Nothing Special   »   [go: up one dir, main page]

NO332082B1 - Method and apparatus for pyrolysis and gasification and organic substances or mixtures of substances - Google Patents

Method and apparatus for pyrolysis and gasification and organic substances or mixtures of substances Download PDF

Info

Publication number
NO332082B1
NO332082B1 NO20016290A NO20016290A NO332082B1 NO 332082 B1 NO332082 B1 NO 332082B1 NO 20016290 A NO20016290 A NO 20016290A NO 20016290 A NO20016290 A NO 20016290A NO 332082 B1 NO332082 B1 NO 332082B1
Authority
NO
Norway
Prior art keywords
pyrolysis
fluidized bed
combustion
reactor
organic substances
Prior art date
Application number
NO20016290A
Other languages
Norwegian (no)
Other versions
NO20016290D0 (en
NO20016290L (en
Inventor
Wolfgang Krumm
Guenter Funk
Stefan Hamel
Original Assignee
Herhof Umwelttechnik Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Herhof Umwelttechnik Gmbh filed Critical Herhof Umwelttechnik Gmbh
Publication of NO20016290D0 publication Critical patent/NO20016290D0/en
Publication of NO20016290L publication Critical patent/NO20016290L/en
Publication of NO332082B1 publication Critical patent/NO332082B1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/02Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment
    • F23G5/027Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment pyrolising or gasifying stage
    • F23G5/0276Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment pyrolising or gasifying stage using direct heating
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B49/00Destructive distillation of solid carbonaceous materials by direct heating with heat-carrying agents including the partial combustion of the solid material to be treated
    • C10B49/16Destructive distillation of solid carbonaceous materials by direct heating with heat-carrying agents including the partial combustion of the solid material to be treated with moving solid heat-carriers in divided form
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B49/00Destructive distillation of solid carbonaceous materials by direct heating with heat-carrying agents including the partial combustion of the solid material to be treated
    • C10B49/16Destructive distillation of solid carbonaceous materials by direct heating with heat-carrying agents including the partial combustion of the solid material to be treated with moving solid heat-carriers in divided form
    • C10B49/20Destructive distillation of solid carbonaceous materials by direct heating with heat-carrying agents including the partial combustion of the solid material to be treated with moving solid heat-carriers in divided form in dispersed form
    • C10B49/22Destructive distillation of solid carbonaceous materials by direct heating with heat-carrying agents including the partial combustion of the solid material to be treated with moving solid heat-carriers in divided form in dispersed form according to the "fluidised bed" technique
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B57/00Other carbonising or coking processes; Features of destructive distillation processes in general
    • C10B57/18Modifying the properties of the distillation gases in the oven
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K3/00Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide
    • C10K3/02Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide by catalytic treatment
    • C10K3/023Reducing the tar content
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/08Incineration of waste; Incinerator constructions; Details, accessories or control therefor having supplementary heating
    • F23G5/14Incineration of waste; Incinerator constructions; Details, accessories or control therefor having supplementary heating including secondary combustion
    • F23G5/16Incineration of waste; Incinerator constructions; Details, accessories or control therefor having supplementary heating including secondary combustion in a separate combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/30Incineration of waste; Incinerator constructions; Details, accessories or control therefor having a fluidised bed
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Combustion & Propulsion (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Gasification And Melting Of Waste (AREA)
  • Processing Of Solid Wastes (AREA)
  • Coke Industry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Fluidized-Bed Combustion And Resonant Combustion (AREA)
  • Incineration Of Waste (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)

Abstract

Foreliggende oppfinnelse vedrører en fremgangsmåte for pyrolyse og forgassing av organiske stoffer eller blandinger av organiske stoffer. De organiske stoffene blir innført i en tørkings- og pyrolysereaktor (1) i hvilken de blir bragt i kontakt med fiuidisertbedmaterialet (35) til det forbrenningsfluidiserte bedet (3), eller i hvilket de blir bragt i kontakt med fiuidisertbedmaterialet (35) og reaktorveggen til det forbrenningsfluidiserte bedet (3) hvorved en tørking og pyrolyse finner sted. Den faste karbonholdige resten, valgfritt med deler av dampen og av pyrolysegassene, og fiuidisertbedmaterialet blir ledet tilbake inn i det forbrenningsfluidiserte bedet (3) i hvilket den karbonholdige resten av organiske stoffer blir forbrent til aske, fiuidisertbedmaterialet blir vannet opp, og blir igjen ledet inn i pyrolysereaktoren (1). Damp fra tørkingen og pyrolysegassene (13) blir påfølgende behandlet med kondenserbare stoffer i en ytterligere reaksjonssone (2) slik at en produktgass (23) med en høy brennverdi er tilgjengelig. Tørkingen og pyrolysen blir utført i minst en eller flere pyrolysereaktorer (1). Det forbrenningsfluidiserte bedet (3) i hvilket pyrolyserestene blir forbrent til aske, blir operert som en stasjonært fluidisert bed. Pyrolysegassene (13) blir ledet inn i en indirekte varmeveksler. Fyringsavgassene (37), valgfritt med fiuidisertbedmaterialet til det forbrenningsfluidiserte bedet (3) blir bragt i kontakt med den indirekte varmeveksleren (2) slik at deres varmeinnhold blir benyttet for reaksjon av pyrolysegassene (13) med reaksjonsmiddelet (21).The present invention relates to a process for pyrolysis and gasification of organic substances or mixtures of organic substances. The organics are introduced into a drying and pyrolysis reactor (1) in which they are contacted with the fluidized bed material (35) to the combustion fluidized bed (3) or in which they are contacted with the fluidized bed material (35) and the reactor wall of the combustion fluidized bed (3) whereby a drying and pyrolysis takes place. The solid carbonaceous residue, optionally with portions of the vapor and of the pyrolysis gases, and the fluidized bed material is fed back into the combustion fluidized bed (3) into which the carbonaceous residue of organics is burnt to ash, the fluidized bed material is watered, and is again fed. in the pyrolysis reactor (1). Steam from the drying and pyrolysis gases (13) are subsequently treated with condensable substances in a further reaction zone (2) so that a product gas (23) with a high combustion value is available. The drying and pyrolysis are carried out in at least one or more pyrolysis reactors (1). The combustion fluidized bed (3) in which the pyrolysis residues are burnt to ashes is operated as a stationary fluidized bed. The pyrolysis gases (13) are fed into an indirect heat exchanger. The heating fumes (37), optionally with the fluidized bed material of the combustion fluidized bed (3), are contacted with the indirect heat exchanger (2) so that their heat content is used for reaction of the pyrolysis gases (13) with the reaction agent (21).

Description

Foreliggende oppfinnelse vedrører en fremgangsmåte for pyrolyse og forgassing av organiske stoffer eller blandinger av organiske stoffer, samt en anordning for utføring av en fremgangsmåte. The present invention relates to a method for pyrolysis and gasification of organic substances or mixtures of organic substances, as well as a device for carrying out a method.

En rekke fremgangsmåter er kjent for behandling og bruk av organiske stoffer og blandinger av organiske stoffer ved for eksempel forgassing og pyrolyse. Fremgangsmåtene skiller seg fra hverandre i samsvar med oksidasjons- eller reduksjonsgassen som benyttes og i samsvar med typen kontakt mellom det faste stoffet og gassen. Ved fast-stofføring eller gassføring skilles det mellom bl.a. en sirkulerende fluidisert bedforgasser, en medrevet bedforgasser, en roterende brennkammerforgasser og en bevegende bedforgasser med motstrøms gassføring, medstrøms gassføring eller tverrstrøms gass-føring. Majoriteten av kjente forgassingsfremgangsmåter er ikke egnet for mindre, desentraliserte systemer grunnet den høye anordningsinnsatsen. Mindre, desentraliserte systemer er tilrådelige spesielt når biomasse blir benyttet som anvendelsesmateriale. A number of methods are known for the treatment and use of organic substances and mixtures of organic substances by, for example, gasification and pyrolysis. The methods differ according to the oxidizing or reducing gas used and according to the type of contact between the solid and the gas. In the case of solid or gas flow, a distinction is made between i.a. a circulating fluidized bed gasifier, an entrained bed gasifier, a rotating combustion chamber gasifier and a moving bed gasifier with counter-flow gas flow, co-flow gas flow or cross-flow gas flow. The majority of known gasification methods are not suitable for smaller, decentralized systems due to the high equipment input. Smaller, decentralized systems are advisable especially when biomass is used as application material.

Operasjonsoppførselen til forgassingsfremgangsmåter i henhold til prinsippene ved det sirkulerende fluidiserte bedet er svært avhengig av respektiv partikkelstørrelse i det fluidiserte bedet bestående av anvendelsesmaterialet som skal forgasses og også det sirkulerende inertmaterialet. Overensstemmende krav danner grunnlag for partikkel-størrelsen til anvendelsesmaterialet. Ekstremt høye krav på preparering av brenselet er det i tilfellet med medrevet bedforgassing som bare tillater bruk av pulveriserte brensel-partikler. The operational behavior of gasification processes according to the principles of the circulating fluidized bed is highly dependent on respective particle size in the fluidized bed consisting of the application material to be gasified and also the circulating inert material. Corresponding requirements form the basis for the particle size of the application material. There are extremely high requirements for the preparation of the fuel in the case of entrained bed gasification, which only allows the use of powdered fuel particles.

Ytterligere vesentlige ulemper ved de kjente forgassingsfremgangsmåtene er at de fort-settende prosesstrinnene tørking, avgassing, forgassing og forbrenning til aske av anvendelsesmaterialet fremskrider i soner som er direkte ved siden av hverandre og som flyter over i hverandre. Som et resultat er de individuelle sonene inne i en reaktor udefinerte, og avgassingen, forgassingen og forbrenningen til aske kan fremskride ufullstendig i punkter. I ytterligere kjente fremgangsmåter har det blitt gjort forsøk på å eliminere disse ulempene ved separering av individuelle prosesstrinnene for brenselet med avgassing, gassifisering og forbrenning til aske. Further significant disadvantages of the known gasification methods are that the subsequent process steps of drying, degassing, gasification and incineration to ash of the application material proceed in zones which are directly next to each other and which flow into each other. As a result, the individual zones inside a reactor are undefined, and the degassing, gasification, and combustion to ash may progress incompletely at points. In further known methods, attempts have been made to eliminate these disadvantages by separating the individual process steps for the fuel with degassing, gasification and combustion to ash.

