Nothing Special   »   [go: up one dir, main page]

login
Search: a153588 -id:a153588
     Sort: relevance | references | number | modified | created      Format: long | short | data
Pell-Lucas numbers: numerators of continued fraction convergents to sqrt(2).
(Formerly M2665 N1064)
+10
357
1, 1, 3, 7, 17, 41, 99, 239, 577, 1393, 3363, 8119, 19601, 47321, 114243, 275807, 665857, 1607521, 3880899, 9369319, 22619537, 54608393, 131836323, 318281039, 768398401, 1855077841, 4478554083, 10812186007, 26102926097, 63018038201, 152139002499, 367296043199
OFFSET
0,3
COMMENTS
Number of n-step non-selfintersecting paths starting at (0,0) with steps of types (1,0), (-1,0) or (0,1) [Stanley].
Number of n steps one-sided prudent walks with east, west and north steps. - Shanzhen Gao, Apr 26 2011
Number of ternary strings of length n-1 with subwords (0,2) and (2,0) not allowed. - Olivier Gérard, Aug 28 2012
Number of symmetric 2n X 2 or (2n-1) X 2 crossword puzzle grids: all white squares are edge connected; at least 1 white square on every edge of grid; 180-degree rotational symmetry. - Erich Friedman
a(n+1) is the number of ways to put molecules on a 2 X n ladder lattice so that the molecules do not touch each other.
In other words, a(n+1) is the number of independent vertex sets and vertex covers in the n-ladder graph P_2 X P_n. - Eric W. Weisstein, Apr 04 2017
Number of (n-1) X 2 binary arrays with a path of adjacent 1's from top row to bottom row, see A359576. - R. H. Hardin, Mar 16 2002
a(2*n+1) with b(2*n+1) := A000129(2*n+1), n >= 0, give all (positive integer) solutions to Pell equation a^2 - 2*b^2 = -1.
a(2*n) with b(2*n) := A000129(2*n), n >= 1, give all (positive integer) solutions to Pell equation a^2 - 2*b^2 = +1 (see Emerson reference).
Bisection: a(2*n) = T(n,3) = A001541(n), n >= 0 and a(2*n+1) = S(2*n,2*sqrt(2)) = A002315(n), n >= 0, with T(n,x), resp. S(n,x), Chebyshev's polynomials of the first, resp. second kind. See A053120, resp. A049310.
Binomial transform of A077957. - Paul Barry, Feb 25 2003
For n > 0, the number of (s(0), s(1), ..., s(n)) such that 0 < s(i) < 4 and |s(i) - s(i-1)| <= 1 for i = 1,2,...,n, s(0) = 2, s(n) = 2. - Herbert Kociemba, Jun 02 2004
For n > 1, a(n) corresponds to the longer side of a near right-angled isosceles triangle, one of the equal sides being A000129(n). - Lekraj Beedassy, Aug 06 2004
Exponents of terms in the series F(x,1), where F is determined by the equation F(x,y) = xy + F(x^2*y,x). - Jonathan Sondow, Dec 18 2004
Number of n-words from the alphabet A={0,1,2} which two neighbors differ by at most 1. - Fung Cheok Yin (cheokyin_restart(AT)yahoo.com.hk), Aug 30 2006
Consider the mapping f(a/b) = (a + 2b)/(a + b). Taking a = b = 1 to start with and carrying out this mapping repeatedly on each new (reduced) rational number gives the following sequence 1/1, 3/2, 7/5, 17/12, 41/29, ... converging to 2^(1/2). Sequence contains the numerators. - Amarnath Murthy, Mar 22 2003 [Amended by Paul E. Black (paul.black(AT)nist.gov), Dec 18 2006]
Odd-indexed prime numerators are prime RMS numbers (A140480) and also NSW primes (A088165). - Ctibor O. Zizka, Aug 13 2008
The intermediate convergents to 2^(1/2) begin with 4/3, 10/7, 24/17, 58/41; essentially, numerators=A052542 and denominators here. - Clark Kimberling, Aug 26 2008
Equals right border of triangle A143966. Starting (1, 3, 7, ...) equals INVERT transform of (1, 2, 2, 2, ...) and row sums of triangle A143966. - Gary W. Adamson, Sep 06 2008
Inverse binomial transform of A006012; Hankel transform is := [1, 2, 0, 0, 0, 0, 0, 0, 0, ...]. - Philippe Deléham, Dec 04 2008
From Charlie Marion, Jan 07 2009: (Start)
In general, denominators, a(k,n) and numerators, b(k,n), of continued fraction convergents to sqrt((k+1)/k) may be found as follows:
let a(k,0) = 1, a(k,1) = 2k; for n>0, a(k,2n) = 2*a(k,2n-1) + a(k,2n-2) and a(k,2n+1) = (2k)*a(k,2n) + a(k,2n-1);
let b(k,0) = 1, b(k,1) = 2k+1; for n>0, b(k,2n) = 2*b(k,2n-1) + b(k,2n-2) and b(k,2n+1) = (2k)*b(k,2n) + b(k,2n-1).
For example, the convergents to sqrt(2/1) start 1/1, 3/2, 7/5, 17/12, 41/29.
In general, if a(k,n) and b(k,n) are the denominators and numerators, respectively, of continued fraction convergents to sqrt((k+1)/k) as defined above, then
k*a(k,2n)^2 - a(k,2n-1)*a(k,2n+1) = k = k*a(k,2n-2)*a(k,2n) - a(k,2n-1)^2 and
b(k,2n-1)*b(k,2n+1) - k*b(k,2n)^2 = k+1 = b(k,2n-1)^2 - k*b(k,2n-2)*b(k,2n);
for example, if k=1 and n=3, then b(1,n)=a(n+1) and
1*a(1,6)^2 - a(1,5)*a(1,7) = 1*169^2 - 70*408 = 1;
1*a(1,4)*a(1,6) - a(1,5)^2 = 1*29*169 - 70^2 = 1;
b(1,5)*b(1,7) - 1*b(1,6)^2 = 99*577 - 1*239^2 = 2;
b(1,5)^2 - 1*b(1,4)*b(1,6) = 99^2 - 1*41*239 = 2.
