falhas se nâo for feita manutenção periódica; Preço do produto e preço da manutenção. |
033 Da análise desses simuladores constata-se que os mesmos são direcionados para casos gerais, não contam com assistência técnica imediata no Brasil c possuem custo de aquisição muito alto, fato este que dificulta o acesso a eles, motivo pelo qual seu uso ainda é limitado. No Brasil, ainda não existe empresa que forneça um simulador para treinamento técnico cirúrgico cm cirurgia vascular.
4.4,- ANTECEDENTES PATENTÁRIOS
034 Ainda mais, buscas de anterioridades foram realizadas no Banco de Dados do INPI sob diversas formas, inclusive sob a palavras chaves’' e constatou-se que não há processos referentes a esta matéria.
035 Face ao resultado das buscas, consideramos que não há impedimentos de ordem técnica nem legal que impeçam a concessão do privilegio solicitado em função da total falta c disponibilidade de protótipos no mercado e que permitam mostrar de forma didática como será realizada uma determinada cirurgia.
5,- HISTÓRICO DA INVENÇÃO E OBJETIVOS
7/ 14
5.1.- HISTÓRICO
036 O desenvolvimento deste Simulador PacicnteEspecífico da Aorta e Sistema de Reprodução foi realizado como um Projeto de Pós-Graduação na Faculdade de Medicina da Universidade de São Paulo, aprovado pelo comitê de ética, sob o número 19826213.1.0000.0068 na Plataforma Brasil. Contou com financiamento pela FAPESP (Fundação de Ampara à Pesquisa do Estado de São Paulo) protocolo número 2015/02317-7.
037 O objetivo deste projeto foi produzir um simulador paciente-específico que permita reproduzir com grande fidelidade as todas características da aorta de cada paciente, permitindo seu uso em ensino, pesquisa e treinamento de profissionais de saúde. Procurou-se produzir um modelo translúcido, flexível e resistente para que as sessões de treinamento em técnica opcratória e de aperfeiçoamento de profissionais de saúde pudessem ocorrer sem necessidade de exposição da equipe à radiação ionizante.
038 Foi realizado um estudo eom 55 pacientes com aneurisma de aorta infra-renal com indicação de correção cirúrgica.
039 Estes pacientes foram submetidos a uma angiotomografia de aorta e os dados obtidos foram armazenados em formato DICOM (Digital Imaging and Communications in Medicine).
040 Gs dados em DICOM foram submetidos a um pós processamento usando o software TeraRecon iNtuition Unlimited software (Aquarius, TeraRecon, San Matteo, CA. USA v 4.3). Foi realizada a reconstrução tridimensional da aorta do paciente e os tecidos subjacentes foram apagados.
041 Em seguida, os dados em DICOM foram convertidos para arquivos no formato STL (Surface Tesselation Language). Os arquivos STL foram preparados para impressão utilizando os softwares Mesh Mixer (Mesh Mixer 2.8, Autodesk. Inc.) ou Magics Software from Materialise (Magics, 3-matic®, Materialise®). Foi realizada correção de erros na malha do aneurisma. suavização das irregularidades na superfície do vaso e criação de uma espessura na parede da aorta (1,5 a 2mm) respeitando o lúmen do vaso.
8/ 14
042 Após esse processo, os dados foram enviados para uma impressora 3D, a qual gera o modelo impresso a partir da deposição de sucessivas camadas de líquido, pó ou resina. O objeto obtido é incorporado em modelo de simulação com fluxo pulsátil para o ensaio de manobras empregadas no tratamento endovascular do aneurisma.
043 Foram utilizadas três impressoras para confeccionar 25 (vinte e cinco) aneurismas em cinco materiais diferentes.
044 A seguir, dez residentes do último ano de cirurgia vascular foram distribuídos em dois grupos: controle e treinamento.
045 Os residentes do grupo controle realizaram o procedimento seguindo a rotina do serviço atualmente (estudo da tomografia do paciente, discussão do caso em reuniões e visitas, orientação da estratégia cirúrgica por um cirurgião experiente)
046 Os residentes do grupo treinamento, além dos procedimentos de rotina, tiveram acesso ao simulador com os modelos impressos produzidos a partir da tomografia dos paciente e puderam praticar o procedimento no simulador 24 a 72h antes da cirurgia no paciente.