I DE 197 20 331 Al foreslås en fremgangsmåte og en anordning for forgassing eller forbrenning til aske av tørr eller fuktig, finpartiklet eller fragmentarisk biomasse og av avfall i hvilken grunnet de varme veggene til et brennkammer og grunnet innstramm-ingen av varm avfallsgass fra brennkammeret inn i en avgassingsovn, biologiske råmaterialer avgasser i dette, hvorved koks og pyrolysegass blir produsert, hvor koksen ankommer i globedet til forgassingsreaktoren etter passering av grovdeleren (skredderen), ettersom pyrolysegassen brenner i forbrenningskammeret til forgassingsreaktoren under tilførsel av en begrenset mengde luft, og avfallsgassen som produseres deretter strømmer gjennom bedet til forgassingsreaktoren i hvilken en oksydasjon av karbonet til CO finner sted med en samtidig reaksjon av avfallsgass (CO2) og damp DE 197 20 331 Al proposes a method and a device for the gasification or burning to ash of dry or moist, fine-particle or fragmentary biomass and of waste in which the hot walls of a combustion chamber and the narrowing of hot waste gas from the combustion chamber into in a degassing furnace, biological raw materials degas in this, whereby coke and pyrolysis gas are produced, where the coke arrives in the globe of the gasification reactor after passing the coarser (tailor), as the pyrolysis gas burns in the combustion chamber of the gasification reactor under the supply of a limited amount of air, and the waste gas which produced then flows through the bed to the gasification reactor in which an oxidation of the carbon to CO takes place with a simultaneous reaction of waste gas (CO2) and steam

(H2O) til en brennbar mager gass (CO, H2). Grunnet det faktum at pyrolysen blir utført grunnet oppvarmingen pga. kontakten med varmforbrennings avfallsgasser og videre at en delvis forbrenning av pyrolysegassen blir utført, kan bare en produktgass med en lav brennverdi bli produsert med fremgangsmåten foreslått i DE 197 20 331 Al. Når brensler med et høyt innhold av flyktige komponenter og en lav pyrolysekoksutbytte blir benyttet, er det en risiko for en tilstrekkelig dannelse av globedet til forgassingsreaktoren bestående av pyrolysekoks, hvorved oksydasjonen av karbon til CO med en samtidig reduksjon av avfallsgass og damp til brennbar mager gass skrider frem util-strekkelig til kostnaden av produktgassbrennverdier. (H2O) to a flammable lean gas (CO, H2). Due to the fact that the pyrolysis is carried out due to the heating due to the contact with hot combustion waste gases and further that a partial combustion of the pyrolysis gas is carried out, only a product gas with a low calorific value can be produced with the method proposed in DE 197 20 331 Al. When fuels with a high content of volatile components and a low pyrolysis coke yield are used, there is a risk of a sufficient formation of the globe for the gasification reactor consisting of pyrolysis coke, whereby the oxidation of carbon to CO with a simultaneous reduction of waste gas and steam to combustible lean gas progresses insufficiently to the cost of product gas calorific values.

En fremgangsmåte er i tillegg kjent fra U.S. 4.568.362 for forgassing av organiske stoffer og blandinger av organiske stoffer i hvilke de organiske stoffer blir ledet inn i en pyrolysereaktor i hvilken de organiske stoffene vil komme i kontakt med et varmeover-føringsmedium, hvorved en rask pyrolyse finner sted som omdanner de organiske stoffene til pyrolyseprodukter som består av pyrolysegasser med kondenserbare stoffer og en fast karbonholdig rest, og den påkrevde oppvarmingsenergien for pyrolysen blir produsert ved å forbrenne den faste karbonholdige resten i en forbrenningsreaktor og i en andre reaksjonssone for pyrolysereaktoren, hvilke pyrolysegasser inneholdende tjære blir utsatt for slike krakkreaksjoner og reaksjoner med damp så at en produktgass med en høy brennverdi blir oppnådd. I disse fremgangsmåtene finner både pyrolysen og forbrenningen til aske av den solide karbonholdige resten sted i et fluidisert bed. En reaksjonssone for pyrolysegassene inneholdende tjære blir tilveiebragt i den øvre delen av det pyrolysefluidiserte bedet. Operasjonen av de fluidiserte bedene krever en høy innsats, og en styring av reaksjonene til pyrolysegassene i reaksjonssonen er knapt mulig. A method is additionally known from U.S. Pat. 4,568,362 for gasification of organic substances and mixtures of organic substances in which the organic substances are led into a pyrolysis reactor in which the organic substances will come into contact with a heat transfer medium, whereby a rapid pyrolysis takes place which converts the organic substances to pyrolysis products consisting of pyrolysis gases with condensable substances and a solid carbonaceous residue, and the required heating energy for the pyrolysis is produced by burning the solid carbonaceous residue in a combustion reactor and in a second reaction zone of the pyrolysis reactor, which pyrolysis gases containing tar are subjected to such cracking reactions and reactions with steam so that a product gas with a high calorific value is obtained. In these methods, both the pyrolysis and the burning to ash of the solid carbonaceous residue take place in a fluidized bed. A reaction zone for the pyrolysis gases containing tar is provided in the upper part of the pyrolysis fluidized bed. The operation of the fluidized beds requires a high effort, and control of the reactions of the pyrolysis gases in the reaction zone is hardly possible.

Den tyske patentsøknaden 197 77 693.0 med eldre prioritet, og ikke forhåndspublisert, på grunnlag av hvilken tysk patent DE 197 55 693 Cl har blitt innvilget patent, be-skriver en fremgangsmåte for forgassing av organiske stoffer og blandinger av organiske stoffer. The German patent application 197 77 693.0 with older priority, and not previously published, on the basis of which German patent DE 197 55 693 Cl has been granted a patent, describes a method for the gasification of organic substances and mixtures of organic substances.

Av tidligere kjent teknikk skal det avslutningsvis også vises til WO 9931197 Al og til US 4244779 A. Regarding prior art, reference should also be made to WO 9931197 A1 and to US 4244779 A.

Det er det underliggende formål med den foreliggende oppfinnelse å tilveiebringe en fremgangsmåte som er enkel å utføre for pyrolyse og forgassing av organiske stoffer eller blandinger av organiske stoffer, samt en anordning for å generere en gass med en høy brennverdi. It is the underlying purpose of the present invention to provide a method which is easy to carry out for pyrolysis and gasification of organic substances or mixtures of organic substances, as well as a device for generating a gas with a high calorific value.

Disse formål blir løst ved hjelp av trekkene i kravene 1 og 11. Fordelaktige utførelses-former og ytterligere utviklinger av oppfinnelsen følger ved bruk av trekkene fremsatt i de avhengige krav. These objects are solved by means of the features in claims 1 and 11. Advantageous embodiments and further developments of the invention follow when using the features set forth in the dependent claims.

I en fremgangsmåte for pyrolyse og forgassing av organiske stoffer eller blandinger av organiske stoffer, blir dette formålet løst i samsvar med oppfinnelsen ved at pyrolysen blir utført i en bevegende bedreaktor eller en roterende reaktor, at et forgassingsmiddel, for eksempel damp og/eller oksygen, blir valgfritt tilført pyrolysegassene og at de blir ledet inn i en reaksjonssone i hvilken pyrolysegassene reagerer med reaksjonsmiddelet. Den faste karbonholdige resten, og valgfritt en del av pyrolysegassen, blir ledet til en fluidisertbedforbrenningsreaktor alene eller sammen med fiuidisertbedmaterialet og forbrent til aske der. Fiuidisertbedmaterialet blir oppvarmet der. Forbrenningsavfalls-gassene og fiuidisertbedmaterialet blir brakt i kontakt med reaksjonssonen slik at deres termiske innhold kan bli benyttet for reaksjon mellom pyrolysegassene og forgassingsmiddelet. Fluidisertbedmateriale tatt fra fluidisertbedforbrenningsreaktoren, og bestående av aske, ubrent koks og, valgfritt, i tillegg tilført ildfast fluidisertbedmateriale, blir returnert til pyrolysereaktoren som et varmeoverføringsmedium, hvor varmeoverføring til anvendelsesmaterialet for utføring av pyrolysen finner sted ved kontakt med fiuidisertbedmaterialet og valgfritt i tillegg gjennom den varme veggen til fluidisertbedforbrenningsreaktoren. In a method for pyrolysis and gasification of organic substances or mixtures of organic substances, this purpose is solved in accordance with the invention in that the pyrolysis is carried out in a moving bed reactor or a rotating reactor, that a gasification agent, for example steam and/or oxygen, is optionally added to the pyrolysis gases and that they are led into a reaction zone in which the pyrolysis gases react with the reaction agent. The solid carbonaceous residue, and optionally a portion of the pyrolysis gas, is directed to a fluidized bed combustion reactor alone or together with the fluidized bed material and burned to ash there. The fluidized bed material is heated there. The combustion waste gases and the fluidized bed material are brought into contact with the reaction zone so that their thermal content can be used for reaction between the pyrolysis gases and the gasifier. Fluidized bed material taken from the fluidized bed combustion reactor, and consisting of ash, unburnt coke and, optionally, additionally supplied refractory fluidized bed material, is returned to the pyrolysis reactor as a heat transfer medium, where heat transfer to the application material for carrying out the pyrolysis takes place by contact with the fluidized bed material and optionally additionally through it heat the wall of the fluidized bed combustion reactor.