(End)
This sequence occurs in the lower bound of the order of the set of equivalent resistances of n equal resistors combined in series and in parallel (A048211). - Sameen Ahmed Khan, Jun 28 2010
Let M = a triangle with the Fibonacci series in each column, but the leftmost column is shifted upwards one row. A001333 = lim_{n->infinity} M^n, the left-shifted vector considered as a sequence. - Gary W. Adamson, Jul 27 2010
a(n) is the number of compositions of n when there are 1 type of 1 and 2 types of other natural numbers. - Milan Janjic, Aug 13 2010
Equals the INVERTi transform of A055099. - Gary W. Adamson, Aug 14 2010
From L. Edson Jeffery, Apr 04 2011: (Start)
Let U be the unit-primitive matrix (see [Jeffery])
U = U_(8,2) = (0 0 1 0)
(0 1 0 1)
(1 0 2 0)
(0 2 0 1).
Then a(n) = (1/4)*Trace(U^n). (See also A084130, A006012.)
(End)
For n >= 1, row sums of triangle
m/k.|..0.....1.....2.....3.....4.....5.....6.....7
==================================================
.0..|..1
.1..|..1.....2
.2..|..1.....2.....4
.3..|..1.....4.....4.....8
.4..|..1.....4....12.....8....16
.5..|..1.....6....12....32....16....32
.6..|..1.....6....24....32....80....32....64
.7..|..1.....8....24....80....80...192....64...128
which is the triangle for numbers 2^k*C(m,k) with duplicated diagonals. - Vladimir Shevelev, Apr 12 2012
a(n) is also the number of ways to place k non-attacking wazirs on a 2 X n board, summed over all k >= 0 (a wazir is a leaper [0,1]). - Vaclav Kotesovec, May 08 2012
The sequences a(n) and b(n) := A000129(n) are entries of powers of the special case of the Brahmagupta Matrix - for details see Suryanarayan's paper. Further, as Suryanarayan remark, if we set A = 2*(a(n) + b(n))*b(n), B = a(n)*(a(n) + 2*b(n)), C = a(n)^2 + 2*a(n)*b(n) + 2*b(n)^2 we obtain integral solutions of the Pythagorean relation A^2 + B^2 = C^2, where A and B are consecutive integers. - Roman Witula, Jul 28 2012
Pisano period lengths: 1, 1, 8, 4, 12, 8, 6, 4, 24, 12, 24, 8, 28, 6, 24, 8, 16, 24, 40, 12, .... - R. J. Mathar, Aug 10 2012
This sequence and A000129 give the diagonal numbers described by Theon of Smyrna. - Sture Sjöstedt, Oct 20 2012
a(n) is the top left entry of the n-th power of any of the following six 3 X 3 binary matrices: [1, 1, 1; 1, 1, 1; 1, 0, 0] or [1, 1, 1; 1, 1, 0; 1, 1, 0] or [1, 1, 1; 1, 0, 1; 1, 1, 0] or [1, 1, 1; 1, 1, 0; 1, 0, 1] or [1, 1, 1; 1, 0, 1; 1, 0, 1] or [1, 1, 1; 1, 0, 0; 1, 1, 1]. - R. J. Mathar, Feb 03 2014
If p is prime, a(p) == 1 (mod p) (compare with similar comment for A000032). - Creighton Dement, Oct 11 2005, modified by Davide Colazingari, Jun 26 2016
a(n) = A000129(n) + A000129(n-1), where A000129(n) is the n-th Pell Number; e.g., a(6) = 99 = A000129(6) + A000129(5) = 70 + 29. Hence the sequence of fractions has the form 1 + A000129(n-1)/A000129(n), and the ratio A000129(n-1)/A000129(n)converges to sqrt(2) - 1. - Gregory L. Simay, Nov 30 2018
For n > 0, a(n+1) is the length of tau^n(1) where tau is the morphism: 1 -> 101, 0 -> 1. See Song and Wu. - Michel Marcus, Jul 21 2020
For n > 0, a(n) is the number of nonisomorphic quasitrivial semigroups with n elements, see Devillet, Marichal, Teheux. A292932 is the number of labeled quasitrivial semigroups. - Peter Jipsen, Mar 28 2021
a(n) is the permanent of the n X n tridiagonal matrix defined in A332602. - Stefano Spezia, Apr 12 2022
From Greg Dresden, May 08 2023: (Start)
For n >= 2, 4*a(n) is the number of ways to tile this T-shaped figure of length n-1 with two colors of squares and one color of domino; shown here is the figure of length 5 (corresponding to n=6), and it has 4*a(6) = 396 different tilings.
._
|_|_ _ _ _
|_|_|_|_|_|
|_|
(End)
12*a(n) = number of walks of length n in the cyclic Kautz digraph CK(3,4). - Miquel A. Fiol, Feb 15 2024
REFERENCES
M. R. Bacon and C. K. Cook, Some properties of Oresme numbers and convolutions ..., Fib. Q., 62:3 (2024), 233-240.
A. H. Beiler, Recreations in the Theory of Numbers. New York: Dover, pp. 122-125, 1964.
John Derbyshire, Prime Obsession, Joseph Henry Press, April 2004, see p. 16.
J. Devillet, J.‐L. Marichal, and B. Teheux, Classifications of quasitrivial semigroups, Semigroup Forum, 100 (2020), 743-764.