047 Todos os procedimentos realizados nos pacientes foram auxiliados por um assistente experiente da disciplina de cirurgia vascular. Durante a cirurgia, parâmetros objetivos tais como tempo de radioscopia, quantidade de contraste, tempo do procedimento, número de cateteres e guias utilizados foram registrados. Dados subjetivos também foram levantados, através de um questionário que será respondido pelo cirurgião vascular e pelo residente.
048 Os dados dos dois grupos foram analisados e comparados, demonstrando redução de 25% no tempo de cirurgia, volume de contraste e quantidade de radiação utilizada. Os residentes, de acordo com o questionário subjetivo, consideraram o treinamento útil para conhecer melhor o material, melhorar a técnica operatória e a segurança do paciente.
5.2.- FINALIDADES
049 A utilização deste Simulador Paciente-Especííico
9/ 14 da Aorta e Sistema de Reprodução com uso de impressão tridimensional permite a construção de modelos em materiais flexíveis para o treinamento prático de cirurgiões em formação simulando condições in vivo sem riscos para o paciente, possibilitando o treinamento intensivo de cirurgiões em formação, por exemplo o implante de stents, sem exposição a radiação e riscos biológicos.
050 O treinamento realizado em simulador pacienteespecífico antes caso de cirurgias maiores pode ajudar a encurtar a curva de aprendizado dos residentes, definir a melhor tática e técnica operatória e antever possíveis complicações, com isso c diminuindo o tempo cirúrgico e trazendo melhor resultado para o paciente e otimizando.
051 O HC-FMIJSP é um hospital de referência nacional para cirurgias complexas e de grande porte. A utilização de simuladores produzidos a partir da impressão 3D tem potencial para ajudar a atender esta demanda da melhor forma possível, com grande resolutividade e menor índice de complicações.
6.- DESCRIÇÃO DOS DESENHOS
053 Para obter uma total e completa visualização de como é constituído o Simulador Paciente-Especíílco da Aorta e Sistema de Reprodução acompanham os desenhos ilustrativos anexos, aos quais se faz referências conforme segue;
Figura 1: Representa vista em perspectiva do Simulador Paciente-Especílico da Aorta disposto ou posicionado sobre uma bancada de mesa.
Figura 2: Corresponde a vista superior esquemática de uma Aorta Abdominal e Ilíacas impressas em 3D, crossa da aorta e aorta toráxica feita em silicone conectadas a bomba de fluxo pulsátil.
Figura 3: Ilustra vista superior dos cinco modelos de aneurismas.
Figura 4; Mostra tluxograma de constituição do Simulador Paciente-Especílico da Aorta e Sistema de Reprodução.
10/14
7.- DESCRIÇÃO DO MODELO
054 Conforme infere-se dos desenhos que acompanham e fazem parte integrante deste relatório, o Simulador PacienteEspecífico da Aorta e Sistema de Reprodução (1) corresponde a equipamento e sistema destinado a produzir através da impressão 3D, utilizando impressora 3D, das imagens reais da aorta dos pacientes obtidas em exames como a tomografia computadorizada e/ou ressonância nuclear magnética com a finalidade de permitir aos médicos da área, adquirirem habilidades complexas e/ou refinarem as suas técnicas operatórias, treinando em um ambiente controlado, sob orientação adequada, sem expor o paciente a riscos, sendo caracterizado por ser constituído por conectores (2) feitos em silicone; bomba de fluxo pulsátil (3); negatoscópio (4); caixa preta (5); câmera (não mostrada) e monitor (6), de fonna a reproduzir, em silicone e/ou resina translúcida, a Crossa da Aorta. a Aorta Torácica, a Aorta Abdominal e as Artérias ilíacas.
055 Destaca-se que a Crossa da Aorta é reproduzida em Silicon, a Aorta Torácica, a Aorta Abdominal e as Artérias Ilíacas podem ser reproduzidas em silicone e/ou em resina translúcida.
7.1.-EQUIPAMENTO
056 O Simulador (1) foi produzido em material transparente e flexível para permitir visualização do material cirúrgico sem necessidade do uso de radiação.