Det varme fiuidisertbedmaterialet tilført pyrolysereaktoren fra det forbrenningsfluidiserte bedet bevirker en rask tørking og pyrolyse av anvendelsesmaterialet ved kontakt. En sjaktovn er egnet som reaktor, hvor blandingen av anvendelsesmaterialet og fiuidisertbedmaterialet vandrer fra toppen til bunnen gjennom sjaktovnen. For å sikre faststofftransporten gjennom sjaktovnen, kan festet utstyr, transportskruer eller agitatorer være tilveiebragt i samsvar med den tidligere kjente teknikk. Pyrolysereaktoren kan for eksempel være konstruert som en roterende reaktor, hvorved en god blanding av anvendelsesmaterialet og det varme fiuidisertbedmaterialet blir oppnådd, og at samtidig faststofftransporten blir oppnådd. Dampen som unnslapp fra anvendelsesmaterialet under tørking og pyrolysegassene forlater pyrolysereaktoren og kommer inn i en ytterligere reaksjonssone. Blandingen av den gjenværende faste karbonholdige pyrolyseresten og fiuidisertbedmaterialet blir fraktet sammen inn i det forbrenningsfluidiserte bedet, hvor konvensjonelle komponenter slik som transportskruer eller stjernehjul med skrå rør som bærer inn er i stand til å bli benyttet. En skrue blir foretrukket i anordningen i henhold til foreliggende oppfinnelse. The hot fluidized bed material supplied to the pyrolysis reactor from the combustion fluidized bed causes rapid drying and pyrolysis of the application material upon contact. A shaft furnace is suitable as a reactor, where the mixture of the application material and the fluidized bed material travels from the top to the bottom through the shaft furnace. To ensure solids transport through the shaft furnace, fixed equipment, transport screws or agitators can be provided in accordance with the prior art. The pyrolysis reactor can, for example, be designed as a rotating reactor, whereby a good mixture of the application material and the hot fluidized bed material is achieved, and that at the same time solids transport is achieved. The steam that escaped from the application material during drying and the pyrolysis gases leave the pyrolysis reactor and enter a further reaction zone. The mixture of the remaining solid carbonaceous pyrolysis residue and the fluidized bed material is transported together into the combustion fluidized bed, where conventional components such as conveyor screws or star wheels with inclined tubes carrying in are able to be used. A screw is preferred in the device according to the present invention.

Grunnet det faktum at pyrolysen fortrinnsvis blir utført i en sjaktovn, kan tilførselen av et fluidiseirngsmedium påkrevd for et pyrolysefluidisert bed bli unngått. På denne måten eksisterer muligheten for å utføre pyrolysen fullstendig uten å tilføre gass, eller ulikt den pyrolysefluidiserte bed til hvilket en minimumsmengde med gass må tilføres for fluidisering, og tilføye eventuelle ønskede lave mengder, for eksempel av produktgassen eller av et forgassingsmiddel slik som damp, oksygen eller luft. På denne måten eksisterer muligheten for å tilføye gass eller et forgassingsmiddel til pyrolysereaktoren som en teknisk fremgangsmåtetilpasning til det respektive anvendelsesmateriale. I fremgangsmåten i henhold til den foreliggende oppfinnelse blir pyrolysen fortrinnsvis utført i pyrolysereaktoren i fravær av luft og av gass. En annen fordel med utføringen av pyrolysen i et separat prosesstrinn består av knuseeffekten som oppstår under pyrolysen og som tillater bruk av grovere fragmentarisk materiale enn normalt benyttet i fluidiserbedreaktorer grunnet ulmingen og avgassingen. Alternativt finnes muligheten for å sette inn en knuseanordning slik som en valseknuser før innføringsanordningen for den faste karbonholdige pyrolyseresten og fluidisertbedmateriale inn i forbrennings-fluidisertbedet, hvorved kravene til anvendelsesmaterialets partikkelstørrelser kan bli ytterligere redusert. Energien som benyttes for knusing av pyrolysekoks er her vesent-lig mindre enn den for knusing av for eksempel biomasse, slik som ved. Due to the fact that the pyrolysis is preferably carried out in a shaft furnace, the supply of a fluidizing medium required for a pyrolysis fluidized bed can be avoided. In this way, the possibility exists to carry out the pyrolysis completely without adding gas, or unlike the pyrolysis fluidized bed to which a minimum amount of gas must be added for fluidization, and adding any desired low amounts, for example of the product gas or of a gasifying agent such as steam, oxygen or air. In this way, the possibility of adding gas or a gasification agent to the pyrolysis reactor exists as a technical process adaptation to the respective application material. In the method according to the present invention, the pyrolysis is preferably carried out in the pyrolysis reactor in the absence of air and gas. Another advantage of carrying out the pyrolysis in a separate process step consists of the crushing effect that occurs during the pyrolysis and which allows the use of coarser fragmentary material than normally used in fluidized bed reactors due to the smoldering and degassing. Alternatively, there is the possibility of inserting a crushing device such as a roller crusher before the introduction device for the solid carbonaceous pyrolysis residue and fluidized bed material into the combustion fluidized bed, whereby the requirements for the particle sizes of the application material can be further reduced. Here, the energy used for crushing pyrolysis coke is substantially less than that for crushing, for example, biomass, such as wood.

Den karbonholdige faste pyrolyseresten blir forbrent til aske med luft i fluidisertbedet, og blir dermed selv fluidisertbedmateriale som aske og, grunnet energifrigjøringen, varmet ytterligere opp eller varmer igjen opp fluidisertbedmateriale som allerede er til stede. Det forbrenningsfluidiserte bedet kan bli konstruert og operert i samsvar med kunnskapsnivået for fluidisert bedteknologi. En trinnvis tilførsel av luft kan være for-delaktig med hensyn til utslippene fra det forbrenningsfluidiserte bedet. Forbrenningsreaktoren er konstruert som en stasjonær fluidisertbed, som betyr at gassmengden til det fluidiserte mediet må være tilstrekkelig, på den ene siden, til å overskride den minimale fluidiseringsraten til det faste stoffet, og må på den andre siden overskride hastigheten for utbyttet. Fra en fluidisert bedhøyde på ca. 2,5 meter til 3 meter, kreves det fast ustyr for å forhindre dannelse av et pulserende fluidisert bed og de medfølgende trykkpulser-inger. Fluidisertebedmaterialet oppvarmet av forbrenningsprosedyren blir til slutt igjen tilført pyrolysereaktoren. Fiuidisertbedmaterialet består av asken som er igjen fra forbrenningen til aske av den faste karbonholdige resten. Hvis en ufullstendig forbrenning av pyrolysekoksen inne i det forbrenningsfluidiserte bedet finner sted, består fiuidisertbedmaterialet som blir ledet i kretsen som varmeoverføringsmediet av asken til anvendelsesmaterialet og av uforbrent karbonholdig pyrolyserest. Når de faste karbonholdige restene av organiske stoffer og blandinger av organiske stoffer som en regel transform-eres raskt i det forbrenningsfluidiserte bedet og delvis bare kan ha mindre deler av materialet som ikke kan bli forgasset eller forbrent til aske, er det valgfritt nødvendig å tilføre tilleggsmateriale for å danne et fluidisertbed. Tilleggsmaterialet trenger ikke å bli tilført hvis anvendelsesmaterialene har store mengder av materialet som ikke kan bli forgasset eller forbrent til aske, som er egnet til å bygge opp et fluidisertbed. Alle ildfaste materialer slik som sand med en korndiameter på mindre enn 1,5 mm er egnet som tilførselsmateriale, og som tjener til å danne et fluidisertbed. Fjerningen av det varme fiuidisertbedmaterialet og transporten inn i pyrolysereaktoren blir fortrinnsvis bevirket ved hjelp av et eller flere overløp som er tilveiebragt i reaktorveggen eller som rager gjennom reaktorveggen og inn i fluidisertbedet. Denne fremgangsmåten har den for-delen at i tillegg til overføring av varmt fluidisertbedmateriale inn i pyrolysereaktoren, kan fluidisertebedhøyden til det forbrenningsfluidiserte bedet bli innstilt på en enkelt måte. Fjerningen av fluidisertebedmateriale kan også bli utført ved hjelp av andre kjente transportører, slik som en transportskrue. Imidlertid er i dette tilfelle den tekniske fremgangsmåteytelsen høyere. The carbonaceous solid pyrolysis residue is burned to ash with air in the fluidized bed, and thus becomes fluidized bed material itself as ash and, due to the release of energy, further heated or reheats fluidized bed material that is already present. The combustion fluidized bed can be constructed and operated in accordance with the level of knowledge of fluidized bed technology. A gradual supply of air can be advantageous with regard to the emissions from the combustion fluidized bed. The combustion reactor is designed as a stationary fluidized bed, which means that the gas quantity of the fluidized medium must be sufficient, on the one hand, to exceed the minimum fluidization rate of the solid, and must, on the other hand, exceed the yield rate. From a fluidized bed height of approx. 2.5 meters to 3 meters, a fixed device is required to prevent the formation of a pulsating fluidized bed and the accompanying pressure pulsations. The fluidized bed material heated by the combustion procedure is finally fed back into the pyrolysis reactor. The fluidized bed material consists of the ash remaining from the combustion to ash of the solid carbonaceous residue. If an incomplete combustion of the pyrolysis coke inside the combustion fluidized bed takes place, the fluidized bed material which is passed in the circuit as the heat transfer medium consists of the ash of the application material and of unburned carbonaceous pyrolysis residue. When the solid carbonaceous residues of organic substances and mixtures of organic substances are, as a rule, rapidly transformed in the combustion fluidized bed and can partly only have smaller parts of the material that cannot be gasified or burned to ash, it is optionally necessary to add additional material to form a fluidized bed. The additional material does not need to be added if the application materials have large amounts of the material that cannot be gasified or burned to ash, which is suitable for building up a fluidized bed. All refractory materials such as sand with a grain diameter of less than 1.5 mm are suitable as feed material, and which serve to form a fluidized bed. The removal of the hot fluidized bed material and the transport into the pyrolysis reactor is preferably effected by means of one or more overflows which are provided in the reactor wall or which project through the reactor wall and into the fluidized bed. This method has the advantage that in addition to the transfer of hot fluidized bed material into the pyrolysis reactor, the fluidized bed height of the combustion fluidized bed can be adjusted in a simple way. The removal of fluidized bed material can also be carried out using other known conveyors, such as a conveyor screw. However, in this case the technical method performance is higher.

Foreliggende oppfinnelse er basert på den grunnleggende ideen å strukturere fremgangsmåten i prosesstrinn som er enkle å utføre. De individuelle prosesstrinnene og deres samspill kan følgelig bli ideelt konstruert ved å ta i betraktning de spesielle egenskapene til anvendelsesmaterialet og med hensyn til den tiltenkte produktgasskvaliteten som skal oppnås. The present invention is based on the basic idea of structuring the method in process steps that are easy to perform. The individual process steps and their interaction can therefore be ideally designed by taking into account the particular characteristics of the application material and with regard to the intended product gas quality to be achieved.