Maribel Díaz Noguera [Maribel Del Carmen Díaz Noguera], Rigoberto Flores, Jose L. Ramirez, and Martha Romero Rojas, Catalan identities for generalized Fibonacci polynomials, Fib. Q., 62:2 (2024), 100-111.
Kenneth Edwards and Michael A. Allen, A new combinatorial interpretation of the Fibonacci numbers squared, Part II, Fib. Q., 58:2 (2020), 169-177.
R. P. Grimaldi, Ternary strings with no consecutive 0's and no consecutive 1's, Congressus Numerantium, 205 (2011), 129-149.
Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §8.5 The Fibonacci and Related Sequences, p. 288.
A. F. Horadam, R. P. Loh, and A. G. Shannon, Divisibility properties of some Fibonacci-type sequences, pp. 55-64 of Combinatorial Mathematics VI (Armidale 1978), Lect. Notes Math. 748, 1979.
Thomas Koshy, Pell and Pell-Lucas Numbers with Applications, Springer, New York, 2014.
Kin Y. Li, Math Problem Book I, 2001, p. 24, Problem 159.
I. Niven and H. S. Zuckerman, An Introduction to the Theory of Numbers. 2nd ed., Wiley, NY, 1966, p. 102, Problem 10.
J. Roberts, Lure of the Integers, Math. Assoc. America, 1992, p. 224.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
R. P. Stanley, Enumerative Combinatorics, Volume 1 (1986), p. 203, Example 4.1.2.
A. Tarn, Approximations to certain square roots and the series of numbers connected therewith, Mathematical Questions and Solutions from the Educational Times, 1 (1916), 8-12.
R. C. Tilley et al., The cell growth problem for filaments, Proc. Louisiana Conf. Combinatorics, ed. R. C. Mullin et al., Baton Rouge, 1970, 310-339.
David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987, p. 34.
LINKS
Antoni Amengual, The intriguing properties of the equivalent resistances of n equal resistors combined in series and in parallel, American Journal of Physics, 68(2), (2000) 175-179. [From Sameen Ahmed Khan, Jun 28 2010]
Joerg Arndt, Matters Computational (The Fxtbook), pp. 313-315.
C. Banderier and D. Merlini, Lattice paths with an infinite set of jumps, FPSAC02, Melbourne, 2002. [Broken link]
S. Barbero, U. Cerruti, and N. Murru, A Generalization of the Binomial Interpolated Operator and its Action on Linear Recurrent Sequences, J. Int. Seq. 13 (2010) # 10.9.7.
Paul Barry, A Catalan Transform and Related Transformations on Integer Sequences, Journal of Integer Sequences, Vol. 8 (2005), Article 05.4.5.
M. Bicknell, A Primer on the Pell Sequence and related sequences, Fibonacci Quarterly, Vol. 13, No. 4, 1975, pp. 345-349.
Florin P. Boca and Christopher Linden, On Minkowski type question mark functions associated with even or odd continued fractions, arXiv:1705.01238 [math.DS], 2017. See p. 7.
J. Bodeen, S. Butler, T. Kim, X. Sun, and S. Wang, Tiling a strip with triangles, El. J. Combinat. 21 (1) (2014) P1.7
K. Böhmová, C. Dalfó, and C. Huemer, The diameter of cyclic Kautz digraphs, Filomat 31(20) (2017) 6551-6560.
Fan Chung and R. L. Graham, Primitive juggling sequences, Am. Math. Monthly 115 (3) (2008) 185-194.
Jimmy Devillet, Jean-Luc Marichal, and Bruno Teheux, Classifications of quasitrivial semigroups, arXiv:1811.11113 [math.RA], 2020.
K. Dohmen, Closed-form expansions for the universal edge elimination polynomial, arXiv preprint arXiv:1403.0969 [math.CO], 2014.
Kenneth Edwards and Michael A. Allen, A new combinatorial interpretation of the Fibonacci numbers squared, arXiv:1907.06517 [math.CO], 2019.
E. I. Emerson, Recurrent Sequences in the Equation DQ^2=R^2+N, Fib. Quart., 7 (1969), pp. 231-242, see Ex. 1, pp. 237-238.
Reinhardt Euler, The Fibonacci Number of a Grid Graph and a New Class of Integer Sequences, Journal of Integer Sequences, Vol. 8 (2005), Article 05.2.6.
Bruce Fang, Pamela E. Harris, Brian M. Kamau, and David Wang, Vacillating parking functions, arXiv:2402.02538 [math.CO], 2024.
M. C. Firengiz and A. Dil, Generalized Euler-Seidel method for second order recurrence relations, Notes on Number Theory and Discrete Mathematics, Vol. 20, 2014, No. 4, 21-32.
Shanzhen Gaoa and Keh-Hsun Chen, Tackling Sequences From Prudent Self-Avoiding Walks, FCS'14, The 2014 International Conference on Foundations of Computer Science.
S. Gao and H. Niederhausen, Sequences Arising From Prudent Self-Avoiding Walks, 2010.
David Garth and Adam Gouge, Affinely Self-Generating Sets and Morphisms, Journal of Integer Sequences, Vol. 10 (2007), Article 07.1.5.
Martin Griffiths, Pell identities via a quadratic field, International Journal of Mathematical Education in Science and Technology, 2013.
F. Harary and R. W. Robinson, Tapeworms, Unpublished manuscript, circa 1973. (Annotated scanned copy)
Gábor Hetyei, The type B permutohedron and the poset of intervals as a Tchebyshev transform, Discrete Comput Geom 71, 918-944 (2024).
A. F. Horadam, R. P. Loh, and A. G. Shannon, Divisibility properties of some Fibonacci-type sequences, pp. 55-64 of Combinatorial Mathematics VI (Armidale 1978), Lect. Notes Math. 748, 1979. [Annotated scanned copy]
Lucas Hoots, Strong quota pair systems and May's theorem on median semilattices, Univ. Louisville, Electronic Theses and Dissertations. Paper 2253, (2015).