057 A fonte dc luz posicionada sob o modelo corresponde a negatoscópio (4) e serve para ajudar a ver o material cirúrgico durante sua navegação no interior do modelo. O negatoscópio (4) corresponde a um receptáculo provido por face superior em acrílico translúcido branco leitoso, iluminação através de lâmpadas acionadas por reatores eletrônicos com acendimento independente para cada corpo através de interruptor e alimentação em 110 ou 220 V. Modelos do tipo são utilizados de forma rotineira em consultórios médicos para visualização de Filmes de Raio-X.
057 A Caixa Preta (5) serve para segurar a câmera
11/ 14 (nSo mostrada) e conectada ao monitor (6), a qual está posicionada sobre o modelo, permitindo que o treinamento seja feito sob visão indireta, como acontece durante a cirurgia.
058 A bomba de fluxo pulsátil (3) tem como finalidade reproduzir as pulsações do coração, estando conectada ao aneurisma impresso através de conectores (2) e/ou mangueiras, sendo que por sua vez o conjunto formado por câmara (não mostrada), monitor (6), computador (não mostrado) e impressora 3D (não mostrada), na sua forma física, fazem parte do Aparelho Simulador (1) e na sua forma operacional, da tecnologia envolvida no Sistema.
7.2.- SISTEMA
059 O Sistema de Reprodução de um aneurisma (A) por meio da impressão tridimensional consiste em quatro etapas: aquisição da imagem, pós- processamento da imagem, impressão tridimensional e pósproeessamento do objeto impresso.
- Aquisição da imagem
060 Os pacientes são submetidos a uma angiotomografia de aorta com espessura dos cortes de lmm em um tomógrafo multislice de 64 canais. Os dados obtidos serão armazenados em formato DICOM (Digital Imaging and Communications in Medicine) e ficam disponíveis em CD ou a partir da plataforma PACS (Pictures Archiving and Communieation System) disponíveis nos computadores dos Hospitais.
- Pós processamento da imagem
061 Os dados em DICOM são trabalhados em estações de trabalho dedicadas. Reconstruções tridimensionais são obtidas a partir de ferramentas disponibilizadas pelos programas TeraRecon iNtuition Unlimited software (Aquarius, TeraRecon. San Matteo, CA, USA). A aorta é então isolada das demais estruturas adjacentes (orgãos, músculos, veias, etc) e o arquivo DICOM é convertido para o formato STL (Surface Tesselation
I.anguage). O arquivo STL é manipulado através do programa Mesh Mixer
12/ 14 (Mesh Mixcr 2.8, Autodesk, Inc.) de modo a fazer correções na malha, suavizar a superfície da aorta e criar digitalmente a espessura desejada da parede da aorta (1,5 ou 2mm foram as espessuras utilizadas)
- Impressão tridimensional/prototipagem rápida
062 A impressora 3D usa imagens dos arquivos STI, para a reconstrução de modelos físicos tridimensionais pela adição de camadas de material. Várias tecnologias disponíveis para esta prototipagcm tridimensional, assim como materiais diversos como polímeros ou filmes plásticos são utilizados para a impressão final do modelo físico que se quer obter.
063 Foram utilizadas as impressoras Connex 350 da Stratasys, Form 1+ da Formlabs e Sinterstation HiQ da 3D Systems.
064 Com estas impressoras, foram reproduzidos 25 aneurismas em 5 modelos diferentes, como detalhado na tabela.
065 Os modelos 1 a 4 foram impressos diretamente como modelos ocos, feitos em resinas translúcidas.
066 O modelo 5 foi produzido através da reprodução em silicone de um modelo maciço impresso em 3D. O silicone foi curado sobre o objeto impresso sob rotação e calor, posteriormente retirado.
