Kim et al., 2018 - Google Patents
Multiple player tracking in soccer videos: an adaptive multiscale sampling approachKim et al., 2018
- Document ID
- 14397915396958060788
- Author
- Kim W
- Moon S
- Lee J
- Nam D
- Jung C
- Publication year
- Publication venue
- Multimedia Systems
External Links
Snippet
Visual tracking is an essential technique in computer vision. Even though the notable improvement has been achieved during last few years, tracking multiple objects still remains as a challenging task. In this paper, a novel method for tracking multiple players in soccer …
- 238000005070 sampling 0 title abstract description 32
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6267—Classification techniques
- G06K9/6268—Classification techniques relating to the classification paradigm, e.g. parametric or non-parametric approaches
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6217—Design or setup of recognition systems and techniques; Extraction of features in feature space; Clustering techniques; Blind source separation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/36—Image preprocessing, i.e. processing the image information without deciding about the identity of the image
- G06K9/46—Extraction of features or characteristics of the image
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6201—Matching; Proximity measures
- G06K9/6202—Comparing pixel values or logical combinations thereof, or feature values having positional relevance, e.g. template matching
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/68—Methods or arrangements for recognition using electronic means using sequential comparisons of the image signals with a plurality of references in which the sequence of the image signals or the references is relevant, e.g. addressable memory
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/00624—Recognising scenes, i.e. recognition of a whole field of perception; recognising scene-specific objects
- G06K9/00711—Recognising video content, e.g. extracting audiovisual features from movies, extracting representative key-frames, discriminating news vs. sport content
- G06K9/00718—Higher-level, semantic clustering, classification or understanding of video scenes, e.g. detection, labelling or Markovian modelling of sport events or news items
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/20—Analysis of motion
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/00624—Recognising scenes, i.e. recognition of a whole field of perception; recognising scene-specific objects
- G06K9/00771—Recognising scenes under surveillance, e.g. with Markovian modelling of scene activity
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10016—Video; Image sequence
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/30—Information retrieval; Database structures therefor; File system structures therefor
- G06F17/30781—Information retrieval; Database structures therefor; File system structures therefor of video data
- G06F17/30784—Information retrieval; Database structures therefor; File system structures therefor of video data using features automatically derived from the video content, e.g. descriptors, fingerprints, signatures, genre
- G06F17/30799—Information retrieval; Database structures therefor; File system structures therefor of video data using features automatically derived from the video content, e.g. descriptors, fingerprints, signatures, genre using low-level visual features of the video content
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20112—Image segmentation details
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/20—Image acquisition
- G06K9/32—Aligning or centering of the image pick-up or image-field
- G06K9/3233—Determination of region of interest
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N99/00—Subject matter not provided for in other groups of this subclass
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zhou et al. | Tracking objects as points | |
Mahmoudi et al. | Multi-target tracking using CNN-based features: CNNMTT | |
Girdhar et al. | Detect-and-track: Efficient pose estimation in videos | |
Kim et al. | Multiple player tracking in soccer videos: an adaptive multiscale sampling approach | |
Kamble et al. | Ball tracking in sports: a survey | |
Lee et al. | Multi-class multi-object tracking using changing point detection | |
Baysal et al. | Sentioscope: a soccer player tracking system using model field particles | |
Tang et al. | Moana: An online learned adaptive appearance model for robust multiple object tracking in 3d | |
Naik et al. | YOLOv3-SORT: detection and tracking player/ball in soccer sport | |
Akan et al. | Use of deep learning in soccer videos analysis: survey | |
Qian et al. | Deep learning assisted robust visual tracking with adaptive particle filtering | |
Rahimian et al. | Optical tracking in team sports: A survey on player and ball tracking methods in soccer and other team sports | |
Fradi et al. | Spatial and temporal variations of feature tracks for crowd behavior analysis | |
Lisanti et al. | Continuous localization and mapping of a pan–tilt–zoom camera for wide area tracking | |
Ma et al. | Deep human-interaction and association by graph-based learning for multiple object tracking in the wild | |
Nagrath et al. | Understanding new age of intelligent video surveillance and deeper analysis on deep learning techniques for object tracking | |
Fleuret et al. | Re-identification for improved people tracking | |
Morsali et al. | SFSORT: Scene features-based simple online real-time tracker | |
Kamble et al. | A convolutional neural network based 3D ball tracking by detection in soccer videos | |
Wang et al. | Visual tracking via robust multi-task multi-feature joint sparse representation | |
Truong et al. | Single object tracking using particle filter framework and saliency-based weighted color histogram | |
Kwolek | Multi-object tracking using particle swarm optimization on target interactions | |
Bohush et al. | Robust person tracking algorithm based on convolutional neural network for indoor video surveillance systems | |
Duffner et al. | Fast pixelwise adaptive visual tracking of non-rigid objects | |
Gupta et al. | Discovering cricket stroke classes in trimmed telecast videos |