Milan Janjic, On Linear Recurrence Equations Arising from Compositions of Positive Integers, Journal of Integer Sequences, Vol. 18 (2015), Article 15.4.7.
L. E. Jeffery, Unit-primitive matrices.
Sameen Ahmed Khan, The bounds of the set of equivalent resistances of n equal resistors combined in series and in parallel, arXiv:1004.3346 [physics.gen-ph], 2010. [From Sameen Ahmed Khan, Jun 28 2010]
Tanya Khovanova, Recursive Sequences.
Y. Kong, Ligand binding on ladder lattices, Biophysical Chemistry, Vol. 81 (1999), pp. 7-21.
Vaclav Kotesovec, Non-attacking chess pieces, 6ed, 2013, pp. 392-393.
Dmitry Kruchinin, Integer properties of a composition of exponential generating functions, arXiv:1211.2100 [math.NT], 2012.
Markus Kuba and Alois Panholzer, Enumeration formulas for pattern restricted Stirling permutations, Discrete Math. 312 (2012), no. 21, 3179--3194. MR2957938. - From N. J. A. Sloane, Sep 25 2012
Pablo Lam-Estrada, Myriam Rosalía Maldonado-Ramírez, José Luis López-Bonilla, and Fausto Jarquín-Zárate, The sequences of Fibonacci and Lucas for each real quadratic fields Q(Sqrt(d)), arXiv:1904.13002 [math.NT], 2019.
J. V. Leyendekkers and A. G. Shannon, Pellian sequence relationships among pi, e, sqrt(2), Notes on Number Theory and Discrete Mathematics, Vol. 18, 2012, No. 2, 58-62. See Table 2. - N. J. A. Sloane, Dec 23 2012
Kin Y. Li, p. 24, Problem 159.
Daniel K. Mark, Hong-Ye Hu, Joyce Kwan, Christian Kokail, Soonwon Choi, and Susanne F. Yelin, Efficiently measuring d-wave pairing and beyond in quantum gas microscopes, arXiv:2412.13186 [cond-mat.quant-gas], 2024. See p. 7.
Barry Mazur, Arithmetic on curves, Bull. Amer. Math. Soc. 14 (1986), 207-259.
aBa Mbirika, Janee Schrader, and Jürgen Spilker, Pell and Associated Pell Braid Sequences as GCDs of Sums of k Consecutive Pell, Balancing, and Related Numbers, J. Int. Seq. (2023) Vol. 26, Art. 23.6.4.
Emanuele Munarini, Combinatorial properties of the antichains of a garland, Integers, 9 (2009), 353-374.
Serge Perrine, About the diophantine equation z^2 = 32y^2 - 16, SCIREA Journal of Mathematics (2019) Vol. 4, Issue 5, 126-139.
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
H. Prodinger and R. F. Tichy, Fibonacci numbers of graphs, Fibonacci Quarterly, 20, 1982, 16-21.
John Riordan and N. J. A. Sloane, Correspondence, 1974
Alexander Shelupanov, Oleg Evsyutin, Anton Konev, Evgeniy Kostyuchenko, Dmitry Kruchinin, and Dmitry Nikiforov, Information Security Methods-Modern Research Directions, Symmetry (2019) Vol. 11, Issue 2, 150.
Haocong Song and Wen Wu, Hankel determinants of a Sturmian sequence, arXiv:2007.09940 [math.CO], 2020. See pp. 2, 4.
Claude Soudieux, De l'infini arithmétique, Zurich, 1960. [Annotated scans of selected pages. Contains many sequences including A1333]
E. R. Suryanarayan, The Brahmagupta Polynomials, Fibonacci Quarterly, 34.1 (1996), 30-39.
Wipawee Tangjai, A Non-standard Ternary Representation of Integers, Thai J. Math (2020) Special Issue: Annual Meeting in Mathematics 2019, 269-283.
G. Tasi and F. Mizukami, Quantum algebraic-combinatoric study of the conformational properties of n-alkanes. I, J. Math. Chemistry, 25, 1999, 55-64 (see Eq. (21)).
G. Tasi et al., Quantum algebraic-combinatoric study of the conformational properties of n-alkanes. II, J. Math. Chemistry, 27, 2000, 191-199 (see p. 193).
V. Thebault, Concerning two classes of remarkable perfect square pairs, Amer. Math. Monthly, 56 (1949), 443-448.
Lucyna Trojnar-Spelina and Iwona Włoch, On Generalized Pell and Pell-Lucas Numbers, Iranian Journal of Science and Technology, Transactions A: Science (2019), 1-7.
Andrew Vince, The average size of a connected vertex set of a graph - Explicit formulas and open problems, Journal of Graph Theory, Volume 97, Issue 1 pp. 82-103.
Eric Weisstein's World of Mathematics, Independent Vertex Set.
Eric Weisstein's World of Mathematics, Ladder Graph.
Eric Weisstein's World of Mathematics, Pythagoras's Constant.
Eric Weisstein's World of Mathematics, Square Root.
Eric Weisstein's World of Mathematics, Square Triangular Number.
Eric Weisstein's World of Mathematics, Vertex Cover.
FORMULA
a(n) = A055642(A125058(n)). - Reinhard Zumkeller, Feb 02 2007
a(n) = 2a(n-1) + a(n-2);
a(n) = ((1-sqrt(2))^n + (1+sqrt(2))^n)/2.
a(n)+a(n+1) = 2 A000129(n+1). 2*a(n) = A002203(n).