067 Os modelos 1, 3, 4 e 5 são flexíveis. O modelo 2 foi feito em resina rígida.
Table 1. Modelos Produzidos a partir da Impressão 3D
Modelo | Impressora | Material | Propriedades dos Materiais Dureza em Shore/ alongamento para ruptura / força Tênsil) |
Modelo 1 | Stratasys Connex 350 | TangoPlus3 | 26-68 70-220% .8-1.5 MPa |
Modelo 2 | Stratasys Connex 350 | Vero Clearb | 83-86 0-25% 0-65 MPa |
13/14
Modelo 3 | Stratasys Connex 350 | TangoPlus and Vero Clearc | 57-63 5-85% .5—4.0 MPa |
Modelo 4 | Formlabs Form 1 + | Flexible Resind | 80-90 0% 95-6.5 MPa |
Modelo 5 | 3 D System Sinterstation HiQ | Duraform PAC (Posterior Siliconef reproduetion) | 30 70% MPa |
a Polyjet Material Rubber FLX930
b. Polyjet Material Standard Plastic RGD8I0
c. Polyjet Digital Material Tango Plus +Vero-Clear Shore 60
d. Fonnlabs Flexible Photopolymer Resin for Form 1+. e-Powder themioplastic material Duraform Poliamida for the SLS System f-Dow Corning Silastic MDX 4-4210 - Pós-processamento do Objeto Impresso
068 Cada tecnologia exigiu um tratamento diferente do objeto impresso.
. Modelo 1:
069 Remoção do material de suporte (SUP705 nontoxic gel-like photopolymer support from Stratasys Ltd.) utilizando jato de água, reparo de rupturas que ocorreram durante a remoção do suporte, exposição dos modelos à luz ultra-violeta (UV) para melhorar a transparência. As artérias ilíacas foram reforçadas com silicone.
. Modelo 2:
070 Remoção do material de suporte (SUP705 nontoxic gel-like photopolymer support from Stratasys Ltd.) utilizando jato de água, polimento da superfície do objeto para extrair resíduos do material de suporte, exposição à luz UV por 24 horas.
. Modelo 3:
14/ 14
071 Remoção do material de suporte (SUP705 nonloxic gel-like photopolymer support from Stratasys Ltd.) utilizando jato de água, e exposição à luz UV por 24 horas.
. Modelo 4:
072 Durante a impressão, a impressora produz pilares de resina para sustentar o objeto. Estes pilares foram removidos do modelo. A bandeja de impressão da Forml + é pequena, de modo que os modelos foram impressos em 2 ou 3 partes, que foram coladas ao final utilizando a resina flexível e luz UV. O modelo ficou exposto à luz UV por 48h para consolidar a cura do material.
. Modelo 5:
073 O Silicone (Dow Corning Silastic MDX 4-4210 Biomedical Grade Elastomer) foi aplicado na superfície do aneurisma sólido impresso em 3D. Permaneceu sob rotação e calor por 24 horas para cura do material. Ao final, o silicone foi cortado, removido do modelo maciço e restaurado.
8.- CONCLUSÃO
074 Verifica-se por tudo aquilo que foi descrito e ilustrado que trata-se de Simulador Paciente-Específico da Aorta e Sistema de Reprodução, o qual pennite melhorar a técnica operatória, conhecer o material e antever possíveis diAcuidades de uma cirurgia, motivo pelo qual, se enquadra perfeitamente dentro das normas que regem a Patente de Invenção, devendo preencher importante lacuna existente no mercado, funcionando perfeitamente bem em análise subjetiva e objetiva, bem fornece uma plataforma para treinamento adjuvante, merecendo pelo que foi exposto e como consequência, o privilegio solicitado.
1/3
Claims (14)
- REIVINDICAÇÕES1) ”SIMULADOR PACIENTE-ESPECÍFICO DA AORTA E SISTEMA DE REPRODUÇÃO”, (1), o qual corresponde a equipamento e sistema destinado a produzir através da impressão 3D, utilizando impressora 3D, das imagens reais da aorta dos pacientes obtidas em exames como a tomografia computadorizada e/ou ressonância nuclear magnética com a finalidade de permitir aos médicos da área, adquirirem habilidades complexas e/ou refinarem as suas técnicas operatórias, treinando em um ambiente controlado, sob orientação adequada, sem expor o paciente a riscos, sendo caracterizado por ser constituído por conectores (2) feitos em silicone; bomba de fluxo pulsátil (3); negatoscópio (4); caixa preta (5); câmera (não mostrada) e monitor (6), de forma a reproduzir, em silicone e/ou resina translúcida, a Crossa da Aorta, a Aorta Torácica, a Aorta Abdominal e as Artérias ilíacas.
- 2) ”SIMULADOR PACIENTE-ESPECÍFICO DA AORTA E SISTEMA DE REPRODUÇÃO”, (1), de acordo com a reivindicação de número um, caracterizado por dispor de negatoscópio (4) para verificar o material cirúrgico durante sua navegação no interior do modelo.
