Nothing Special   »   [go: up one dir, main page]

Ju et al., 2016 - Google Patents

Online multi-object tracking based on hierarchical association framework

Ju et al., 2016

View PDF
Document ID
2440993737715496443
Author
Ju J
Kim D
Ku B
Han D
Ko H
Publication year
Publication venue
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops

External Links

Snippet

Online multi-object tracking is one of the crucial tasks in time-critical computer vision applications. In this paper, the problem of online multi-object tracking in complex scenes from a single, static, un-calibrated camera is addressed. In complex scenes, it is still …
Continue reading at www.cv-foundation.org (PDF) (other versions)

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/00624Recognising scenes, i.e. recognition of a whole field of perception; recognising scene-specific objects
    • G06K9/00771Recognising scenes under surveillance, e.g. with Markovian modelling of scene activity
    • G06K9/00778Recognition or static of dynamic crowd images, e.g. recognition of crowd congestion
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/00624Recognising scenes, i.e. recognition of a whole field of perception; recognising scene-specific objects
    • G06K9/00791Recognising scenes perceived from the perspective of a land vehicle, e.g. recognising lanes, obstacles or traffic signs on road scenes
    • G06K9/00798Recognition of lanes or road borders, e.g. of lane markings, or recognition of driver's driving pattern in relation to lanes perceived from the vehicle; Analysis of car trajectory relative to detected road
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/62Methods or arrangements for recognition using electronic means
    • G06K9/6217Design or setup of recognition systems and techniques; Extraction of features in feature space; Clustering techniques; Blind source separation
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/62Methods or arrangements for recognition using electronic means
    • G06K9/6267Classification techniques
    • G06K9/6268Classification techniques relating to the classification paradigm, e.g. parametric or non-parametric approaches
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/62Methods or arrangements for recognition using electronic means
    • G06K9/68Methods or arrangements for recognition using electronic means using sequential comparisons of the image signals with a plurality of references in which the sequence of the image signals or the references is relevant, e.g. addressable memory
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/36Image preprocessing, i.e. processing the image information without deciding about the identity of the image
    • G06K9/46Extraction of features or characteristics of the image
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/62Methods or arrangements for recognition using electronic means
    • G06K9/6201Matching; Proximity measures
    • G06K9/6202Comparing pixel values or logical combinations thereof, or feature values having positional relevance, e.g. template matching
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/62Methods or arrangements for recognition using electronic means
    • G06K9/6288Fusion techniques, i.e. combining data from various sources, e.g. sensor fusion
    • G06K9/629Fusion techniques, i.e. combining data from various sources, e.g. sensor fusion of extracted features
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/20Analysis of motion
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/30Information retrieval; Database structures therefor; File system structures therefor
    • G06F17/30781Information retrieval; Database structures therefor; File system structures therefor of video data
    • G06F17/30784Information retrieval; Database structures therefor; File system structures therefor of video data using features automatically derived from the video content, e.g. descriptors, fingerprints, signatures, genre
    • G06F17/30799Information retrieval; Database structures therefor; File system structures therefor of video data using features automatically derived from the video content, e.g. descriptors, fingerprints, signatures, genre using low-level visual features of the video content
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10016Video; Image sequence
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N99/00Subject matter not provided for in other groups of this subclass

Similar Documents

Publication Publication Date Title
CN113506317B (en) Multi-target tracking method based on Mask R-CNN and apparent feature fusion
Neven et al. Towards end-to-end lane detection: an instance segmentation approach
Frossard et al. End-to-end learning of multi-sensor 3d tracking by detection
Fernando et al. Tracking by prediction: A deep generative model for mutli-person localisation and tracking
Yoon et al. Online multi-object tracking via structural constraint event aggregation
Wojek et al. Monocular visual scene understanding: Understanding multi-object traffic scenes
Bloisi et al. Argos—A video surveillance system for boat traffic monitoring in Venice
Soleimanitaleb et al. Single object tracking: A survey of methods, datasets, and evaluation metrics
CN111626194A (en) Pedestrian multi-target tracking method using depth correlation measurement
Fernández-Sanjurjo et al. Real-time multiple object visual tracking for embedded GPU systems
Kim et al. Online tracker optimization for multi-pedestrian tracking using a moving vehicle camera
Kim et al. Multiple player tracking in soccer videos: an adaptive multiscale sampling approach
Huang et al. An online multi-lidar dynamic occupancy mapping method
Chen et al. Exploring local context for multi-target tracking in wide area aerial surveillance
He et al. Fast online multi-pedestrian tracking via integrating motion model and deep appearance model
Weng et al. Sequential forecasting of 100,000 points
CN113379795A (en) Multi-target tracking and segmenting method based on conditional convolution and optical flow characteristics
Ju et al. Online multi-object tracking based on hierarchical association framework
Dorai et al. Multi target tracking by linking tracklets with a convolutional neural network.
Cancela et al. Hierarchical framework for robust and fast multiple-target tracking in surveillance scenarios
Vu et al. Real-time robust human tracking based on Lucas-Kanade optical flow and deep detection for embedded surveillance
Kwolek Multi-object tracking using particle swarm optimization on target interactions
Bumanis et al. Multi-object Tracking for Urban and Multilane Traffic: Building Blocks for Real-World Application.
Bohush et al. Robust person tracking algorithm based on convolutional neural network for indoor video surveillance systems
Gao et al. A graphical social topology model for RGB-D multi-person tracking