Morishima et al., 1998 - Google Patents
A 1-V 20-ns 512-Kbit MT-CMOS SRAM with auto-power-cut scheme using dummy memory cellsMorishima et al., 1998
- Document ID
- 15818295072510475913
- Author
- Morishima C
- Nii K
- Tsujihashi Y
- Hayakawa Y
- Makino H
- Publication year
- Publication venue
- Proceedings of the 24th European Solid-State Circuits Conference
External Links
Snippet
A 512-Kbit SRAM using dual threshold voltage transistors has been fabricated. The memory cells are composed of high-threshold voltage transistors and cutting off the power supply to the peripheral circuit reduces the power consumption without data destruction during sleep …
- 230000002093 peripheral 0 abstract description 5
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C11/00—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
- G11C11/21—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
- G11C11/34—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
- G11C11/40—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
- G11C11/41—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming static cells with positive feedback, i.e. cells not needing refreshing or charge regeneration, e.g. bistable multivibrator or Schmitt trigger
- G11C11/413—Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing, timing, power reduction
- G11C11/417—Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing, timing, power reduction for memory cells of the field-effect type
- G11C11/419—Read-write circuits
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C11/00—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
- G11C11/21—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
- G11C11/34—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
- G11C11/40—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
- G11C11/41—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming static cells with positive feedback, i.e. cells not needing refreshing or charge regeneration, e.g. bistable multivibrator or Schmitt trigger
- G11C11/412—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming static cells with positive feedback, i.e. cells not needing refreshing or charge regeneration, e.g. bistable multivibrator or Schmitt trigger using field-effect transistors only
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C11/00—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
- G11C11/21—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
- G11C11/34—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
- G11C11/40—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
- G11C11/401—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
- G11C11/4063—Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing
- G11C11/407—Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing for memory cells of the field-effect type
- G11C11/409—Read-write (R-W) circuits
- G11C11/4094—Bit-line management or control circuits
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C11/00—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
- G11C11/21—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
- G11C11/34—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
- G11C11/40—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
- G11C11/401—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
- G11C11/406—Management or control of the refreshing or charge-regeneration cycles
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C7/00—Arrangements for writing information into, or reading information out from, a digital store
- G11C7/06—Sense amplifiers; Associated circuits, e.g. timing or triggering circuits
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C5/00—Details of stores covered by G11C11/00
- G11C5/14—Power supply arrangements, e.g. Power down/chip (de)selection, layout of wiring/power grids, multiple supply levels
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C8/00—Arrangements for selecting an address in a digital store
- G11C8/10—Decoders
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C7/00—Arrangements for writing information into, or reading information out from, a digital store
- G11C7/22—Read-write (R-W) timing or clocking circuits; Read-write (R-W) control signal generators or management
- G11C7/227—Timing of memory operations based on dummy memory elements or replica circuits
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C2207/00—Indexing scheme relating to arrangements for writing information into, or reading information out from, a digital store
- G11C2207/22—Control and timing of internal memory operations
- G11C2207/2227—Standby or low power modes
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C2207/00—Indexing scheme relating to arrangements for writing information into, or reading information out from, a digital store
- G11C2207/06—Sense amplifier related aspects
- G11C2207/065—Sense amplifier drivers
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C7/00—Arrangements for writing information into, or reading information out from, a digital store
- G11C7/10—Input/output (I/O) data interface arrangements, e.g. I/O data control circuits, I/O data buffers
- G11C7/1072—Input/output (I/O) data interface arrangements, e.g. I/O data control circuits, I/O data buffers for memories with random access ports synchronised on clock signal pulse trains, e.g. synchronous memories, self timed memories
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C29/00—Checking stores for correct operation; Subsequent repair; Testing stores during standby or offline operation
- G11C29/04—Detection or location of defective memory elements, e.g. cell constructio details, timing of test signals
- G11C29/08—Functional testing, e.g. testing during refresh, power-on self testing [POST] or distributed testing
- G11C29/12—Built-in arrangements for testing, e.g. built-in self testing [BIST] or interconnection details
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C15/00—Digital stores in which information comprising one or more characteristic parts is written into the store and in which information is read-out by searching for one or more of these characteristic parts, i.e. associative or content-addressed stores
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Nii et al. | A low power SRAM using auto-backgate-controlled MT-CMOS | |
KR101013118B1 (en) | integrated circuit | |
Chen et al. | An ultra-low-power memory with a subthreshold power supply voltage | |
US7466604B2 (en) | SRAM voltage control for improved operational margins | |
US5764566A (en) | Static random access memory capable of reducing stendly power consumption and off-leakage current | |
US20160217834A1 (en) | Low voltage sensing scheme having reduced active power down standby current | |
US6798688B2 (en) | Storage array such as a SRAM with reduced power requirements | |
Lien et al. | A 40 nm 512 kb cross-point 8 T pipeline SRAM with binary word-line boosting control, ripple bit-line and adaptive data-aware write-assist | |
Hamzaoglu et al. | Analysis of dual-V/sub T/SRAM cells with full-swing single-ended bit line sensing for on-chip cache | |
US7092309B2 (en) | Standby mode SRAM design for power reduction | |
JPS61253695A (en) | Semiconductor memory device | |
Lin et al. | A 1-V 128-kb four-way set-associative CMOS cache memory using wordline-oriented tag-compare (WLOTC) structure with the content-addressable-memory (CAM) 10-transistor tag cell | |
JPH02101694A (en) | Static ram | |
US6459611B2 (en) | Low power SRAM memory cell having a single bit line | |
Bhavnagarwala et al. | A pico-joule class, 1 GHz, 32 KByte/spl times/64 b DSP SRAM with self reverse bias | |
Williams et al. | An experimental 1-Mbit CMOS SRAM with configurable organization and operation | |
Mohammad et al. | A reduced voltage swing circuit using a single supply to enable lower voltage operation for SRAM-based memory | |
US5384730A (en) | Coincident activation of pass transistors in a random access memory | |
Raikwal et al. | High speed 8T SRAM cell design with improved read stability at 180nm technology | |
Morimura et al. | A shared-bitline SRAM cell architecture for 1-V ultra low-power word-bit configurable macrocells | |
Morimura et al. | A 1-V 1-Mb SRAM for portable equipment | |
Prasad et al. | Process variation analysis of 10T SRAM cell for low power, high speed cache memory for IoT applications | |
Mori et al. | A 1 V 0.9 mW at 100 MHz 2 k/spl times/16 b SRAM utilizing a half-swing pulsed-decoder and write-bus architecture in 0.25/spl mu/m dual-Vt CMOS | |
Huang et al. | An energy-efficient conditional biasing write assist with built-in time-based write-margin-tracking for low-voltage SRAM | |
Morishima et al. | A 1-V 20-ns 512-Kbit MT-CMOS SRAM with auto-power-cut scheme using dummy memory cells |