- 3) ”SIMULADOR PACIENTE-ESPECÍFICO DA AORTA E SISTEMA DE REPRODUÇÃO”, (1), de acordo com a reivindicação de número um, caracterizado por dispor de caixa preta (5) para prender a câmera e permitir que a observação seja feita sob visão indireta, conforme cirurgias.
- 4) ”SIMULADOR PACIENTE-ESPECÍFICO DA AORTA E SISTEMA DE REPRODUÇÃO”, (1), de acordo com a reivindicação de número um, caracterizado por dispor de bomba de fluxo pulsátil (3) para reproduzir as pulsações do coração, estando conectada ao aneurisma impresso através de conectores (2) e/ou mangueiras.
- 5) ”SIMULADOR PACIENTE-ESPECÍFICO DA AORTA E SISTEMA DE REPRODUÇÃO”, (1), de acordo com a reivindicação de número um, caracterizado por ser a reprodução de um aneurisma (A) porPetição 870170027420, de 26/04/2017, pág. 6/82/3 meio da impressão tridimensional realizado em quatro etapas, sendo a aquisição da imagem, pós- processamento da imagem, impressão tridimensional e pósprocessamento do objeto impresso.
- 6) ”SIMULADOR PACIENTE-ESPECÍFICO DA AORTA E SISTEMA DE REPRODUÇÃO”, (1), de acordo com a reivindicação de número um e cinco, caracterizado por ser a Aquisição da imagem é obtida através da angiotomografia de aorta, analisados e armazenados em formato DICOM (Digital Imaging and Communications in Medicine).
- 7) ”SIMULADOR PACIENTE-ESPECÍFICO DA AORTA E SISTEMA DE REPRODUÇÃO”, (1), de acordo com a reivindicação de número um, cinco e seis, caracterizado por ser o Pós processamento da imagem e armazenados em DICOM são trabalhados em estações de trabalho dedicadas para efetuar as reconstruções tridimensionais em softwares específicos de modo a fazer correções na malha, suavizar a superfície da aorta e criar digitalmente a espessura desejada da parede da aorta.
- 8) ”SIMULADOR PACIENTE-ESPECÍFICO DA AORTA E SISTEMA DE REPRODUÇÃO”, (1), de acordo com a reivindicação de número um, cinco, seis e sete, caracterizado por ser a Impressão tridimensional/prototipagem rápida é obtida em impressora 3D que usa as imagens dos arquivos para a reconstrução de modelos físicos tridimensionais pela adição de camadas de material.
- 9) ”SIMULADOR PACIENTE-ESPECÍFICO DA AORTA E SISTEMA DE REPRODUÇÃO”, (1), de acordo com a reivindicação de número um, cinco, e sete, caracterizado porque com uso da impressão digital 3D foram reproduzidos 25 aneurismas (A) em 5 modelos diferentes.
- 10) ”SIMULADOR PACIENTE-ESPECÍFICO DA AORTA E SISTEMA DE REPRODUÇÃO”, (1), de acordo com a reivindicação de número um, cinco, sete, oito e nove, caracterizado por ser o Pósprocessamento do Objeto Impresso realizado conforme cada modelo de aneurisma (A).Petição 870170027420, de 26/04/2017, pág. 7/83/3
- 11) SIMULADOR PACIENTE-ESPECÍFICO DA AORTA E SISTEMA DE REPRODUÇÃO”, (1), de acordo com a reivindicação de número um, cinco, sete, oito, nove e dez, caracterizado por ser o Pósprocessamento do Modelo 1 realizado removendo o material de suporte com jato de água, reparam-se as rupturas que ocorreram durante a remoção do suporte, submetem-se os modelos à luz ultra-violeta (UV) para melhorar a transparência e reforçam-se s artérias ilíacas com silicone.
- 12) SIMULADOR PACIENTE-ESPECÍFICO DA AORTA E SISTEMA DE REPRODUÇÃO”, (1), de acordo com a reivindicação de número um, cinco, sete, oito, nove e dez, caracterizado por ser o Pósprocessamento dos Modelos 2 e 3 realizados removendo o material de suporte com jato de água, efetua-se o polimento da superfície do objeto para extrair resíduos do material de suporte e expõe-se o modelo à luz UV por 24 horas.
