Wittwer et al., 2010 - Google Patents
Modelocked Integrated External-Cavity Surface Emitting Laser (MIXSEL) generates 660 mW average power in 23-ps pulses at 3 GHz repetition rateWittwer et al., 2010
- Document ID
- 15369192645917768712
- Author
- Wittwer V
- Rudin B
- Maas D
- Barbarin Y
- Hoffmann M
- Golling M
- Südmeyer T
- Keller U
- Publication year
- Publication venue
- Advanced Solid-State Photonics
External Links
Snippet
We present an advanced MIXSEL, a semiconductor disk laser with integrated saturable absorber. Improved thermal management by wafer removal substantially increased the output power. The novel antiresonant design is growth-error tolerant and enables shorter …
- 239000004065 semiconductor 0 abstract description 19
Classifications
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S3/00—Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves
- H01S3/10—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
- H01S3/11—Pulse generation, e.g. Q-switching, mode locking
- H01S3/1106—Mode locking
- H01S3/1112—Passive mode locking
- H01S3/1115—Passive mode locking using a saturable absorber
- H01S3/1118—Solid state absorber, e.g. SESAM
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S3/00—Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves
- H01S3/09—Processes or apparatus for excitation, e.g. pumping
- H01S3/091—Processes or apparatus for excitation, e.g. pumping using optical pumping
- H01S3/094—Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
- H01S3/0941—Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode
- H01S3/09415—Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode the pumping beam being parallel to the lasing mode of the pumped medium, e.g. end-pumping
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S3/00—Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves
- H01S3/10—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
- H01S3/106—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling a device placed within the cavity
- H01S3/1063—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling a device placed within the cavity using a solid state device provided with at least one potential jump barrier
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S3/00—Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves
- H01S3/10—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
- H01S3/106—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling a device placed within the cavity
- H01S3/108—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling a device placed within the cavity using a non-linear optical device, e.g. exhibiting Brillouin- or Raman-scattering
- H01S3/109—Frequency multiplying, e.g. harmonic generation
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S3/00—Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves
- H01S3/10—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
- H01S3/11—Pulse generation, e.g. Q-switching, mode locking
- H01S3/117—Q-switching using acousto-optical devices
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S3/00—Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves
- H01S3/10—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
- H01S3/11—Pulse generation, e.g. Q-switching, mode locking
- H01S3/113—Q-switching using bleachable or solarising media
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S3/00—Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves
- H01S3/05—Construction or shape of optical resonators; Accomodation of active medium therein; Shape of active medium
- H01S3/06—Construction or shape of active medium
- H01S3/0619—Coatings, e.g. AR, HR, passivation layer
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S3/00—Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves
- H01S3/05—Construction or shape of optical resonators; Accomodation of active medium therein; Shape of active medium
- H01S3/06—Construction or shape of active medium
- H01S3/07—Construction or shape of active medium consisting of a plurality of parts, e.g. segments
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S3/00—Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves
- H01S3/14—Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves characterised by the material used as the active medium
- H01S3/16—Solid materials
- H01S3/1601—Solid materials characterised by an active (lasing) ion
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S5/00—Semiconductor lasers
- H01S5/10—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
- H01S5/18—Surface-emitting lasers (SE-lasers)
- H01S5/183—Surface-emitting lasers (SE-lasers) having a vertical cavity (VCSE-lasers)
- H01S5/18308—Surface-emitting lasers (SE-lasers) having a vertical cavity (VCSE-lasers) having a special structure for lateral current or light confinement
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S3/00—Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves
- H01S3/05—Construction or shape of optical resonators; Accomodation of active medium therein; Shape of active medium
- H01S3/08—Construction or shape of optical resonators or components thereof
- H01S3/08018—Mode suppression
- H01S3/0804—Transverse or lateral mode control, e.g. specifically multimode
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S5/00—Semiconductor lasers
- H01S5/02—Structural details or components not essential to laser action
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S5/00—Semiconductor lasers
- H01S5/04—Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
- H01S5/042—Electrical excitation; Circuits therefor
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S5/00—Semiconductor lasers
- H01S5/30—Structure or shape of the active region; Materials used for the active region
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S2301/00—Functional characteristics
- H01S2301/20—Lasers with a special output beam profile or cross section, e.g. non-Gaussian
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1264373B1 (en) | Passively mode-locked optically pumped semiconductor external-cavity surface-emitting laser | |
EP1735681B1 (en) | Surface emitting laser with an integrated absorber | |
US7801197B2 (en) | High power laser device | |
Hoogland et al. | 10-GHz train of sub-500-fs optical soliton-like pulses from a surface-emitting semiconductor laser | |
Wittwer et al. | High-power integrated ultrafast semiconductor disk laser: multi-Watt 10 GHz pulse generation | |
Shu et al. | Progress of optically pumped GaSb based semiconductor disk laser | |
Bellancourt et al. | Modelocked integrated external-cavity surface emitting laser | |
Herda et al. | Semiconductor quantum-dot saturable absorber mode-locked fiber laser | |
Hoffmann et al. | Modelocked quantum dot vertical external cavity surface emitting laser | |
Rutz et al. | Passively modelocked GaInNAs VECSEL at centre wavelength around 1.3 µm | |
Wittwer et al. | Modelocked Integrated External-Cavity Surface Emitting Laser (MIXSEL) generates 660 mW average power in 23-ps pulses at 3 GHz repetition rate | |
Wittwer et al. | First MIXSEL with a quantum well saturable absorber: Shorter pulse durations and higher repetition rates | |
Garnache et al. | Pico-second passively mode locked surface-emitting laser with self-assembled semiconductor quantum dot absorber | |
Maas et al. | MIXSELs-a new class of ultrafast semiconductor lasers | |
Rudin et al. | Modelocked Integrated External-Cavity Surface Emitting Laser (MIXSEL) with output power up to 660 mW and repetition rate up to 10 GHz | |
Quarterman et al. | 169 GHz repetition rate passively harmonically mode-locked VECSEL emitting 265 fs pulses | |
Häring et al. | Passively mode-locked diode-pumped surface-emitting semiconductor laser | |
Südmeyer | Power scaling of the MIXSEL: an integrated picosecond semiconductor laser with> 6 W average power | |
Wittwer et al. | 10-GHz MIXSEL: An integrated ultrafast semiconductor disk laser with 2.2 W average power | |
Rudin et al. | Ultrafast semiconductor lasers in the thin disk geometry | |
Pallmann et al. | Novel ultrafast vertically emitting semiconductor lasers | |
Lorenser et al. | Passively Mode-Locked Surface-Emitting Semiconductor Lasers with High Repetition Rates of up to 30 GHz | |
Sieber et al. | High-average power femtosecond VECSELs with tunable repetition rates up to 10 GHz | |
Bellancourt et al. | First demonstration of a modelocked integrated external-cavity surface emitting laser (MIXSEL) | |
Rudin et al. | First modelocked integrated external-cavity surface emitting laser (MIXSEL) |