Nothing Special   »   [go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A293358
Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n-1), where a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4.
14
1, 3, 8, 16, 30, 53, 92, 155, 258, 425, 696, 1135, 1846, 2998, 4862, 7879, 12761, 20661, 33444, 54128, 87596, 141749, 229371, 371147, 600546, 971722, 1572299, 2544053, 4116385, 6660472, 10776892, 17437400, 28214329, 45651767, 73866135, 119517942
OFFSET
0,2
COMMENTS
The complementary sequences a() and b() are uniquely determined by the titular equation and initial values. The initial values of each sequence in the following guide are a(0) = 1, a(2) = 3, b(0) = 2, b(1) = 4:
A293358: a(n) = a(n-1) + a(n-2) + b(n-1)
A293406: a(n) = a(n-1) + a(n-2) + b(n-1) + 1
A293765: a(n) = a(n-1) + a(n-2) + b(n-1) + 2
A293766: a(n) = a(n-1) + a(n-2) + b(n-1) + 3
A293767: a(n) = a(n-1) + a(n-2) + b(n-1) - 1
A294365: a(n) = a(n-1) + a(n-2) + b(n-1) + n
A294366: a(n) = a(n-1) + a(n-2) + b(n-1) + 2n
A294367: a(n) = a(n-1) + a(n-2) + b(n-1) + n - 1
A294368: a(n) = a(n-1) + a(n-2) + b(n-1) + n + 1
Conjecture: a(n)/a(n-1) -> (1 + sqrt(5))/2, the golden ratio.
LINKS
Clark Kimberling, Complementary equations, J. Int. Seq. 19 (2007), 1-13.
EXAMPLE
a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4, so that
a(2) = a(1) + a(0) + b(1) = 8;
Complement: (b(n)) = (2, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 17, ...)
MATHEMATICA
mex := First[Complement[Range[1, Max[#1] + 1], #1]] &;
a[0] = 1; a[1] = 3; b[0] = 2; b[1] = 4;
a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n - 1];
b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]];
Table[a[n], {n, 0, 40}] (* A293358 *)
Table[b[n], {n, 0, 10}]
CROSSREFS
Cf. A001622 (golden ratio), A293076.
Sequence in context: A009439 A000233 A002624 * A227265 A295960 A068039
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Oct 29 2017
STATUS
approved