- 13) SIMULADOR PACIENTE-ESPECÍFICO DA AORTA E SISTEMA DE REPRODUÇÃO”, (1), de acordo com a reivindicação de número um, cinco, sete, oito, nove e dez, caracterizado por o Pósprocessamento do Modelo 4, em função do tamanho, realizado mediante a remoção dos pilares de resina necessários porque os modelos foram impressos em 2 ou 3 partes, coladas ao final do processo com resina flexível e exposto à luz UV por 48h para consolidar a cura do material.
- 14) SIMULADOR PACIENTE-ESPECÍFICO DA AORTA E SISTEMA DE REPRODUÇÃO”, (1), de acordo com a reivindicação de número um, cinco, sete, oito, nove e dez, caracterizado por ser o Modelo 5 objeto da aplicação de silicone na superfície do aneurisma (A) sólido impresso em 3D e permanecendo sob rotação e calor por 24 horas para cura do material.Petição 870170027420, de 26/04/2017, pág. 8/81/3
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
BR102016015733-1A BR102016015733B1 (pt) | 2016-07-06 | 2016-07-06 | Sistema para simulacao de cirurgia vascular |
US16/315,824 US11096744B2 (en) | 2016-07-06 | 2016-12-20 | System for vascular-surgery simulation |
PCT/BR2016/000151 WO2018006140A1 (pt) | 2016-07-06 | 2016-12-20 | Simulador paciente-específico da aorta e sistema de reprodução |
EP16907686.6A EP3483864A4 (en) | 2016-07-06 | 2016-12-20 | PATIENT-SPECIFIC AORTA SIMULATOR AND REPRODUCTION SYSTEM |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
BR102016015733-1A BR102016015733B1 (pt) | 2016-07-06 | 2016-07-06 | Sistema para simulacao de cirurgia vascular |
Publications (2)
Publication Number | Publication Date |
---|---|
BR102016015733A2 true BR102016015733A2 (pt) | 2018-01-23 |
BR102016015733B1 BR102016015733B1 (pt) | 2020-11-24 |
Family
ID=60901498
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
BR102016015733-1A BR102016015733B1 (pt) | 2016-07-06 | 2016-07-06 | Sistema para simulacao de cirurgia vascular |
Country Status (4)
Country | Link |
---|---|
US (1) | US11096744B2 (pt) |
EP (1) | EP3483864A4 (pt) |
BR (1) | BR102016015733B1 (pt) |
WO (1) | WO2018006140A1 (pt) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12175885B1 (en) * | 2020-07-09 | 2024-12-24 | University Of South Florida | 3D printed heart model with simulated cardiac stroke volumes |
CN114274499A (zh) * | 2021-11-26 | 2022-04-05 | 复旦大学附属中山医院 | 基于3d打印的内脏动脉瘤介入手术操作模型及制作方法 |
CN114228155B (zh) * | 2021-12-21 | 2024-03-19 | 上海健康医学院 | 一种3d拼接主动脉夹层模型及其打印方法 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE69432023T2 (de) * | 1993-09-10 | 2003-10-23 | The University Of Queensland, Santa Lucia | Stereolithographischer anatomischer modellierungsprozess |
GB9615802D0 (en) * | 1996-07-26 | 1996-09-04 | Harris P L | Simulation system |
US6517354B1 (en) * | 2000-11-17 | 2003-02-11 | David Levy | Medical simulation apparatus and related method |
US7455523B2 (en) * | 2004-06-14 | 2008-11-25 | Medical Simulation Corporation | Medical simulation system and method |
EP1805744A2 (en) * | 2004-08-10 | 2007-07-11 | The General Hospital Corporation | Methods and apparatus for simulation of endovascular and endoluminal procedures |
EP1848332A4 (en) * | 2005-02-03 | 2011-11-02 | Christopher Sakezles | MODELS AND METHODS USING THESE MODELS FOR TESTING MEDICAL DEVICES |
US8147537B2 (en) * | 2006-06-16 | 2012-04-03 | The Invention Science Fund I, Llc | Rapid-prototyped custom-fitted blood vessel sleeve |
US9679389B2 (en) * | 2009-05-19 | 2017-06-13 | Algotec Systems Ltd. | Method and system for blood vessel segmentation and classification |
US9589484B2 (en) * | 2014-01-24 | 2017-03-07 | Cardiovascular Systems, Inc. | Simulation device |
WO2015134986A1 (en) * | 2014-03-07 | 2015-09-11 | Min James K | Artificial organs and methods for making the same |
WO2016044920A1 (en) * | 2014-09-23 | 2016-03-31 | Surgical Safety Technologies Inc. | Operating room black-box device, system, method and computer readable medium |
