Nothing Special   »   [go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Search: a201201 -id:a201201
     Sort: relevance | references | number | modified | created      Format: long | short | data
Alternating row sums of triangle A201201: first associated monic Laguerre-Sonin(e) polynomials with parameter alpha=1 evaluated at x=-1.
+20
10
1, -5, 29, -201, 1631, -15173, 159093, -1854893, 23788271, -332613321, 5033396573, -81929955953, 1426898945343, -26468817431501, 520884561854501, -10836674357638293, 237603001692915983, -5475288709200573713, 132276033079845108621
OFFSET
0,2
LINKS
Michael Wallner, A bijection of plane increasing trees with relaxed binary trees of right height at most one, arXiv:1706.07163 [math.CO], 2017, Table 2 on p. 13.
FORMULA
a(n) = Sum_{k=0..n} ((-1)^k)*A201201(n,k), n>=0.
a(n)+(2*n+3)*a(n-1)+n*(n+1)*a(n-2)=0, a(-1)=0, a(0)=1. - R. J. Mathar, Dec 07 2011
From Wolfdieter Lang, Dec 11 2011: (Start)
E.g.f. from A201201 with x=-1, z->x: g(x) = exp(1/(1+x))*(3+2*x)*(exp(-1) + (Ei(1,1/(1+x))-Ei(1,1)))/(1+x)^4-(2+x)/(1+x)^3, with the exponential integral Ei.
This e.g.f. satisfies the homogeneous ordinary second-order differential equation (1+x)^2*(d^2(g(x))/dx^2) + (7+6*x)*(d(g(x))/dx)+6*g(x), with g(0)=1 and (d(g(x))/dx)_{x=0} = -5. This is equivalent to the recurrence conjectured above by R. J. Mathar, which is thus proved.
(End)
Let G denote Gompertz's constant A073003. The unsigned sequence is the sequence of numerators in the convergents coming from the infinite continued fraction expansion 1 - G = 1/(3 - 2/(5 - 6/(7 - ... - n*(n+1)/((2*n+3) - ...)))). The sequence of convergents begins [1/3, 5/13, 29/73, 201/501, ...]. The denominators are in A000262. - Peter Bala, Aug 19 2013
a(n) ~ (-1)^n * 2^(-1/2)*(exp(-1)-Ei(1,1)) * exp(2*sqrt(n)-n+1/2) * n^(n+7/4) * (1+91/(48*sqrt(n))), where Ei(1,1) = 0.21938393439552... = G / exp(1), where G = 0.596347362323194... is the Gompertz constant (see A073003). - Vaclav Kotesovec, Oct 19 2013
MAPLE
A201203 := proc(n)
add((-1)^k*A201201(n, k), k=0..n) ;
end proc:
seq(A201203(n), n=0..20) ; # R. J. Mathar, Dec 07 2011
MATHEMATICA
Flatten[{1, RecurrenceTable[{n*(1+n)*a[-2+n]+(3+2*n)*a[-1+n] +a[n]==0, a[1]==-5, a[2]==29}, a, {n, 20}]}] (* Vaclav Kotesovec, Oct 19 2013 *)
CROSSREFS
Cf. A201201, A201202 (row sums), A073003, A002793.
KEYWORD
sign,easy
AUTHOR
Wolfdieter Lang, Dec 06 2011
EXTENSIONS
R. J. Mathar conjecture corrected and proved by Wolfdieter Lang, Dec 11 2011
STATUS
approved
Row sums of triangle A201201: first associated monic Laguerre polynomials with parameter alpha=1 evaluated at x=1.
+20
3
1, -3, 9, -27, 63, 117, -4167, 55953, -651177, 7336593, -82438983, 927666333, -10331176977, 110106505773, -1023541502247, 5304225184137, 103363857534663, -5240827920059127, 158560193765332953, -4192332947225516907, 105290369454806352927
OFFSET
0,2
FORMULA
a(n)=sum(A201201(n,k),k=0..n), n>=0.
Apparently a(n)+(2*n+1)*a(n-1)+n*(n+1)*a(n-2)=0, a(-1)=0, a(1)=1. - R. J. Mathar, Dec 07 2011
From Wolfdieter Lang, Dec 12 2011: (Start)
E.g.f. from A201201 with x=1, z->x: g(x)=(1+2*x)*exp(-1/(1+x))*(exp(1)-((Ei(1,-1/(1+x)) - Ei(1,-1))))/(1+x)^4 - x/(1+x)^3, with the exponential integral Ei. In order to obtain the series use first Ei(1,-y/(1+x)) - Ei(1,-y) and put y=1 afterwards.
This e.g.f. satisfies the homogeneous second-order differential equation: (1+x)^2*(d^2/dx^2)g(x) + (5+6*x)*(d/dx)g(x) + 6*g(x) = 0, with g(0)=1 and (d/dx)g(x)|_{x=0} = -3. This is equivalent to the recurrence conjectured by R. J. Mathar, which is thus proved.
(End)
MAPLE
A201202 := proc(n)
add(A201201(n, k), k=0..n) ;
end proc:
seq(A201202(n), n=0..20) ; # R. J. Mathar, Dec 07 2011
MATHEMATICA
a[n_, k_] := (-1)^(n-k)*((n+1)*(n+1)!/((k+1)*(k+1)!))*Binomial[n, k]*HypergeometricPFQ[{-(n-k), k, 1}, {-(n+1), k+2}, 1]; Table[Sum[a[n, k], {k, 0, n}], {n, 0, 20}] (* Jean-François Alcover, Jun 21 2013 *)
CROSSREFS
Cf. A201201, A201203 (alternating row sums).
KEYWORD
sign,easy
AUTHOR
Wolfdieter Lang, Dec 06 2011
STATUS
approved

Search completed in 0.005 seconds