Ytterligere fordeler med den foreliggende oppfinnelse er vist i tegningene beskrevet i det etterfølgende, i hvilke foretrukne utførelsesformer av oppfinnelsen er vist ved hjelp av eksempler. I tegningene viser Figur 1 massestrømmene og energistrømmene til pyrolysetrinnet, til reaksjonssonen og til det forbrenningsfluidiserte bedet i henhold til fremgangsmåten i henhold til oppfinnelsen; Figur 2 en utførelsesform av fremgangsmåten i henhold til oppfinnelsen i en Further advantages of the present invention are shown in the drawings described below, in which preferred embodiments of the invention are shown by way of examples. In the drawings, Figure 1 shows the mass flows and energy flows to the pyrolysis step, to the reaction zone and to the combustion fluidized bed according to the method according to the invention; Figure 2 an embodiment of the method according to the invention in a

skjematisk fremstilling; og schematic representation; and

Figur 3 en utførelsesform av anordningen i henhold til den foreliggende oppfinnelse i en skjematisk fremstilling. Figure 3 an embodiment of the device according to the present invention in a schematic representation.

Det kan ses fra figur 1 at anvendelsesmaterialet 10 og det fluidiserte bedmaterialet 35 blir tilført som varmeoverføirngsmediet inn i pyrolysetrinnet 1. Varmestrømmen som It can be seen from figure 1 that the application material 10 and the fluidized bed material 35 are supplied as the heat transfer medium into the pyrolysis step 1. The heat flow which

transporteres med fiuidisertbedmaterialet 35 resulterer fra temperaturen til det forbrenningsfluidiserte bedet, fra tilstanden og massestrømmen av fiuidisertbedmaterialet 35 og av anvendelsesmaterialstrømmen 10 og fra den ønskede pyrolysetemperaturen. I tillegg blir et forgassingsmiddel 11 tilført, og en varmestrøm 34 overført fra det forbrenningsfluidiserte bedet 33. Fra pyrolysetrinnet 1 går det ut pyrolysegass 13 som blir ledet inn i reaksjonssonen 2, pyrolysegass 15 som blir ledet inn i forbrenningsreaktoren (til det forbrenningsfluidiserte bedet 33), en blanding av fiuidisertbedmaterialet og fast karbonholdig pyrolyserest 14 og en varmetapsstrøm 12. transported with the fluidized bed material 35 results from the temperature of the combustion fluidized bed, from the state and mass flow of the fluidized bed material 35 and from the application material stream 10 and from the desired pyrolysis temperature. In addition, a gasifier 11 is added, and a heat stream 34 is transferred from the combustion fluidized bed 33. From the pyrolysis stage 1, pyrolysis gas 13 exits, which is led into the reaction zone 2, pyrolysis gas 15, which is led into the combustion reactor (to the combustion fluidized bed 33) , a mixture of the fluidized bed material and solid carbonaceous pyrolysis residue 14 and a heat loss stream 12.

Blandingen av fluidisertbedmateriale og fast karbonholdig pyrolyserest 14 blir ledet inn i det forbrenningsfluidiserte bedet 3 sammen med pyrolysegass 15 og luft 31. Fiuidisertbedmaterialet 35 varmet opp av forbrenningen til aske blir ledet tilbake inn i pyrolysereaktoren 1. Den også varme avgassen 37 går ut av det forbrenningsfluidiserte bedet 3. En del av varmen 36 rommet i avgassen blir overført til reaksjonssonen 2. Det går videre ut av forbrenningsreaktoren 3 en varmetapsstrøm 33 og fluidisertbedmateriale 32 som må fjernes for å regulere det totale faste innholdet (household) ved stasjonær operasjon. The mixture of fluidized bed material and solid carbonaceous pyrolysis residue 14 is led into the combustion fluidized bed 3 together with pyrolysis gas 15 and air 31. The fluidized bed material 35 heated by the combustion to ash is led back into the pyrolysis reactor 1. The also hot exhaust gas 37 exits the combustion fluidized bed 3. Part of the heat 36 contained in the exhaust gas is transferred to the reaction zone 2. A heat loss stream 33 and fluidized bed material 32 which must be removed in order to regulate the total solids content (household) in stationary operation also leave the combustion reactor 3.

Pyrolysegassen 13 tilført reaksjonssonen 2 blir overført sammen med forgassingsmiddelet 21 inn i produktgassen 23 ved hjelp av den tilførte varmen 36 under tilstedeværelse av en katalysator. Produktgassen 23 og varmetapsstrømmen 22 går til slutt ut av reaksjonssonen 2. The pyrolysis gas 13 supplied to the reaction zone 2 is transferred together with the gasifier 21 into the product gas 23 by means of the supplied heat 36 in the presence of a catalyst. The product gas 23 and the heat loss stream 22 finally exit the reaction zone 2.

Utførelsesform Embodiment

I det følgende eksempelet blir den foretrukne fremgangsmåten og anordningen i henhold til den foreliggende oppfinnelse beskrevet. Den foretrukne fremgangsmåten i henhold til figur 2, og den foretrukne anordningen i henhold til figur 3 tjener for pyrolyse og forgassing av 900 kg ved pr. time. Veden benyttet som et eksempel består i det vesentlige av 52,3 vektprosent karbon, 5,9 vektprosent hydrogen og 41,8 vektprosent oksygen, i hvert tilfelle med hensyn til brenselsubstansen fri for vann og aske, og har i tillegg en askeandel på 0,51 vektprosent i forhold til råanvendelsesmaterialet. Brenn-verdien til veden beløper seg til Hu = 17,2 Mj/kg med hensyn til tilstanden fri for vann, og den termiske forgassereffekten beløper seg således til 3,92 MW. In the following example, the preferred method and device according to the present invention is described. The preferred method according to Figure 2, and the preferred device according to Figure 3 serve for pyrolysis and gasification of 900 kg at pr. hour. The wood used as an example essentially consists of 52.3 weight percent carbon, 5.9 weight percent hydrogen and 41.8 weight percent oxygen, in each case with respect to the fuel substance free of water and ash, and additionally has an ash proportion of 0, 51 percent by weight in relation to the raw material used. The calorific value of the wood amounts to Hu = 17.2 Mj/kg with regard to the state free of water, and the thermal gasifier effect thus amounts to 3.92 MW.

I den foretrukne utførelsesformen beskrevet i figur 2 for fremgangsmåten for vedfor-gassing, blir ved 10 utsatt for knusing og/eller tørking i et prepareirngstrinn 4 avhengig av tilstanden til anvendelsesmaterialet før det blir ledet inn i pyrolysetrinnet 1. Veden har et vanninnhold på 8,9 vektprosent etter preparasjonstrinnet 4. In the preferred embodiment described in Figure 2 for the method for wood gasification, wood 10 is subjected to crushing and/or drying in a preparation step 4 depending on the condition of the application material before it is led into the pyrolysis step 1. The wood has a water content of 8, 9 percent by weight after preparation step 4.

Pyrolysen blir utført ved en temperatur på 580 °C. Fiuidisertbedmaterialet 35 innført i pyrolyserekatoren 1 har en temperatur på 900 °C, slik at den 4,1-foldige mengden av fluidisertbedmateriale, dvs. 3,7 tonn pr. time, må tilføres og være i sirkulasjon for å varme opp anvendelsesmaterialet til pyrolysetemperaturen på 580 °C. Ved pyrolyse av veden, blir det til slutt igjen 20,3 vektprosent (i forhold til brenselet, rått) som den faste pyrolyseresten som har en brennvedi på Hu = 30 MJ/kg. Restproduktene fra tørkingen og pyrolysen forlater pyrolysereaktoren 1 som gassen 13 og kommer inn i reaksjonssonen 2. Blandingen av fast pyrolyserest og fiuidisertbedmaterialet 14 blir tilført det forbrenningsfluidiserte bedet og brent der med luft 31. Entalpistrømmen tilført det forbrenningsfluidiserte bedet med den faste pyrolyseresten av veden beløper seg til 1,52 MW. I det foreliggende eksempelet blir det igjen et effektoverskudd koblet til røyk-gasstrømmen 37 i forbrenningsfluidisertbedmaterialet 3 etter fjerning av varmetapet 33, av det fjernede fiuidisertbedmaterialet 32, av fiuidisertbedmaterialet 35 og av energi-mengden 36 overført til reaksjonssonen 2. Av denne grunn, blir en overhetet damp-strøm dannet med en vannstrøm 70 utsatt for behandling 7 mens det tas i betraktning fyringseffektivitet i varmeoverføirngselementet 8. Hvis dampstrømmen 21, som blir tilført reaksjonssonen 2, blir tatt fra den overhetede dampstrømmen dannet i 8, blir en overhetet dampstrøm 71 igjen med en effekt på 0,45 MW som blir trykkavlastet via en turbin 9. The pyrolysis is carried out at a temperature of 580 °C. The fluidized bed material 35 introduced into the pyrolysis reactor 1 has a temperature of 900 °C, so that the 4.1-fold amount of fluidized bed material, i.e. 3.7 tonnes per hour, must be supplied and circulated to heat the application material to the pyrolysis temperature of 580 °C. During pyrolysis of the wood, 20.3 percent by weight (in relation to the fuel, raw) is finally left as the solid pyrolysis residue, which has a burning value of Hu = 30 MJ/kg. The residual products from the drying and pyrolysis leave the pyrolysis reactor 1 as the gas 13 and enter the reaction zone 2. The mixture of solid pyrolysis residue and fluidized bed material 14 is supplied to the combustion fluidized bed and burned there with air 31. The enthalpy flow supplied to the combustion fluidized bed with the solid pyrolysis residue of the wood amounts to to 1.52 MW. In the present example, a power surplus is again connected to the flue gas stream 37 in the combustion fluidized bed material 3 after removal of the heat loss 33, of the removed fluidized bed material 32, of the fluidized bed material 35 and of the energy quantity 36 transferred to the reaction zone 2. For this reason, a superheated steam stream formed with a water stream 70 subjected to treatment 7 while taking into account firing efficiency in the heat transfer element 8. If the steam stream 21, which is supplied to the reaction zone 2, is taken from the superheated steam stream formed in 8, a superheated steam stream 71 is left with an effect of 0.45 MW which is pressure relieved via a turbine 9.