-
2016
- 2016-07-06 BR BR102016015733-1A patent/BR102016015733B1/pt active IP Right Grant
- 2016-12-20 WO PCT/BR2016/000151 patent/WO2018006140A1/pt unknown
- 2016-12-20 US US16/315,824 patent/US11096744B2/en active Active
- 2016-12-20 EP EP16907686.6A patent/EP3483864A4/en not_active Ceased
Also Published As
Publication number | Publication date |
---|---|
EP3483864A4 (en) | 2019-12-18 |
US20190314087A1 (en) | 2019-10-17 |
US11096744B2 (en) | 2021-08-24 |
WO2018006140A1 (pt) | 2018-01-11 |
BR102016015733B1 (pt) | 2020-11-24 |
EP3483864A1 (en) | 2019-05-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Torres et al. | A simulator for training in endovascular aneurysm repair: the use of three dimensional printers | |
Mitsouras et al. | Medical 3D printing for the radiologist | |
Cacciamani et al. | Impact of three-dimensional printing in urology: state of the art and future perspectives. A systematic review by ESUT-YAUWP group | |
Tortora et al. | Principles of anatomy and physiology | |
Yang et al. | Application of 3D printing in the surgical planning of trimalleolar fracture and doctor‐patient communication | |
Paiva et al. | Aplication of the stereolithography technique in complex spine surgery | |
Coles-Black et al. | Accessing 3D printed vascular phantoms for procedural simulation | |
Lampignano et al. | Textbook of radiographic positioning and related anatomy | |
Widmann et al. | In vitro accuracy of a novel registration and targeting technique for image‐guided template production | |
Spencer et al. | Three-dimensional printing in medical and allied health practice: A literature review | |
Cevik et al. | Three-dimensional printing technologies in the fabrication of maxillofacial prosthesis: A case report | |
BR102016015733A2 (pt) | Simulador paciente-específico da aorta e sistema de reprodução | |
Oberoi et al. | 3D printed biomimetic rabbit airway simulation model for nasotracheal intubation training | |
Kaschwich et al. | Accuracy evaluation of patient-specific 3D-printed aortic anatomy | |
Rath et al. | 3D printers for surgical practice | |
Kovacs et al. | Computer aided surgical reconstruction after complex facial burn injuries–opportunities and limitations | |
Steffen et al. | Patient-specific miniplates versus patient-specific reconstruction plate: A biomechanical comparison with 3D-printed plates in mandibular reconstruction | |
Tiwary | Approach to lower limb oedema | |
Vural et al. | Combining use of resin models with external fixation in mandibular reconstruction | |
Ock et al. | Patient-specific, deliverable, and self-expandable surgical guide development and evaluation using 4D printing for laparoscopic partial nephrectomy | |
Özkadif et al. | Contribution of virtual anatomic models to medical education | |
RU185706U1 (ru) | Небиологическая 3D мягкая печатная модель почки | |
Meister et al. | A Meta-Review about Medical 3D Printing | |
Leal et al. | Clinical applications of additive manufacturing models in neurosurgery: a systematic review | |
Pankratov et al. | Repair of orbital floor fractures via the transantral approach with osteosynthesis plate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
B03A | Publication of a patent application or of a certificate of addition of invention [chapter 3.1 patent gazette] | ||
B06F | Objections, documents and/or translations needed after an examination request according [chapter 6.6 patent gazette] | ||
B06U | Preliminary requirement: requests with searches performed by other patent offices: procedure suspended [chapter 6.21 patent gazette] | ||
B09A | Decision: intention to grant [chapter 9.1 patent gazette] | ||
B16A | Patent or certificate of addition of invention granted [chapter 16.1 patent gazette] |
Free format text: PRAZO DE VALIDADE: 20 (VINTE) ANOS CONTADOS A PARTIR DE 06/07/2016, OBSERVADAS AS CONDICOES LEGAIS. |