G.f.: (1 - x) / (1 - 2*x - x^2) = 1 / (1 - x / (1 - 2*x / (1 + x))). - Simon Plouffe in his 1992 dissertation.
A000129(2n) = 2*A000129(n)*a(n). - John McNamara, Oct 30 2002
a(n) = (-i)^n * T(n, i), with T(n, x) Chebyshev's polynomials of the first kind A053120 and i^2 = -1.
a(n) = a(n-1) + A052542(n-1), n>1. a(n)/A052542(n) converges to sqrt(1/2). - Mario Catalani (mario.catalani(AT)unito.it), Apr 29 2003
E.g.f.: exp(x)cosh(x*sqrt(2)). - Paul Barry, May 08 2003
a(n) = Sum_{k=0..floor(n/2)} binomial(n, 2k)2^k. - Paul Barry, May 13 2003
For n > 0, a(n)^2 - (1 + (-1)^(n))/2 = Sum_{k=0..n-1} ((2k+1)*A001653(n-1-k)); e.g., 17^2 - 1 = 288 = 1*169 + 3*29 + 5*5 + 7*1; 7^2 = 49 = 1*29 + 3*5 + 5*1. - Charlie Marion, Jul 18 2003
a(n+2) = A078343(n+1) + A048654(n). - Creighton Dement, Jan 19 2005
a(n) = A000129(n) + A000129(n-1) = A001109(n)/A000129(n) = sqrt(A001110(n)/A000129(n)^2) = ceiling(sqrt(A001108(n))). - Henry Bottomley, Apr 18 2000
Also the first differences of A000129 (the Pell numbers) because A052937(n) = A000129(n+1) + 1. - Graeme McRae, Aug 03 2006
a(n) = Sum_{k=0..n} A122542(n,k). - Philippe Deléham, Oct 08 2006
For another recurrence see A000129.
a(n) = Sum_{k=0..n} A098158(n,k)*2^(n-k). - Philippe Deléham, Dec 26 2007
a(n) = upper left and lower right terms of [1,1; 2,1]^n. - Gary W. Adamson, Mar 12 2008
If p[1]=1, and p[i]=2, (i>1), and if A is Hessenberg matrix of order n defined by: A[i,j]=p[j-i+1], (i<=j), A[i,j]=-1, (i=j+1), and A[i,j]=0 otherwise. Then, for n>=1, a(n)=det A. - Milan Janjic, Apr 29 2010
For n>=2, a(n)=F_n(2)+F_(n+1)(2), where F_n(x) is Fibonacci polynomial (cf. A049310): F_n(x) = Sum_{i=0..floor((n-1)/2)} binomial(n-i-1,i)x^(n-2*i-1). - Vladimir Shevelev, Apr 13 2012
a(-n) = (-1)^n * a(n). - Michael Somos, Sep 02 2012
Dirichlet g.f.: (PolyLog(s,1-sqrt(2)) + PolyLog(s,1+sqrt(2)))/2. - Ilya Gutkovskiy, Jun 26 2016
a(n) = A000129(n) - A000129(n-1), where A000129(n) is the n-th Pell Number. Hence the continued fraction is of the form 1-(A000129(n-1)/A000129(n)). - Gregory L. Simay, Nov 09 2018
a(n) = (A000129(n+3) + A000129(n-3))/10, n>=3. - Paul Curtz, Jun 16 2021
a(n) = (A000129(n+6) - A000129(n-6))/140, n>=6. - Paul Curtz, Jun 20 2021
a(n) = round((1/2)*sqrt(Product_{k=1..n} 4*(1 + sin(k*Pi/n)^2))), for n>=1. - Greg Dresden, Dec 28 2021
a(n)^2 + a(n+1)^2 = A075870(n+1) = 2*(b(n)^2 + b(n+1)^2) for all n in Z where b(n) := A000129(n). - Michael Somos, Apr 02 2022
a(n) = 2*A048739(n-2)+1. - R. J. Mathar, Feb 01 2024
Sum_{n>=1} 1/a(n) = 1.5766479516393275911191017828913332473... - R. J. Mathar, Feb 05 2024
EXAMPLE
Convergents are 1, 3/2, 7/5, 17/12, 41/29, 99/70, 239/169, 577/408, 1393/985, 3363/2378, 8119/5741, 19601/13860, 47321/33461, 114243/80782, ... = A001333/A000129.
The 15 3 X 2 crossword grids, with white squares represented by an o:
ooo ooo ooo ooo ooo ooo ooo oo. o.o .oo o.. .o. ..o oo. .oo
ooo oo. o.o .oo o.. .o. ..o ooo ooo ooo ooo ooo ooo .oo oo.
G.f. = 1 + x + 3*x^2 + 7*x^3 + 17*x^4 + 41*x^5 + 99*x^6 + 239*x^7 + 577*x^8 + ...
