Hoffmann et al., 2008 - Google Patents
Modelocked quantum dot vertical external cavity surface emitting laserHoffmann et al., 2008
View PDF- Document ID
- 18159254892622593807
- Author
- Hoffmann M
- Barbarin Y
- Maas D
- Golling M
- Krestnikov I
- Mikhrin S
- Kovsh A
- Südmeyer T
- Keller U
- Publication year
- Publication venue
- Applied Physics B
External Links
Snippet
We report the first successful modelocking of a vertical external cavity surface emitting laser (VECSEL) with a quantum dot (QD) gain region. The VECSEL has a total of 35 QD-layers with an emission wavelength of about 1060 nm. In SESAM modelocked operation, we obtain …
- 239000002096 quantum dot 0 title abstract description 16
Classifications
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S3/00—Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves
- H01S3/10—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
- H01S3/11—Pulse generation, e.g. Q-switching, mode locking
- H01S3/1106—Mode locking
- H01S3/1112—Passive mode locking
- H01S3/1115—Passive mode locking using a saturable absorber
- H01S3/1118—Solid state absorber, e.g. SESAM
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S5/00—Semiconductor lasers
- H01S5/10—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
- H01S5/18—Surface-emitting lasers (SE-lasers)
- H01S5/183—Surface-emitting lasers (SE-lasers) having a vertical cavity (VCSE-lasers)
- H01S5/18308—Surface-emitting lasers (SE-lasers) having a vertical cavity (VCSE-lasers) having a special structure for lateral current or light confinement
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S3/00—Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves
- H01S3/10—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
- H01S3/106—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling a device placed within the cavity
- H01S3/1063—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling a device placed within the cavity using a solid state device provided with at least one potential jump barrier
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S3/00—Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves
- H01S3/09—Processes or apparatus for excitation, e.g. pumping
- H01S3/091—Processes or apparatus for excitation, e.g. pumping using optical pumping
- H01S3/094—Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
- H01S3/0941—Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S3/00—Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves
- H01S3/05—Construction or shape of optical resonators; Accomodation of active medium therein; Shape of active medium
- H01S3/06—Construction or shape of active medium
- H01S3/0619—Coatings, e.g. AR, HR, passivation layer
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S3/00—Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves
- H01S3/05—Construction or shape of optical resonators; Accomodation of active medium therein; Shape of active medium
- H01S3/06—Construction or shape of active medium
- H01S3/07—Construction or shape of active medium consisting of a plurality of parts, e.g. segments
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S5/00—Semiconductor lasers
- H01S5/30—Structure or shape of the active region; Materials used for the active region
- H01S5/34—Structure or shape of the active region; Materials used for the active region comprising quantum well, or supperlattice structures, e.g. single quantum well lasers (SQW lasers), multiple quantum well lasers (MQW lasers), graded index separate confinement hetrostructure lasers (GRINSCH lasers)
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S3/00—Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves
- H01S3/14—Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves characterised by the material used as the active medium
- H01S3/16—Solid materials
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S3/00—Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves
- H01S3/10—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
- H01S3/106—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling a device placed within the cavity
- H01S3/108—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling a device placed within the cavity using a non-linear optical device, e.g. exhibiting Brillouin- or Raman-scattering
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S5/00—Semiconductor lasers
- H01S5/10—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
- H01S5/12—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feed-back lasers (DFB-lasers)
- H01S5/125—Distributed Bragg reflector lasers (DBR-lasers)
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S5/00—Semiconductor lasers
- H01S5/40—Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
- H01S5/42—Arrays of surface emitting lasers
- H01S5/423—Arrays of surface emitting lasers having a vertical cavity
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S5/00—Semiconductor lasers
- H01S5/02—Structural details or components not essential to laser action
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S5/00—Semiconductor lasers
- H01S5/06—Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
- H01S5/0607—Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying physical parameters other than the potential of the electrodes, e.g. by an electric or magnetic field, mechanical deformation, pressure, light, temperature
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S2301/00—Functional characteristics
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Hoogland et al. | Passively mode-locked diode-pumped surface-emitting semiconductor laser | |
Garnache et al. | Sub-500-fs soliton-like pulse in a passively mode-locked broadband surface-emitting laser with 100 mW average power | |
Kornaszewski et al. | SESAM‐free mode‐locked semiconductor disk laser | |
Lorenser et al. | Towards wafer-scale integration of high repetition rate passively mode-locked surface-emitting semiconductor lasers | |
Hoogland et al. | 10-GHz train of sub-500-fs optical soliton-like pulses from a surface-emitting semiconductor laser | |
Hoffmann et al. | Modelocked quantum dot vertical external cavity surface emitting laser | |
Guina et al. | Semiconductor Disk Lasers: Recent Advances in Generation of Yellow‐Orange and Mid‐IR Radiation | |
Wittwer et al. | High-power integrated ultrafast semiconductor disk laser: multi-Watt 10 GHz pulse generation | |
Shu et al. | Progress of optically pumped GaSb based semiconductor disk laser | |
Alfieri et al. | Mode-locking instabilities for high-gain semiconductor disk lasers based on active submonolayer quantum dots | |
Alfieri et al. | High-power sub-300-femtosecond quantum dot semiconductor disk lasers | |
Rutz et al. | Passively modelocked GaInNAs VECSEL at centre wavelength around 1.3 µm | |
Pallmann et al. | Ultrafast electrically pumped VECSELs | |
Wittwer et al. | First MIXSEL with a quantum well saturable absorber: Shorter pulse durations and higher repetition rates | |
Hoffmann et al. | All quantum dot modelocked vertical external cavity surface emitting laser | |
Hoffmann et al. | First modelocked quantum dot vertical external cavity surface emitting laser | |
Okhotnikov | Power scalable semiconductor disk lasers for frequency conversion and mode-locking | |
Garnache et al. | Pico-second passively mode locked surface-emitting laser with self-assembled semiconductor quantum dot absorber | |
Laurain et al. | Recent advances in power scaling of high-power optically-pumped semiconductor lasers for ultrashort pulse generation and continuous wave single frequency operation | |
Maas et al. | MIXSELs-a new class of ultrafast semiconductor lasers | |
Zhuo et al. | Switchable two-wavelength emission using vertical external-cavity surface-emitting laser | |
Wittwer et al. | Modelocked Integrated External-Cavity Surface Emitting Laser (MIXSEL) generates 660 mW average power in 23-ps pulses at 3 GHz repetition rate | |
Rutz et al. | All-GaInNAs ultrafast lasers: Material development for emitters and absorbers | |
Bellancourt et al. | First demonstration of a modelocked integrated external-cavity surface emitting laser (MIXSEL) | |
Sieber et al. | High-average power femtosecond VECSELs with tunable repetition rates up to 10 GHz |