Under tilførsel av reaksjonsmiddelet av damp 21, blir pyrolysegassene 13 ledet inn i reaksjonssonen 2 bestående av et varmeoverføringselement som er avpasset med en katalysator for å forbedre tjærekrakkingen. Energien som kreves for reaksjon mellom pyrolysegassen 13 og dampen 21 blir utstrålt til varmeoverføirngselementet 2 via den varme røykgasstrømmen 36 fra det forbrenningsfluidiserte bedet 3, hvor reaksjonen During the supply of the reaction agent of steam 21, the pyrolysis gases 13 are led into the reaction zone 2 consisting of a heat transfer element which is matched with a catalyst to improve tar cracking. The energy required for the reaction between the pyrolysis gas 13 and the steam 21 is radiated to the heat transfer element 2 via the hot flue gas stream 36 from the combustion fluidized bed 3, where the reaction

finner sted ved 850 °C til 900 °C avhengig av operasjonsstyringen av det forbrenningsfluidiserte bedet 3. Luft eller oksygen kan også bli blandet inn i forgassingsmiddelet av takes place at 850 °C to 900 °C depending on the operational control of the combustion fluidized bed 3. Air or oxygen can also be mixed into the gasifier by

gass 21 for en ytterligere temperaturøkning ved en delvis forbrenning til aske av pyrolysegassen. Produktgassen 23 som oppnås har en brennverdi på 9,87 MJ pr. M<3>(Vn) og utgjøres av de følgende gasskomponentene: 48,7 volumprosent H^, 36,1 volumprosent CO, 0,1 volumprosent CH4, 6,1 volumprosent CO2, og 9 volumprosent H2O. Produktgassen 23 blir i det påfølgende støvpreparet og slukket (quenched) i et preparasjonstrinn 5. Kaldgassvirkningsgraden, med andre ord den kjemiske energien til anvendelsesmaterialet i forhold til det kjemiske energiinnholdet av produktgassen, beløper seg til 80,8%. gas 21 for a further increase in temperature by a partial combustion to ash of the pyrolysis gas. The product gas 23 that is obtained has a calorific value of 9.87 MJ per M<3>(Vn) and consists of the following gas components: 48.7 volume percent H^, 36.1 volume percent CO, 0.1 volume percent CH4, 6.1 volume percent CO2, and 9 volume percent H2O. The product gas 23 is in the subsequent dust preparation and quenched in a preparation step 5. The cold gas efficiency, in other words the chemical energy of the application material in relation to the chemical energy content of the product gas, amounts to 80.8%.

Figur 3 viser en foretrukket utførelsesform av anordningen i henhold til den foreliggende oppfinnelse for pyrolyse og avgassing som en eksempelskisse. Veden 10 blir til-ført pyrolysereaktoren 1 via en gassugjennomtrengelig innbæringsanordning, et stjernehjul i eksempelet vist her. Tørkingen og pyrolysen av anvendelsesmaterialet finner sted ved kontakt med det varme fiuidisertbedmaterialet 35 tilført av et overløp fra det forbrenningsfluidiserte bedet 3. Den produserte pyrolysegassen 13 blir ledet inn i reaksjonssonen 2 mens det tilføres damp 21, hvilken reaksjonssone i eksempelet her er konstruert som et rørvarmeoverføringselement. Etter omdanningen av pyrolysegassen 13 med dampen 21, blir produktgassen 23 avkjølt og renset i preparasjonstrinnet 5. For å unngå uønsket utveksling av gasser mellom pyrolysereaktoren 1 og det forbrenningsfluidiserte bedet 3, må viften for produktgassledningen og viften for røykgassledningen 60 tilpasses hverandre. Grunnet det faktum at overløpet fra det forbrenningsfluidiserte bedet 3 til pyrolysereaktoren 1 er slik at dette blir konstant fylt med fiuidisertbedmaterialet 35, blir så, i kombinasjon med nevnte vifter, utvekslingen av gass mellom begge reaktorer forhindret på en enkelt måte. En skrue er fortrinnsvis tilveiebragt for å transportere blandingen av fast pyrolyserest og sirkulerende fluidisertbedmateriale 14 inn i det forbrenningsfluidiserte bed 3. Skruen skal konstrueres slik at trykktapet gjennom skruepassasjene fylt med materialet er større enn via det fluidiserte bedet 3, slik at luften 31 tilført det forbrenningsfluidiserte bedet 3 ikke strømmer i omløpet Figure 3 shows a preferred embodiment of the device according to the present invention for pyrolysis and degassing as an example sketch. The wood 10 is supplied to the pyrolysis reactor 1 via a gas impermeable conveying device, a star wheel in the example shown here. The drying and pyrolysis of the application material takes place by contact with the hot fluidized bed material 35 supplied by an overflow from the combustion fluidized bed 3. The produced pyrolysis gas 13 is led into the reaction zone 2 while steam 21 is supplied, which reaction zone in the example here is constructed as a tube heat transfer element . After the transformation of the pyrolysis gas 13 with the steam 21, the product gas 23 is cooled and purified in the preparation step 5. To avoid unwanted exchange of gases between the pyrolysis reactor 1 and the combustion fluidized bed 3, the fan for the product gas line and the fan for the flue gas line 60 must be adapted to each other. Due to the fact that the overflow from the combustion fluidized bed 3 to the pyrolysis reactor 1 is such that it is constantly filled with the fluidized bed material 35, then, in combination with said fans, the exchange of gas between both reactors is prevented in a simple way. A screw is preferably provided to transport the mixture of solid pyrolysis residue and circulating fluidized bed material 14 into the combustion fluidized bed 3. The screw must be designed so that the pressure loss through the screw passages filled with the material is greater than via the fluidized bed 3, so that the air 31 supplied to the combustion fluidized bed bed 3 does not flow in the circuit

gjennom pyrolysereaktoren 1. En dampstrøm 71, som er trykkavlastet for eksempel via en turbin 9, blir produsert fra en vannstrøm med varmen fra røykgasstrømmen 37 via et varmeoverføirngselement 8. En del av dampstrømmen 71 kan bli benyttet som damp 21 for reaksjonssonen 2. Avgassen 60 blir tilført en røykgassrensing 6. through the pyrolysis reactor 1. A steam stream 71, which is depressurized for example via a turbine 9, is produced from a water stream with the heat from the flue gas stream 37 via a heat transfer element 8. Part of the steam stream 71 can be used as steam 21 for the reaction zone 2. The exhaust gas 60 is added to a flue gas purification 6.

Henvisningsbetegnelsesliste: Referral designation list:

1 pyrolysereaktor 1 pyrolysis reactor

10 anvendelsesmateriale 10 application material

11 reaksjonsmiddel 11 reagent

12 varmetap 12 heat loss

13 pyrolysegass 13 pyrolysis gas

14 blanding av fast pyrolyserest og fluidisertbedmateriale 14 mixture of solid pyrolysis residue and fluidized bed material

15 pyrolysegass 15 pyrolysis gas

2 reaksjonssone 2 reaction zone

21 forgassingsmiddel 21 gasifier

22 varmetap 22 heat loss

23 produktgass 23 product gas

3 fyring 3 firing

31 luft 31 air

32 fludisertbedmateriale 32 fluidized bed material

33 varmetap 33 heat loss

34 varmestrøm 34 heat flow

35 fluidisertbedmateriale 35 fluidized bed material

36 varmestrøm 36 heat flow

37 forbrenningsavgass 37 combustion exhaust gas

4 forbehandlingstrinn 4 pretreatment steps

5 gassrensing 5 gas purification

50 renset produktgass 50 purified product gas

6 røykgassrensing 6 flue gas cleaning

60 avgass 60 exhaust gas

7 vannbehandling 7 water treatment

70 vann 70 water

71 damp 71 steam

8 varmeoverføirngselement 8 heat transfer element

9 turbin 9 turbine

Claims (15)