MAPLE
A001333 := proc(n) option remember; if n=0 then 1 elif n=1 then 1 else 2*procname(n-1)+procname(n-2) fi end;
Digits := 50; A001333 := n-> round((1/2)*(1+sqrt(2))^n);
with(numtheory): cf := cfrac (sqrt(2), 1000): [seq(nthnumer(cf, i), i=0..50)];
a:= n-> (M-> M[2, 1]+M[2, 2])(<<2|1>, <1|0>>^n):
seq(a(n), n=0..33); # Alois P. Heinz, Aug 01 2008
A001333List := proc(m) local A, P, n; A := [1, 1]; P := [1, 1];
for n from 1 to m - 2 do P := ListTools:-PartialSums([op(A), P[-2]]);
A := [op(A), P[-1]] od; A end: A001333List(32); # Peter Luschny, Mar 26 2022
MATHEMATICA
Insert[Table[Numerator[FromContinuedFraction[ContinuedFraction[Sqrt[2], n]]], {n, 1, 40}], 1, 1] (* Stefan Steinerberger, Apr 08 2006 *)
Table[((1 - Sqrt[2])^n + (1 + Sqrt[2])^n)/2, {n, 0, 29}] // Simplify (* Robert G. Wilson v, May 02 2006 *)
a[0] = 1; a[1] = 1; a[n_] := a[n] = 2a[n - 1] + a[n - 2]; Table[a@n, {n, 0, 29}] (* Robert G. Wilson v, May 02 2006 *)
Table[ MatrixPower[{{1, 2}, {1, 1}}, n][[1, 1]], {n, 0, 30}] (* Robert G. Wilson v, May 02 2006 *)
a=c=0; t={b=1}; Do[c=a+b+c; AppendTo[t, c]; a=b; b=c, {n, 40}]; t (* Vladimir Joseph Stephan Orlovsky, Mar 23 2009 *)
LinearRecurrence[{2, 1}, {1, 1}, 40] (* Vladimir Joseph Stephan Orlovsky, Mar 23 2009 *)
Join[{1}, Numerator[Convergents[Sqrt[2], 30]]] (* Harvey P. Dale, Aug 22 2011 *)
Table[(-I)^n ChebyshevT[n, I], {n, 10}] (* Eric W. Weisstein, Apr 04 2017 *)
CoefficientList[Series[(-1 + x)/(-1 + 2 x + x^2), {x, 0, 20}], x] (* Eric W. Weisstein, Sep 21 2017 *)
Table[Sqrt[(ChebyshevT[n, 3] + (-1)^n)/2], {n, 0, 20}] (* Eric W. Weisstein, Apr 17 2018 *)
PROG
(PARI) {a(n) = if( n<0, (-1)^n, 1) * contfracpnqn( vector( abs(n), i, 1 + (i>1))) [1, 1]}; /* Michael Somos, Sep 02 2012 */
(PARI) {a(n) = polchebyshev(n, 1, I) / I^n}; /* Michael Somos, Sep 02 2012 */
(PARI) a(n) = real((1 + quadgen(8))^n); \\ Michel Marcus, Mar 16 2021
(PARI) { default(realprecision, 2000); for (n=0, 4000, a=contfracpnqn(vector(n, i, 1+(i>1)))[1, 1]; if (a > 10^(10^3 - 6), break); write("b001333.txt", n, " ", a); ); } \\ Harry J. Smith, Jun 12 2009
(Sage) from sage.combinat.sloane_functions import recur_gen2
it = recur_gen2(1, 1, 2, 1)
[next(it) for i in range(30)] ## Zerinvary Lajos, Jun 24 2008
(Sage) [lucas_number2(n, 2, -1)/2 for n in range(0, 30)] # Zerinvary Lajos, Apr 30 2009
(Haskell)
a001333 n = a001333_list !! n
a001333_list = 1 : 1 : zipWith (+)
a001333_list (map (* 2) $ tail a001333_list)
-- Reinhard Zumkeller, Jul 08 2012
(Magma) [n le 2 select 1 else 2*Self(n-1)+Self(n-2): n in [1..35]]; // Vincenzo Librandi, Nov 10 2018
(Python)
from functools import cache
@cache
def a(n): return 1 if n < 2 else 2*a(n-1) + a(n-2)
print([a(n) for n in range(32)]) # Michael S. Branicky, Nov 13 2022
CROSSREFS
For denominators see A000129.
See A040000 for the continued fraction expansion of sqrt(2).
See also A078057 which is the same sequence without the initial 1.
Cf. also A002203, A152113.
Row sums of unsigned Chebyshev T-triangle A053120. a(n)= A054458(n, 0) (first column of convolution triangle).
Row sums of A140750, A160756, A135837.
Equals A034182(n-1) + 2 and A084128(n)/2^n. First differences of A052937. Partial sums of A052542. Pairwise sums of A048624. Bisection of A002965.
The following sequences (and others) belong to the same family: A001333, A000129, A026150, A002605, A046717, A015518, A084057, A063727, A002533, A002532, A083098, A083099, A083100, A015519.
Second row of the array in A135597.
Cf. A055099.
Cf. A028859, A001906 / A088305, A033303, A000225, A095263, A003945, A006356, A002478, A214260, A001911 and A000217 for other restricted ternary words.
Cf. Triangle A106513 (alternating row sums).
Equals A293004 + 1.
Cf. A033539, A332602, A086395 (subseq. of primes).
KEYWORD
nonn,cofr,easy,core,nice,frac,changed
EXTENSIONS
Chebyshev comments from Wolfdieter Lang, Jan 10 2003
STATUS
approved
Number of distinct resistances that can be produced from a circuit of n equal resistors using only series and parallel combinations.
+10
29
1, 2, 4, 9, 22, 53, 131, 337, 869, 2213, 5691, 14517, 37017, 93731, 237465, 601093, 1519815, 3842575, 9720769, 24599577, 62283535, 157807915, 400094029, 1014905643, 2576046289, 6541989261, 16621908599, 42251728111, 107445714789, 273335703079
OFFSET
1,2
COMMENTS
Found by exhaustive search. Program produces all values that are combinations of two binary operators a() and b() (here "sum" and "reciprocal sum of reciprocals") over n occurrences of 1. E.g., given 4 occurrences of 1, the code forms all allowable postfix forms, such as 1 1 1 1 a a a and 1 1 b 1 1 a b, etc. Each resulting form is then evaluated according to the definitions for a and b.
