Nothing Special   »   [go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Search: a296504 -id:a296504
     Sort: relevance | references | number | modified | created      Format: long | short | data
Decimal expansion of ratio-sum for A295862; see Comments.
+10
44
3, 8, 7, 0, 2, 3, 6, 0, 7, 9, 7, 9, 5, 9, 5, 9, 3, 2, 3, 2, 8, 2, 0, 5, 2, 3, 1, 1, 7, 8, 3, 9, 9, 5, 0, 1, 3, 8, 5, 6, 7, 3, 9, 8, 3, 0, 0, 9, 7, 2, 3, 1, 9, 9, 4, 3, 0, 1, 0, 8, 7, 6, 5, 5, 9, 5, 8, 0, 5, 4, 5, 4, 0, 6, 7, 3, 8, 5, 3, 9, 0, 5, 8, 8, 6, 2
OFFSET
1,1
COMMENTS
Suppose that A = (a(n)), for n >= 0, is a sequence, and g is a real number such that a(n)/a(n-1) -> g. The ratio-sum for A is |a(1)/a(0) - g| + |a(2)/a(1) - g| + ..., assuming that this series converges. For A = A295862, we have g = (1 + sqrt(5))/2, the golden ratio (A001622). See A296425-A296434 for related ratio-sums and A296452-A296461 for related limiting power-ratios. Guide to more ratio-sums and limiting power-ratios:
****
Sequence A ratio-sum for A limiting power-ratio for A
EXAMPLE
ratio-sum = 6.21032710946618494227967...
MATHEMATICA
a[0] = 1; a[1] = 3; b[0] = 2; b[1 ] = 4; b[2] = 5;
a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n];
j = 1; While[j < 13, k = a[j] - j - 1;
While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++];
Table[a[n], {n, 0, k}]; (* A295862 *)
g = GoldenRatio; s = N[Sum[- g + a[n]/a[n - 1], {n, 1, 1000}], 200]
Take[RealDigits[s, 10][[1]], 100] (* A296469 *)
CROSSREFS
KEYWORD
nonn,easy,cons
AUTHOR
Clark Kimberling, Dec 18 2017
STATUS
approved
Decimal expansion of ratio-sum for A294553; see Comments.
+10
3
3, 9, 7, 4, 1, 2, 5, 9, 5, 1, 3, 2, 5, 3, 7, 0, 8, 1, 2, 5, 3, 5, 5, 2, 2, 0, 3, 9, 0, 0, 9, 5, 3, 7, 6, 3, 6, 7, 6, 8, 3, 4, 2, 8, 2, 8, 6, 3, 6, 4, 1, 7, 1, 1, 7, 5, 5, 9, 7, 9, 3, 0, 1, 1, 0, 7, 7, 5, 9, 5, 2, 0, 3, 4, 8, 5, 3, 9, 8, 3, 0, 5, 8, 0, 2, 1
OFFSET
1,1
COMMENTS
Suppose that A = (a(n)), for n >= 0, is a sequence, and g is a real number such that a(n)/a(n-1) -> g. The ratio-sum for A is |a(1)/a(0) - g| + |a(2)/a(1) - g| + ..., assuming that this series converges. For A = A294553, we have g = (1 + sqrt(5))/2, the golden ratio (A001622). See the guide at A296469 for related sequences.
EXAMPLE
ratio-sum = 3.974125951325370812535522039009537636768...
MATHEMATICA
a[0] = 1; a[1] = 2; b[0] = 3; b[1] = 4;
a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n - 1] + b[n - 2] - n;
j = 1; While[j < 13, k = a[j] - j - 1;
While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++];
Table[a[n], {n, 0, k}]; (* A294553 *)
g = GoldenRatio; s = N[Sum[- g + a[n]/a[n - 1], {n, 1, 1000}], 200]
Take[RealDigits[s, 10][[1]], 100] (* A296503 *)
CROSSREFS
KEYWORD
nonn,easy,cons
AUTHOR
Clark Kimberling, Apr 14 2018
STATUS
approved

Search completed in 0.005 seconds