1. Fremgangsmåte for pyrolyse og forgassing av organiske stoffer eller blandinger av organiske stoffer,karakterisert vedat 1.1 de organiske stoffene blir innført i en tørkings- og pyrolysereaktor (1) i hvilken de organiske stoffene blir brakt i kontakt med fluidisert materiale (35) til det forbrenningsfluidiserte bedet (3) eller i hvilken de organiske stoffene blir bragt i kontakt med fiuidisertbedmaterialet (35) og reaktorveggen til det forbrenningsfluidiserte bedet (3) hvorved en tørking og pyrolyse finner sted, i hvilke de organiske stoffene blir omdannet til damp fra tørkingen og til pyrolyseprodukter (13), hvorved pyrolyse-produktene består av gasser med kondenserbare stoffer og fast karbonholdig rest; 1.2 den faste karbonholdige resten eller den faste karbonholdige resten og deler av dampen og av pyrolysegassene med kondenserbare stoffer og fiuidisertbedmaterialet blir ledet tilbake til det forbrenningsfluidiserte bedet (3) i hvilket den karbonholdige resten til de organiske stoffene blir forbrent til aske (incinerated), fiuidisertbedmaterialet blir varmet opp og blir igjen ledet inn i pyrolysereaktoren (1); 1.3 dampen fra tørkingen og pyrolysegassene (13) blir påfølgende behandlet med kondenserbare stoffer i en ytterligere reaksjonssone (2) slik at en produktgass (23) med en høy brennverdi er tilgjengelig; 1.4 tørkingen og pyrolysen blir utført i minst en eller flere pyrolysereaktorer (i); 1.5 tørkingen og pyrolysen blir fortrinnsvis utført i to eller flere pyrolysereaktorer (1) som består av to eller flere bevegende bedreaktorer eller av to eller flere roterende reaktorer eller av roterende reaktorer og bevegende bedreaktorer; 1.6 det forbrenningsfluidiserte bedet (3) i hvilket pyrolyserestene blir forbrent til aske, blir operert som et stasjonært fluidisert bed; 1.7 intet reaksjonssmiddel, eller valgfritt et forgassingsmiddel slik som damp, oksygen eller luft eller en blanding derav blir tilført pyrolysegassene (13); 1.8 pyrolysegassene (13) blir ledet inn i en indirekte varmeveksler (2) i hvilken de valgfritt reagerer med forgassingsmiddelet (21); 1.9 fyringsavgassene (37) eller fyringsavgassene og fiuidisertbedmaterialet til det forbrenningsfluidiserte bedet (3) blir bragt i kontakt med den indirekte varmeveksleren (2) slik at deres termiske innhold blir benyttet for reaksjonen mellom pyrolysegassene (13) og forgassingsmiddelet (21); 1.10 fiuidisertbedmaterialet (3) består bare av asken fra de organiske stoffene, eller av asken og uforbrente karbonholdige rester fra de organiske stoffene, eller av asken fra de organiske stoffene og av ytterligere fluidisert materiale, eller av asken og uforbrente karbonholdige rester av de organiske stoffene og av ytterligere fluidisert materiale.1. Process for pyrolysis and gasification of organic substances or mixtures of organic substances, characterized in that 1.1 the organic substances are introduced into a drying and pyrolysis reactor (1) in which the organic substances are brought into contact with fluidized material (35) of the combustion fluidized bed (3) or in which the organic substances are brought into contact with the fluidized bed material (35) and the reactor wall of the combustion fluidized bed (3) whereby a drying and pyrolysis takes place, in which the organic substances are converted into steam from the drying and into pyrolysis products ( 13), whereby the pyrolysis products consist of gases with condensable substances and solid carbonaceous residue; 1.2 the solid carbonaceous residue or the solid carbonaceous residue and parts of the steam and of the pyrolysis gases with condensable substances and the fluidized bed material are led back to the combustion fluidized bed (3) in which the carbonaceous residue of the organic substances is incinerated to ash (incinerated), the fluidized bed material is heated and is again led into the pyrolysis reactor (1); 1.3 the steam from the drying and the pyrolysis gases (13) are subsequently treated with condensable substances in a further reaction zone (2) so that a product gas (23) with a high calorific value is available; 1.4 the drying and pyrolysis are carried out in at least one or more pyrolysis reactors (i); 1.5 the drying and pyrolysis are preferably carried out in two or more pyrolysis reactors (1) consisting of two or more moving bed reactors or of two or more rotating reactors or of rotating reactors and moving bed reactors; 1.6 the combustion fluidized bed (3) in which the pyrolysis residues are burned to ash, is operated as a stationary fluidized bed; 1.7 no reaction agent, or optionally a gasification agent such as steam, oxygen or air or a mixture thereof is added to the pyrolysis gases (13); 1.8 the pyrolysis gases (13) are led into an indirect heat exchanger (2) in which they optionally react with the gasifier (21); 1.9 the combustion exhaust gases (37) or the combustion exhaust gases and the fluidized bed material of the combustion fluidized bed (3) are brought into contact with the indirect heat exchanger (2) so that their thermal content is used for the reaction between the pyrolysis gases (13) and the gasifier (21); 1.10 the fluidized bed material (3) consists only of the ash from the organic substances, or of the ash and unburned carbonaceous residues from the organic substances, or of the ash from the organic substances and of further fluidized material, or of the ash and unburned carbonaceous residues of the organic substances and of further fluidized material. 2. Fremgangsmåte i henhold til krav 1,karakterisert vedat pyrolysen blir utført ved en temperatur fra 450 °C til 750 °C.2. Method according to claim 1, characterized in that the pyrolysis is carried out at a temperature from 450 °C to 750 °C. 3. Fremgangsmåte i henhold til et av kravene 1 eller 2,karakterisert vedat produktgassen (23) blir ledet tilbake inn i pyrolysereaktoren (1).3. Method according to one of claims 1 or 2, characterized in that the product gas (23) is led back into the pyrolysis reactor (1). 4. Fremgangsmåte i henhold til et hvilket som helst av kravene 1 til 3,karakterisert vedat forgassingsmidler (21) slik som damp, oksygen eller luft eller en blanding derav blir innført til pyrolysereaktoren (1).4. Method according to any one of claims 1 to 3, characterized in that gasification agents (21) such as steam, oxygen or air or a mixture thereof are introduced to the pyrolysis reactor (1). 5. Fremgangsmåte i henhold til et hvilket som helst av kravene 1 til 4,karakterisert vedat overflaten av reaktorveggen til det forbrenningsfluidiserte bedet (3) har en hvilken som helst lukket geometrisk form på siden av pyrolysereaktoren (1) og det forbrenningsfluidiserte bedet (3).5. Method according to any one of claims 1 to 4, characterized in that the surface of the reactor wall of the combustion fluidized bed (3) has any closed geometric shape on the side of the pyrolysis reactor (1) and the combustion fluidized bed (3). 6. Fremgangsmåte i henhold til et hvilket som helst av kravene 1 til 5,karakterisert vedat reaksjonene mellom pyrolysegassene (13) og forgassingsmiddelet (21) blir utført ved temperaturer fra 800 °C til 1050 °C.6. Method according to any one of claims 1 to 5, characterized in that the reactions between the pyrolysis gases (13) and the gasifier (21) are carried out at temperatures from 800 °C to 1050 °C. 7. Fremgangsmåte i henhold til et hvilket som helst av kravene 1 til 6,karakterisert vedat reaksjonene mellom pyrolysegassene (13) og forgassingsmiddelet (21) blir utført under tilstedeværelse av en katalysator.7. Method according to any one of claims 1 to 6, characterized in that the reactions between the pyrolysis gases (13) and the gasifier (21) are carried out in the presence of a catalyst. 8. Fremgangsmåte i henhold til et hvilket som helst av kravene 1 til 7,karakterisert vedat reaksjonene (13) med forgassingsmiddelet (21) blir utført i et fast bed av katalysatormateriale.8. Method according to any one of claims 1 to 7, characterized in that the reactions (13) with the gasifier (21) are carried out in a fixed bed of catalyst material. 9. Fremgangsmåte i henhold til et hvilket som helst av kravene 1 til 8,karakterisert vedat reaksjonene mellom pyrolysegassene (13) og forgassingsmiddelet (21) blir utført i et fluidisert bed av katalysatormateriale.9. Method according to any one of claims 1 to 8, characterized in that the reactions between the pyrolysis gases (13) and the gasifier (21) are carried out in a fluidized bed of catalyst material. 10. Fremgangsmåte i henhold til et hvilket som helst av kravene 1 til 9,karakterisert vedat reaksjonene mellom pyrolysegassene (13) og forgassingsmiddelet (21) blir tilført under tilstedeværelse av en katalysator tilført pyrolysegassen (13) i den medrevne strømmen.10. Method according to any one of claims 1 to 9, characterized in that the reactions between the pyrolysis gases (13) and the gasifier (21) are supplied in the presence of a catalyst supplied to the pyrolysis gas (13) in the entrained stream. 11. Anordning for utføring av en fremgangsmåte for pyrolyse og forgassing av organiske stoffer eller blandinger av organiske stoffer, spesielt for utføring av en fremgangsmåte i henhold til et eller flere av kravene 1 til 10, innbefattende en pyrolysereaktor (1), et fluidisertbed firing (3) for pyrolyseresten, en reaksjonssone (2) for pyrolysegassene (13) og en fluidisertbedmaterialsirkiilasjon mellom det forbrenningsfluidiserte bedet (3) og pyrolysereaktoren (1),karakterisert vedat en sjakt-reaktor eller en roterende reaktor med en sluse for anvendelsesmateriale og et innløp for fiuidisertbedmaterialet fra det forbrenningsfluidiserte bedet (3) er anbragt ved siden av det forbrenningsfluidiserte bedet; ved at sjaktreaktoren (l) har en transportanordning inn i det forbrenningsfluidiserte bedet ved sin nedre ende; ved at det forbrenningsfluidiserte bedet (3) har et overløp for å overføre fiuidisertbedmaterialet inn i sjaktraktoren (1); og ved at avgassene (37) fra det forebrenningsfluidiserte bedet (3) kan bli tilført et varme-overføringselement (2) som er forbundet med sjaktreaktoren (1) for pyrolysegassene (13).11. Device for carrying out a method for pyrolysis and gasification of organic substances or mixtures of organic substances, in particular for carrying out a method according to one or more of claims 1 to 10, including a pyrolysis reactor (1), a fluidized bed firing (3) for the pyrolysis residue, a reaction zone (2) for the pyrolysis gases (13) and a fluidized bed material circulation between the combustion fluidized bed (3) and the pyrolysis reactor (1), characterized in that a shaft reactor or a rotary reactor with a sluice for application material and an inlet for the fluidized bed material from the combustion fluidized bed (3) is placed next to the combustion fluidized bed; in that the shaft reactor (l) has a transport device into the combustion fluidized bed at its lower end; in that the combustion fluidized bed (3) has an overflow to transfer the fluidized bed material into the shovel tractor (1); and in that the exhaust gases (37) from the pre-combustion fluidized bed (3) can be supplied to a heat transfer element (2) which is connected to the shaft reactor (1) for the pyrolysis gases (13). 12 Anordning i henhold til krav 11,karakterisert vedat fiuidisertbedmaterialet kan bli fjernet fra det forbrenningsfluidiserte bedet (3) i det minste i et punkt eller i et flertall punkter, og kan bli ledet inn i pyrolysesektoren.12 Device according to claim 11, characterized in that the fluidized bed material can be removed from the combustion fluidized bed (3) at least in one point or in a plurality of points, and can be led into the pyrolysis sector. 13. Anordning i henhold til et av kravene 11 eller 12,karakterisert vedat fiuidisertbedmaterialet kan bli fjernet fra det forbrenningsfluidiserte bedet (3) i det minste i et punkt eller i et flertall punkter ved hjelp av et eller flere overløp og kan bli ledet inn i pyrolyseraktoren.13. Device according to one of claims 11 or 12, characterized in that the fluidized bed material can be removed from the combustion fluidized bed (3) at least in one point or in a plurality of points by means of one or more overflows and can be led into the pyrolysis reactor. 14. Anordning i henhold til et hvilket som helst av kravene 10 til 13,karakterisert vedat ildfaste stoffer kan bli tilført for å danne et fluidisert bed.14. Device according to any one of claims 10 to 13, characterized in that refractory substances can be added to form a fluidized bed. 15. Anordning i henhold til et hvilket som helst av kravene 10 til 14,karakterisert vedat komponentene til anvendelsesmaterialet som ikke kan bli brent, og som ikke kan bli forgasset, kan bli benyttet for å danne et fluidisert bed.15. Device according to any one of claims 10 to 14, characterized in that the components of the application material which cannot be burned, and which cannot be gasified, can be used to form a fluidized bed.
NO20016290A 1999-06-30 2001-12-20 Method and apparatus for pyrolysis and gasification and organic substances or mixtures of substances NO332082B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19930071A DE19930071C2 (en) 1999-06-30 1999-06-30 Method and device for pyrolysis and gasification of organic substances and mixtures
PCT/EP2000/005953 WO2001002513A1 (en) 1999-06-30 2000-06-27 Method and device for pyrolyzing and gasifying organic substances or substance mixtures