Each resistance that can be constructed from n 1-ohm resistors in a circuit can be written as the ratio of two positive integers, neither of which exceeds the (n+1)st Fibonacci number. E.g., for n=4, the 9 resistances that can be constructed can be written as 1/4, 2/5, 3/5, 3/4, 1/1, 4/3, 5/3, 5/2, 4/1 using no numerator or denominator larger than Fib(n+1) = Fib(5) = 5. If a resistance x can be constructed from n 1-ohm resistors, then a resistance 1/x can also be constructed from n 1-ohm resistors. - Jon E. Schoenfield, Aug 06 2006
The fractions in the comment above are a superset of the fractions occurring here, corresponding to the upper bound A176500. - Joerg Arndt, Mar 07 2015
The terms of this sequence consider only series and parallel combinations; A174283 considers bridge combinations as well. - Jon E. Schoenfield, Sep 02 2013
LINKS
Antoni Amengual, The intriguing properties of the equivalent resistances of n equal resistors combined in series and in parallel, American Journal of Physics, 68(2), 175-179 (February 2000). [From Sameen Ahmed Khan, Apr 27 2010]
Sameen Ahmed Khan, Mathematica program
Sameen Ahmed Khan, How Many Equivalent Resistances?, RESONANCE, May 2012. - From N. J. A. Sloane, Oct 15 2012
Sameen Ahmed Khan, Farey sequences and resistor networks, Proc. Indian Acad. Sci. (Math. Sci.) Vol. 122, No. 2, May 2012, pp. 153-162. - From N. J. A. Sloane, Oct 23 2012
Sameen Ahmed Khan, Beginning to Count the Number of Equivalent Resistances, Indian Journal of Science and Technology, Vol. 9, Issue 44, pp. 1-7, 2016.
Marx Stampfli, Bridged graphs, circuits and Fibonacci numbers, Applied Mathematics and Computation, Volume 302, 1 June 2017, Pages 68-79.
FORMULA
From Bill McEachen, Jun 08 2024: (Start)
(2.414^n)/4 < a(n) < (1-1/n)*(0.318)*(2.618^n) (Khan, n>3).
Conjecture: a(n) ~ K * a(n-1), K approx 2.54. (End)
EXAMPLE
a(2) = 2 since given two 1-ohm resistors, a series circuit yields 2 ohms, while a parallel circuit yields 1/2 ohms.
MAPLE
r:= proc(n) option remember; `if`(n=1, {1}, {seq(seq(seq(
[f+g, 1/(1/f+1/g)][], g in r(n-i)), f in r(i)), i=1..n/2)})
end:
a:= n-> nops(r(n)):
seq(a(n), n=1..15); # Alois P. Heinz, Apr 02 2015
MATHEMATICA
r[n_] := r[n] = If[n == 1, {1}, Union @ Flatten @ {Table[ Table[ Table[ {f+g, 1/(1/f+1/g)}, {g, r[n-i]}], {f, r[i]}], {i, 1, n/2}]}]; a[n_] := Length[r[n]]; Table[a[n], {n, 1, 15}] (* Jean-François Alcover, May 28 2015, after Alois P. Heinz *)
PROG
(PARI) \\ not efficient; just to show the method
N=10;
L=vector(N); L[1]=[1];
{ for (n=2, N,
my( T = Set( [] ) );
for (k=1, n\2,
for (j=1, #L[k],
my( r1 = L[k][j] );
for (i=1, #L[n-k],
my( r2 = L[n-k][i] );
T = setunion(T, Set([r1+r2, r1*r2/(r1+r2) ]) );
);
);
);
T = vecsort(Vec(T), , 8);
L[n] = T;
); }
for(n=1, N, print1(#L[n], ", ") );
\\ Joerg Arndt, Mar 07 2015
CROSSREFS
Let T(x, n) = 1 if x can be constructed with n 1-ohm resistors in a circuit, 0 otherwise. Then A048211 is t(n) = sum(T(x, n)) for all x (x is necessarily rational). Let H(x, n) = 1 if T(x, n) = 1 and T(x, k) = 0 for all k < n, 0 otherwise. Then A051389 is h(n) = sum(H(x, n)) for all x (x is necessarily rational).
Cf. A180414.
KEYWORD
nonn,nice,more,hard
EXTENSIONS
More terms from John W. Layman, Apr 06 2002
a(16)-a(21) from Jon E. Schoenfield, Aug 06 2006
a(22) from Jon E. Schoenfield, Aug 28 2006
a(23) from Jon E. Schoenfield, Apr 18 2010
Definition edited (to specify that the sequence considers only series and parallel combinations) by Jon E. Schoenfield, Sep 02 2013
a(24)-a(25) from Antoine Mathys, Apr 02 2015
a(26)-a(27) from Johannes P. Reichart, Nov 24 2018
a(28)-a(30) from Antoine Mathys, Dec 08 2024
STATUS
approved
a(n) = floor( a(n-1)/(sqrt(2) - 1) ), with a(0) = 1.
+10
23
1, 2, 4, 9, 21, 50, 120, 289, 697, 1682, 4060, 9801, 23661, 57122, 137904, 332929, 803761, 1940450, 4684660, 11309769, 27304197, 65918162, 159140520, 384199201, 927538921, 2239277042, 5406093004, 13051463049, 31509019101, 76069501250, 183648021600
OFFSET
0,2
COMMENTS
a(n) = A048739(n-1)+1 = 1/2 * (P(n)+P(n-1)+1), with P(n) = Pell numbers (A000129).
Number of (3412,#)-avoiding involutions in S_{n+1}, where # can be one of 22 patterns, see Egge reference.
