Nothing Special   »   [go: up one dir, main page]

Cancellier et al., 2014 - Google Patents

Energy-efficient Hadamard-based SATD architectures

Cancellier et al., 2014

Document ID
12607422622128984217
Author
Cancellier L
Bräscher A
Seidel I
Güntzel J
Publication year
Publication venue
Proceedings of the 27th Symposium on Integrated Circuits and Systems Design

External Links

Snippet

In this paper we present energy-efficient Hadamard-based Sum of Absolute Transformed Differences (SATD) architectures. We relied on two state of the art methods for SATD, one using the Fast Hadamard Transform (FHT) butterfly and another one using the so-called …
Continue reading at dl.acm.org (other versions)

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/14Fourier, Walsh or analogous domain transformations, e.g. Laplace, Hilbert, Karhunen-Loeve, transforms
    • G06F17/147Discrete orthonormal transforms, e.g. discrete cosine transform, discrete sine transform, and variations therefrom, e.g. modified discrete cosine transform, integer transforms approximating the discrete cosine transform
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/16Matrix or vector computation, e.g. matrix-matrix or matrix-vector multiplication, matrix factorization
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/503Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
    • H04N19/51Motion estimation or motion compensation
    • H04N19/513Processing of motion vectors
    • H04N19/517Processing of motion vectors by encoding
    • H04N19/52Processing of motion vectors by encoding by predictive encoding
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F7/00Methods or arrangements for processing data by operating upon the order or content of the data handled
    • G06F7/38Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation
    • G06F7/48Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation using non-contact-making devices, e.g. tube, solid state device; using unspecified devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/17Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
    • H04N19/176Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a block, e.g. a macroblock
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/60Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding
    • H04N19/61Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding in combination with predictive coding
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F1/00Details of data-processing equipment not covered by groups G06F3/00 - G06F13/00, e.g. cooling, packaging or power supply specially adapted for computer application
    • G06F1/16Constructional details or arrangements
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for programme control, e.g. control unit
    • G06F9/06Arrangements for programme control, e.g. control unit using stored programme, i.e. using internal store of processing equipment to receive and retain programme
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/42Methods or arrangements for coding, decoding, compressing or decompressing digital video signals characterised by implementation details or hardware specially adapted for video compression or decompression, e.g. dedicated software implementation
    • H04N19/43Hardware specially adapted for motion estimation or compensation
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F2207/00Indexing scheme relating to methods or arrangements for processing data by operating upon the order or content of the data handled
    • G06F2207/38Indexing scheme relating to groups G06F7/38 - G06F7/575

Similar Documents

Publication Publication Date Title
Silveira et al. Power-efficient sum of absolute differences hardware architecture using adder compressors for integer motion estimation design
Chen et al. Analysis and architecture design of variable block-size motion estimation for H. 264/AVC
August et al. Low power design of DCT and IDCT for low bit rate video codecs
Masera et al. Adaptive approximated DCT architectures for HEVC
EP1850597A1 (en) Method and circuit for performing a cordic based Loeffler discrete cosine transformation (DCT), particularly for signal processing
Kammoun et al. Forward-inverse 2D hardware implementation of approximate transform core for the VVC standard
Cancellier et al. Energy-efficient Hadamard-based SATD architectures
Seidel et al. Energy-efficient SATD for beyond HEVC
Seidel et al. Energy-efficient Hadamard-based SATD hardware architectures through calculation reuse
Azgin et al. A computation and energy reduction technique for HEVC intra prediction
Hwangbo et al. A multitransform architecture for H. 264/AVC high-profile coders
Seidel et al. Coding-and energy-efficient FME hardware design
Goebel et al. Hardware design of DC/CFL intra-prediction decoder for the AV1 codec
Cancellier et al. Exploring optimized Hadamard methods to design energy-efficient SATD architectures
Porto et al. Fast and energy-efficient approximate motion estimation architecture for real-time 4 K UHD processing
Akman et al. Efficient 2D DCT architecture based on approximate compressors for image compression with HEVC intra-prediction
Chatterjee et al. Approximated core transform architectures for HEVC using WHT-based decomposition method
Choi et al. Zero coefficient-aware IDCT algorithm for fast video decoding
Abdelrasoul et al. Real‐time unified architecture for forward/inverse discrete cosine transform in high efficiency video coding
Bräscher et al. Improving the energy efficiency of a low-area SATD hardware architecture using fine grain PDE
Taylor et al. Design for the discrete cosine transform in VLSI
Martisius et al. A 2-D DCT hardware codec based on Loeffler algorithm
Silveira et al. Power-efficient sum of absolute differences architecture using adder compressors
Prasoon et al. 4× 4 2-D DCT for H. 264/AVC
Sequeira et al. Low-power HEVC 8-point 2-D discrete cosine transform hardware using adder compressors