Publications (3)

Publication Number Publication Date
NO20016290D0 NO20016290D0 (en) 2001-12-20
NO20016290L NO20016290L (en) 2002-02-22
NO332082B1 true NO332082B1 (en) 2012-06-18

Family

ID=7913122

Family Applications (1)

Application Number Title Priority Date Filing Date
NO20016290A NO332082B1 (en) 1999-06-30 2001-12-20 Method and apparatus for pyrolysis and gasification and organic substances or mixtures of substances

Country Status (30)

Country Link
US (1) US7214252B1 (en)
EP (1) EP1192234B1 (en)
JP (1) JP4713036B2 (en)
KR (1) KR100707842B1 (en)
CN (1) CN100338177C (en)
AT (1) ATE453700T1 (en)
AU (1) AU773356C (en)
BG (1) BG64909B1 (en)
BR (2) BR0017599B1 (en)
CA (1) CA2377774C (en)
CY (1) CY1109873T1 (en)
CZ (1) CZ20014724A3 (en)
DE (2) DE19930071C2 (en)
DK (1) DK1192234T3 (en)
EE (1) EE05069B1 (en)
ES (1) ES2337442T3 (en)
HR (1) HRP20010931B1 (en)
HU (1) HUP0201894A3 (en)
IL (1) IL147311A (en)
NO (1) NO332082B1 (en)
NZ (1) NZ516549A (en)
PL (1) PL194523B1 (en)
PT (1) PT1192234E (en)
RS (1) RS49925B (en)
RU (1) RU2272064C2 (en)
SK (1) SK286582B6 (en)
TR (1) TR200103808T2 (en)
UA (1) UA76091C2 (en)
WO (1) WO2001002513A1 (en)
ZA (1) ZA200110392B (en)

Families Citing this family (78)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2797642B1 (en) * 1999-08-16 2003-04-11 Inst Francais Du Petrole METHOD AND INSTALLATION FOR PRODUCING A COMBUSTIBLE GAS FROM A FEED RICH IN ORGANIC MATTER
DE10033453B4 (en) * 2000-07-10 2006-11-02 Herhof Verwaltungsgesellschaft Mbh Process and device for recycling substances and mixtures containing organic components
WO2003002691A1 (en) * 2001-06-27 2003-01-09 Herhof Umwelttechnik Gmbh Method and device for the pyrolysis and gasification of material mixtures containing organic components
DE10228100B4 (en) * 2001-06-27 2008-04-03 Herhof Verwaltungsgesellschaft Mbh Process and apparatus for pyrolysis and gasification of mixtures containing organic components
DE10206922B4 (en) * 2002-02-19 2010-08-26 Herhof Verwaltungsgesellschaft Mbh Pyrolysis shaft furnace and use of a pyrolysis shaft furnace
JP2006063290A (en) * 2004-08-30 2006-03-09 Ebara Corp System and method for utilizing polymer hydrocarbon
DE102005000768A1 (en) * 2005-01-04 2006-07-13 Lutzenberger, Stefan Pyrolysis apparatus for gasifying biomass includes a funnel shaped vertical gasification chamber arranged inside a combustion chamber and which feeds a gasification residue discharge outlet at its lower end
CN100360248C (en) * 2005-08-10 2008-01-09 重庆大学 Biomass pyrolysis liquefaction process and its double-tower device system
CN100387367C (en) * 2005-08-10 2008-05-14 重庆大学 A process method and device system for pyrolysis liquefaction of biomass
CN100445351C (en) * 2005-10-18 2008-12-24 中国石油大学(华东) Double riser circulating fluidized bed coal gasification unit
DE102005063160B4 (en) * 2005-12-30 2010-11-25 Spiegelberg, Volker, Dipl.-Ing. Method and device for the disposal and both energetic and material use of waste with components of vulcanised rubber and polymer
MD3604B2 (en) * 2005-12-30 2008-05-31 Совместное Предприятие "Mitkan" О.О.О. Loading device of the carboniferous raw material processing plant
EP3252128B1 (en) 2006-04-03 2019-01-02 Pharmatherm Chemicals Inc. Thermal extraction method for producing a taxane extract
DE102006027631B4 (en) * 2006-06-13 2017-02-09 Bernd Bauer Process for the production of energy by means of pyrolysis and apparatus therefor
SE531785C2 (en) * 2006-12-05 2009-08-04 Bengt-Sture Ershag Plant for the recovery of carbon and hydrocarbon compounds by pyrolysis
SE531101C2 (en) * 2006-12-14 2008-12-16 Rolf Ljunggren Process and plant for producing synthesis gas from biomass
DE102008009132B4 (en) * 2007-02-07 2011-01-27 Technische Universität Bergakademie Freiberg Process and apparatus for burning solid fuels
ITTO20070438A1 (en) 2007-06-19 2008-12-20 Martini Aldo APPARATUS FOR THE DECOMPOSITION OF VEGETABLE ORGANIC SUBSTANCES AND THE PRODUCTION OF COMBUSTIBLE GAS VIA THERMOCHEMISTRY, AND RELATIVE METHOD
EP2045311B1 (en) 2007-10-02 2013-03-20 IN.SER. S.p.A. System and process for the pyrolsation and gasification of organic substances
CA2648454C (en) * 2008-01-02 2016-06-28 Dunkirk Metal Products, Inc. High efficiency wood or biomass boiler
EP2240554B1 (en) 2008-01-28 2017-09-13 Corina Projahn Method and device to perform a pyrolysis
DE202008008767U1 (en) 2008-06-27 2008-09-11 Projahn, Corina Apparatus for carrying out a pyrolysis
DE102008030983B4 (en) 2008-06-27 2012-06-06 Corina Projahn Method and device for carrying out a pyrolysis and its use for smoldering waste tires and biomass
JP5366147B2 (en) * 2008-02-05 2013-12-11 一般財団法人電力中央研究所 Fuel gas purification equipment, power generation system and fuel synthesis system
DE102008014799A1 (en) * 2008-03-18 2009-09-24 Karl-Heinz Tetzlaff Process and apparatus for producing synthesis gas from biomass
FI122778B (en) * 2008-03-31 2012-06-29 Metso Power Oy Pyrolysis method in conjunction with a boiler, and pyrolysis device
DE202008007674U1 (en) 2008-06-09 2009-02-12 Fittkau, Wilfried, Dipl.-Ing. Plant for the production of electric energy by depolimerization of polimers, especially scrap tires
DE102008039817A1 (en) 2008-08-22 2010-02-25 Corina Projahn Pyrolysis coke obtained by pyrolysis process, where the process after loading the furnace with pyrolyzable goods e.g. tires, comprises heating single or all heating element of the pyrolysis ovens, useful as e.g. heat insulating agent
DE102008036734A1 (en) * 2008-08-07 2010-02-18 Spot Spirit Of Technology Ag Process and apparatus for the production of energy, DME (dimethyl ether and bio-silica using CO2-neutral biogenic reactive and inert starting materials
KR100896789B1 (en) * 2009-01-22 2009-05-11 주식회사 에이쓰 Carbon treatment system for supply of waste tire decomposition heat source
CN101457160B (en) * 2009-03-06 2011-06-08 安徽淮化集团有限公司 Entrained flow coal gasification method employing solid state slag-tap suitable for high ash content and high ash melting point coal
CN101544901B (en) * 2009-05-05 2012-05-23 江苏大学 Method and device for preparing biological oil by biomass cracking
BRPI0903587F1 (en) * 2009-05-22 2020-12-01 Engenho Nove Engenharia Ambiental Ltda process for pyrolysis of biomass and solid waste in multiple stages
FI125814B (en) * 2009-06-02 2016-02-29 Valmet Technologies Oy Method for performing pyrolysis and pyrolysis apparatus
DE102009038052B4 (en) 2009-08-19 2012-09-27 Wolfgang Krumm Smelting process by using a pre-reduced Ilmeniterzstromes and / or Hematitezstromes
CN101786095A (en) * 2010-04-06 2010-07-28 杨成志 Energy recovery type household waste disposer
US20110284359A1 (en) 2010-05-20 2011-11-24 Uop Llc Processes for controlling afterburn in a reheater and for controlling loss of entrained solid particles in combustion product flue gas
US8499702B2 (en) 2010-07-15 2013-08-06 Ensyn Renewables, Inc. Char-handling processes in a pyrolysis system
CN101906326B (en) * 2010-07-20 2013-03-13 武汉凯迪控股投资有限公司 Biomass double furnace cracking and gasification technology and device
US20120061618A1 (en) * 2010-09-11 2012-03-15 James Santoianni Plasma gasification reactors with modified carbon beds and reduced coke requirements
US9441887B2 (en) 2011-02-22 2016-09-13 Ensyn Renewables, Inc. Heat removal and recovery in biomass pyrolysis
KR101182485B1 (en) 2011-04-26 2012-09-12 주식회사 예스윈 Pyrolysis reactor system with the continuous multi-stage screw
US9347005B2 (en) 2011-09-13 2016-05-24 Ensyn Renewables, Inc. Methods and apparatuses for rapid thermal processing of carbonaceous material
US10400175B2 (en) 2011-09-22 2019-09-03 Ensyn Renewables, Inc. Apparatuses and methods for controlling heat for rapid thermal processing of carbonaceous material
US10041667B2 (en) 2011-09-22 2018-08-07 Ensyn Renewables, Inc. Apparatuses for controlling heat for rapid thermal processing of carbonaceous material and methods for the same
US9044727B2 (en) 2011-09-22 2015-06-02 Ensyn Renewables, Inc. Apparatuses and methods for controlling heat for rapid thermal processing of carbonaceous material
US9109177B2 (en) 2011-12-12 2015-08-18 Ensyn Renewables, Inc. Systems and methods for renewable fuel
GB201121438D0 (en) * 2011-12-14 2012-01-25 Qinetiq Ltd Energy recovery system
US9261274B2 (en) 2011-12-21 2016-02-16 Res Usa, Llc Supplemental fuel to combustor of dual fluidized bed gasifier
CN102746862B (en) * 2012-06-07 2013-09-25 河北景明循环产业股份有限公司 Waste organic matter continuous cracking industrial fluidized bed
US9670413B2 (en) 2012-06-28 2017-06-06 Ensyn Renewables, Inc. Methods and apparatuses for thermally converting biomass
DE102012109874A1 (en) 2012-10-16 2014-04-17 Merenas Trust Reg. Apparatus and process for the material handling of raw materials
KR101425798B1 (en) 2012-11-07 2014-08-05 한국에너지기술연구원 Dual bubbling-fluidized-bed indirect gasifier
DE102012025478A1 (en) 2012-12-29 2014-07-03 Robert Völkl Method for performing ecological/energetic utilization of carbonaceous ash generated in electric power plant, involves supplying carbon containing ash so as to increase temperature of exhaust gas of internal combustion engine
GB2503065B (en) 2013-02-20 2014-11-05 Recycling Technologies Ltd Process and apparatus for treating waste comprising mixed plastic waste
WO2014210150A1 (en) 2013-06-26 2014-12-31 Ensyn Renewables, Inc. Systems and methods for renewable fuel
CN103468322B (en) * 2013-07-25 2015-08-12 易高环保能源研究院有限公司 A method for producing hydrogen-rich gas by steam gasification of solid organic matter
WO2015061833A1 (en) * 2013-10-29 2015-05-07 The Crucible Group Pty Ltd Converter for organic materials
CN103727528B (en) * 2014-01-10 2015-10-07 哈尔滨工业大学 Coal gasification and combustion fluid bed-the coal-powder boiler of series connection compound
RU2544669C1 (en) * 2014-02-03 2015-03-20 Закрытое Акционерное Общество Научно-Производственная Компания "Интергаз" Method for processing combustible carbon- and/or hydrocarbon-containing products, and reactor for implementing it
AT515649A1 (en) * 2014-04-04 2015-10-15 Leopold Dipl Ing Seirlehner Method and apparatus for producing fuel gas from carbonaceous solid substitutes
CN104134478B (en) * 2014-08-06 2016-10-26 厦门大学 A kind of nuclear energy and biomass energy association system and method
US20160379727A1 (en) * 2015-01-30 2016-12-29 Studsvik, Inc. Apparatus and methods for treatment of radioactive organic waste
US10337726B2 (en) 2015-08-21 2019-07-02 Ensyn Renewables, Inc. Liquid biomass heating system
CN105665423A (en) * 2016-03-22 2016-06-15 北京神雾环境能源科技集团股份有限公司 System and method for disposing household waste
BR112019013387B1 (en) 2016-12-29 2023-03-28 Ensyn Renewables, Inc DEMETALIZATION OF BIOMASS
DE102017106347A1 (en) * 2017-03-24 2018-09-27 Universität Stuttgart Process and apparatus for the allothermal production of fuel gases
FI127753B (en) 2017-06-09 2019-01-31 Bioshare Ab Recovery of chemicals from fuel streams
CN107502388B (en) * 2017-09-11 2020-07-07 哈尔滨工业大学 Two-stage low-temperature gasification device and method based on low-order fuel autocatalysis
CN107723031B (en) * 2017-11-23 2024-05-28 航天长征化学工程股份有限公司 Pulverized coal high-pressure gasification pyrolysis integrated device
EP3918031B1 (en) * 2019-01-28 2024-09-04 IQ Energy Inc. System for upgrading synthetic gas produced from waste materials, municipal solid waste or biomass
CN110358578A (en) * 2019-06-28 2019-10-22 华中科技大学 A kind of fire coal coupled biological matter power generating simultaneously charcoal system
RU2737155C1 (en) * 2020-05-27 2020-11-25 Общество с ограниченной ответственностью «БиоЭнерджи» Apparatus for processing hydrocarbon biomass to obtain hydrogen-containing gases with high energy potential
KR102603590B1 (en) * 2021-03-21 2023-11-16 오상헌 Waste incineration and treatment equipment
CN114251661B (en) * 2021-11-30 2023-05-30 上海工程技术大学 A low-nitrogen combustion circulating fluidized bed system for treating kitchen waste and its application
DE102021134442B4 (en) 2021-12-23 2023-07-06 Concord Blue Patent Gmbh Plant for generating a synthesis gas and method for operating the same
EP4303285A1 (en) 2022-07-08 2024-01-10 Merenas Trust Reg. Device and method for the material treatment of raw materials and carbon produced by the method
EP4303184A1 (en) 2022-07-08 2024-01-10 Merenas Trust Reg. Uses of a carbon produced from a process for the material treatment of raw materials

