Wipf et al., 1993 - Google Patents
Total synthesis and structure assignment of the antitumor antibiotic aranorosinWipf et al., 1993
- Document ID
- 715001152503349042
- Author
- Wipf P
- Kim Y
- Fritch P
- Publication year
- Publication venue
- The Journal of Organic Chemistry
External Links
Snippet
The structurally unique antifungal and antitumor antibiotic aranorosin was prepared in a convergent, stereoselective sequence. Oxidative cyclization of AT-protected L-tyrosine, followed by face-selective 1, 2-addition of [(benzyloxy) methyl] lithium, Henbest oxidation in …
- JHTWWPWUODMKEO-PHJKOLFRSA-N Aranorosin   O1C(O)C(NC(=O)/C=C/C(/C)=C/[C@H](C)CCCCCC)CC21[C@@H]1O[C@@H]1C(=O)[C@@H]1O[C@@H]12 0 title abstract description 44
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F7/00—Compounds containing elements of Groups 4 or 14 of the Periodic System
- C07F7/02—Silicon compounds
- C07F7/08—Compounds having one or more C-Si linkages
- C07F7/18—Compounds having one or more C-Si linkages as well as one or more C-O-Si linkages
- C07F7/1804—Compounds having Si-O-C linkages
- C07F7/1812—Compounds having Si-O-C linkages having (C1)a-Si-(OC2)b linkages, a and b each being >=1 and a+b = 4, C1 and C2 being hydrocarbon or substituted hydrocarbon radicals
- C07F7/1844—Compounds having Si-O-C linkages having (C1)a-Si-(OC2)b linkages, a and b each being >=1 and a+b = 4, C1 and C2 being hydrocarbon or substituted hydrocarbon radicals a being 3, b being 1
- C07F7/1848—C1 being an unsubstituted acyclic saturated hydrocarbon radical containing less than six carbon atoms, a benzyl radical, a phenyl radical, or a methyl substituted phenyl radical
- C07F7/1856—C2 containing cycloaliphatic, heterocyclic or condensed aromatic rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D207/00—Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom
- C07D207/02—Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
- C07D207/04—Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members
- C07D207/10—Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms, with at the most one to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
- C07D207/12—Oxygen or sulfur atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D207/00—Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom
- C07D207/02—Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
- C07D207/04—Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members
- C07D207/10—Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms, with at the most one to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
- C07D207/16—Carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D207/00—Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom
- C07D207/02—Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
- C07D207/04—Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members
- C07D207/08—Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with hydrocarbon radicals, substituted by hetero atoms, attached to ring carbon atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D205/00—Heterocyclic compounds containing four-membered rings with one nitrogen atom as the only ring hetero atom
- C07D205/02—Heterocyclic compounds containing four-membered rings with one nitrogen atom as the only ring hetero atom not condensed with other rings
- C07D205/06—Heterocyclic compounds containing four-membered rings with one nitrogen atom as the only ring hetero atom not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member
- C07D205/08—Heterocyclic compounds containing four-membered rings with one nitrogen atom as the only ring hetero atom not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member with one oxygen atom directly attached in position 2, e.g. beta-lactams
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D207/00—Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom
- C07D207/02—Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
- C07D207/18—Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having one double bond between ring members or between a ring member and a non-ring member
- C07D207/22—Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having one double bond between ring members or between a ring member and a non-ring member with hetero atoms or with carbon atoms having three bonds to hetero atoms, with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D491/00—Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
- C07D491/02—Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains two hetero rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D215/00—Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems
- C07D215/02—Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D471/00—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D317/00—Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms
- C07D317/08—Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3
- C07D317/10—Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3 not condensed with other rings
- C07D317/14—Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3 not condensed with other rings with substituted hydrocarbon radicals attached to ring carbon atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D498/00—Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and oxygen atoms as the only ring hetero atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D477/00—Heterocyclic compounds containing 1-azabicyclo [3.2.0] heptane ring systems, i.e. compounds containing a ring system of the formula:, carbapenicillins, thienamycins; Such ring systems being further condensed, e.g. 2,3-condensed with an oxygen-, nitrogen- or sulfur-containing hetero ring
- C07D477/02—Preparation
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D493/00—Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system
- C07D493/02—Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system in which the condensed system contains two hetero rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D213/00—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
- C07D213/02—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
- C07D213/04—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
- C07D213/06—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom containing only hydrogen and carbon atoms in addition to the ring nitrogen atom
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Wipf et al. | Total synthesis and structure assignment of the antitumor antibiotic aranorosin | |
US5446158A (en) | Process for synthesis of FK-506 and tricarbonyl intermediates | |
Jones et al. | Chemistry of tricarbonyl hemiketals and application of Evans technology to the total synthesis of the immunosuppressant (-)-FK-506 | |
Miller et al. | Enantiomerically pure polyhydroxylated acyliminium ions. Synthesis of the glycosidase inhibitors (-)-swainsonine and (+)-castanospermine | |
Evans et al. | Synthetic studies in the lysocellin family of polyether antibiotics. The total synthesis of ferensimycin B | |
Keck et al. | An acylnitroso cycloaddition approach to the synthesis of highly oxygenated indolizidine alkaloids | |
WO1998022451A1 (en) | Taxol derivatives | |
Martin et al. | Facile asymmetric syntheses of 1-deoxycastanospermine and 1-deoxy-8a-epi-castanospermine | |
Corey et al. | The structural requirements for inhibition of proteasome function by the lactacystin-derived β-lactone and synthetic analogs | |
Lipshutz et al. | Oxazolophanes as masked cyclopeptide alkaloid equivalents: cyclic peptide chemistry without peptide couplings | |
Szolcsányi et al. | Pd (II)-catalysed aminocarbonylation as a key step in the total synthesis of C-6 homologues of 1-deoxynojirimycin and 1-deoxy-l-idonojirimycin | |
Fuentes et al. | Stereocontrolled synthesis of an important intermediate for the preparation of 1. beta.-methylcarbapenem antibiotics | |
Newkome et al. | Nicotinic acid lariat ethers: syntheses, complexation, and reduction | |
Khim et al. | SET-photosensitized reactions of α-silylamino-enones and ynones proceeding by 6-endo α-amino radical cyclization pathways | |
SETOI et al. | Synthesis of some polyhydroxylated pyrrolidine derivatives | |
Prévost et al. | Synthesis of substituted piperidines, decahydroquinolines and octahydroindolizines by radical rearrangement reactions of 2-alkylideneaziridines | |
Hodgson et al. | Organolithium-induced enantioselective alkylative double ring-opening of epoxides: synthesis of enantioenriched unsaturated amino alcohols | |
Hassfeld et al. | Synthesis of the C1-C17 macrolactone of tedanolide | |
Mondal et al. | A Synthetic View of an Analogue of the Spiro-β-lactone-γ-lactam Ring in Oxazolomycins and Lajollamycin | |
Drew et al. | Photoinduced addition of methanol to 5 (S)-5-triisopropylsiloxymethyl-N-boc-dihydropyrrole-2 (5H)-one: A new route to 4 (S), 5 (S)-disubstituted pyrrolidin-2-ones | |
KR0136570B1 (en) | Process for the preparation of meropenem compounds | |
Steppeler et al. | Synthesis of terminal alkynes based on (1S, 3R, 4R)-and (1S, 3S, 4R)-2-azabicyclo [2.2. 1] heptane | |
Kazmaier et al. | A short synthesis of polyhydroxylated piperidines by aldol reaction of chelated amino acid ester enolates | |
Schmidlin et al. | Approaches to the synthesis of cytochalasans. Part 8. Further transformations and optical resolution of the tetrahydroisoindolinone subunit | |
Brutiu et al. | Stereospecific cyclization of a pseudo-C2-symmetric unsaturated diol |