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2532994A1 (en) * 1974-07-24 1976-02-05 Commw Scient Ind Res Org METHOD AND DEVICE FOR HEAT TREATMENT OF MATERIALS BY HOT PARTICLES
JPS5291563A (en) * 1976-01-28 1977-08-02 Agency Of Ind Science & Technol Thermal decomposition apparatus for organic solid matters
JPS5299662A (en) * 1976-02-17 1977-08-20 Ebara Corp Operating method for thermal cracking system
US4244779A (en) * 1976-09-22 1981-01-13 A Ahlstrom Osakeyhtio Method of treating spent pulping liquor in a fluidized bed reactor
GB1561237A (en) * 1976-09-22 1980-02-13 Ahlstroem Oy Method of treating materials in a fluidized bed reactor
JPS5397271A (en) * 1977-02-04 1978-08-25 Agency Of Ind Science & Technol Fluidized thermal decomposition system for treating inorganic solid city refuse
FR2535734B1 (en) * 1982-11-05 1986-08-08 Tunzini Nessi Entreprises Equi METHOD FOR GASIFICATION OF LIGNOCELLULOSIC PRODUCTS AND DEVICE FOR IMPLEMENTING SAME
DE19720331A1 (en) * 1997-05-15 1998-11-19 Clemens Dr Kiefer Treatment of wet or dry, fine or lumpy bio-wastes
DE19755693C1 (en) * 1997-12-16 1999-07-29 Dmt Gmbh Process for the gasification of organic substances and mixtures of substances

Also Published As

Publication number Publication date
CA2377774A1 (en) 2001-01-11
PL352381A1 (en) 2003-08-25
HUP0201894A3 (en) 2010-01-28
SK18542001A3 (en) 2002-10-08
DE19930071C2 (en) 2001-09-27
BR0017599B1 (en) 2012-01-24
IL147311A0 (en) 2002-08-14
AU773356C (en) 2004-12-16
KR20020052148A (en) 2002-07-02
DE19930071A1 (en) 2001-02-22
EP1192234A1 (en) 2002-04-03
KR100707842B1 (en) 2007-04-13
RS49925B (en) 2008-09-29
YU93001A (en) 2004-07-15
IL147311A (en) 2004-12-15
CN1358220A (en) 2002-07-10
UA76091C2 (en) 2006-07-17
BR0012061B1 (en) 2012-01-10
HRP20010931B1 (en) 2013-02-28
EP1192234B1 (en) 2009-12-30
CY1109873T1 (en) 2014-09-10
CA2377774C (en) 2010-06-22
SK286582B6 (en) 2009-01-07
HRP20010931A2 (en) 2003-04-30
ZA200110392B (en) 2002-12-19
BR0012061A (en) 2002-03-19
ATE453700T1 (en) 2010-01-15
DK1192234T3 (en) 2010-04-12
RU2272064C2 (en) 2006-03-20
AU6688400A (en) 2001-01-22
DE50015832D1 (en) 2010-02-11
US7214252B1 (en) 2007-05-08
WO2001002513A1 (en) 2001-01-11
BG64909B1 (en) 2006-08-31
EE200100712A (en) 2003-04-15
JP2003504454A (en) 2003-02-04
NO20016290D0 (en) 2001-12-20
CN100338177C (en) 2007-09-19
EE05069B1 (en) 2008-08-15
ES2337442T3 (en) 2010-04-26
NZ516549A (en) 2002-10-25
AU773356B2 (en) 2004-05-20
JP4713036B2 (en) 2011-06-29
PL194523B1 (en) 2007-06-29
HUP0201894A2 (en) 2002-09-28
NO20016290L (en) 2002-02-22
BG106266A (en) 2002-08-30
CZ20014724A3 (en) 2002-09-11
PT1192234E (en) 2010-01-22
TR200103808T2 (en) 2002-04-22

Similar Documents

Publication Publication Date Title
CA2377774C (en) A method and an apparatus for the pyrolysis and gasification of organic substances or mixtures of organic substances
JP2003504454A5 (en)
RU2240341C2 (en) Process of gasification of organic substances and mixtures thereof
EP1278813B1 (en) A method and a system for decomposition of moist fuel or other carbonaceous materials
US4568362A (en) Gasification method and apparatus for lignocellulosic products
JP2010077260A (en) Combustible gas-forming apparatus for gasifying waste and process for producing combustible gas
RU2177977C2 (en) Method for thermally processing biomass
US10023803B2 (en) Method for performing pyrolysis and a pyrolysis apparatus
JP3559163B2 (en) Gasification method using biomass and fossil fuel
RU2408820C1 (en) Installation for multi-phase pyrolysis of organic raw material
JP2017014474A (en) Biomass feedstock gasifier of continuous thermochemistry type
US20070294937A1 (en) Gasifier
JP5945929B2 (en) Waste gasification and melting equipment
JP2003213269A (en) High temperature carbonization installation and high temperature carbonization method
RU2657042C2 (en) Method for producing a combustible gas from a solid fuel and reactor for its implementation
EP4151706A1 (en) A method and a device to produce low-tar- and low-dust product gas
EP1727879A1 (en) Apparatus and method for producing combustible gasses from an organic material
RU92011U1 (en) INSTALLATION FOR MULTI-PHASE PYROLYSIS OF ORGANIC RAW MATERIALS
JP2001098275A (en) Thermal decomposition method for combustible waste

Legal Events

Date Code Title Description
MM1K Lapsed by not paying the annual fees