Number of (s(0), s(1), ..., s(n+1)) such that 0 < s(i) < 4 and |s(i) - s(i-1)| <= 1 for i = 1,2,...,n+1, s(0) = 1, s(n+1) = 1. - Herbert Kociemba, Jun 02 2004
Define the sequence S(a_0,a_1) by a_{n+2} is the least integer such that a_{n+2}/a_{n+1} > a_{n+1}/a_n for n >= 0 . This is S(2,4). (For proof, see the Alekseyev link.) - R. K. Guy
This sequence occurs in the lower bound of the order of the set of equivalent resistances of n equal resistors combined in series and in parallel (A048211). - Sameen Ahmed Khan, Jun 28 2010
Partial sums of the Pell numbers prefaced with a 1: (1, 1, 2, 5, 12, 29, 70, ...). - Gary W. Adamson, Feb 15 2012
The number of ways to write an n-bit binary sequence and then give runs of ones weakly incrementing labels starting with 1, e.g., 0011010011022203003330044040055555. - Andrew Woods, Jan 03 2015
Sums of the positive coefficients in Chebyshev polynomials of the first kind, beginning with T_1. a(n+1)/a(n) approaches 1/(sqrt(2)-1). - Gregory Gerard Wojnar, Mar 19 2018
LINKS
Max Alekseyev, Notes on A024537
Antoni Amengual, The intriguing properties of the equivalent resistances of n equal resistors combined in series and in parallel, American Journal of Physics, 68(2) (2000) 175-179. [From Sameen Ahmed Khan, Jun 28 2010]
Michael D. Barrus, Weakly threshold graphs, arXiv preprint arXiv:1608.01358 [math.CO], 2016.
D. W. Boyd, Linear recurrence relations for some generalized Pisot sequences, Advances in Number Theory ( Kingston ON, 1991) 333-340, Oxford Sci. Publ., Oxford Univ. Press, New York, 1993
S. Felsner, D. Heldt, Lattice Path Enumeration and Toeplitz Matrices, J. Int. Seq. 18 (2015) # 15.1.3.
Daniel Heldt, On the mixing time of the face flip-and up/down Markov chain for some families of graphs, Dissertation, Mathematik und Naturwissenschaften der Technischen Universitat Berlin zur Erlangung des akademischen Grades Doktor der Naturwissenschaften, 2016.
J. V. Leyendekkers and A. G. Shannon, Pellian sequence relationships among pi, e, sqrt(2), Notes on Number Theory and Discrete Mathematics, Vol. 18, 2012, No. 2, 58-62. See {u_n}. - N. J. A. Sloane, Dec 23 2012
FORMULA
a(n) = 2*a(n-1) + a(n-2) - 1. - Christian G. Bower
a(n) = 3*a(n-1) - a(n-2) - a(n-3).
From Paul Barry, Dec 25 2003: (Start)
G.f.: (1 - x - x^2)/((1-x)*(1 - 2*x - x^2)) = (1 - x - x^2)/(1 - 3*x + x^2 + x^3).
E.g.f.: exp((1+sqrt(2))*x)*(1+sqrt(2))/4+exp((1-sqrt(2))*x)*(1-sqrt(2))/4+exp(x)/2. (End)
a(n) = (1/4)*(2 + (1-sqrt(2))^(n+1) + (1+sqrt(2))^(n+1)). - Herbert Kociemba, Jun 02 2004
Let M = a tridiagonal matrix with all 1's in the super and main diagonals and [1,1,0,0,0,...] in the subdiagonal, and let V = vector [1,0,0,0,...], and the rest zeros. The sequence is generated as the leftmost column from iterates of M*V. - Gary W. Adamson, Jun 07 2011
G.f.: (1 + Q(0)*x/2)/(1-x), where Q(k) = 1 + 1/(1 - x*(4*k+2 + x)/( x*(4*k+4 + x) + 1/Q(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Sep 06 2013
a(n) = A171842(n+1), n>=0. That sequence starts with an extra 1. - Andrew Woods, Jan 03 2015
a(n) = 1 + sum_{k=1..floor((n+1)/2)} C(n+1,2*k)*2^(k-1). - Andrew Woods, Jan 03 2015
MATHEMATICA
NestList[Floor[#/(Sqrt[2]-1)]&, 1, 40] (* Harvey P. Dale, Apr 01 2012 *)
LinearRecurrence[{3, -1, -1}, {1, 2, 4}, 31] (* Jean-François Alcover, Jan 07 2019 *)
PROG
(PARI) a=vector(99); a[1]=1; for(n=2, #a, a[n]=a[n-1]\(sqrt(2) - 1)); a \\ Charles R Greathouse IV, Jun 14 2011
(PARI) x='x+O('x^99); Vec((1-x-x^2)/((1-x)*(1-2*x-x^2))) \\ Altug Alkan, Mar 19 2018
CROSSREFS
Cf. A171842. - Andrew Woods, Jan 03 2015
KEYWORD
nonn,easy
EXTENSIONS
Edited by N. J. A. Sloane at the suggestion of Max Alekseyev, Aug 24 2007
STATUS
approved
Number of distinct resistances that can be produced using n equal resistors in, series, parallel and/or bridge configurations.
+10
20
1, 2, 4, 9, 23, 57, 151, 415, 1157, 3191, 8687, 23199, 61677, 163257, 432541, 1146671, 3039829
OFFSET
1,2
COMMENTS
This sequence is a variation on A048211, which uses only series and parallel combinations. Since a bridge circuit requires minimum of five resistances the first four terms coincide. For the definition of "bridge" see A337516.
LINKS
Antoni Amengual, The intriguing properties of the equivalent resistances of n equal resistors combined in series and in parallel, American Journal of Physics, 68(2), 175-179 (February 2000).
Sameen Ahmed Khan, The bounds of the set of equivalent resistances of n equal resistors combined in series and in parallel, arXiv:1004.3346v1 [physics.gen-ph], (20 April 2010).
Sameen Ahmed Khan, Farey sequences and resistor networks, Proc. Indian Acad. Sci. (Math. Sci.) Vol. 122, No. 2, May 2012, pp. 153-162.
Sameen Ahmed Khan, Beginning to Count the Number of Equivalent Resistances, Indian Journal of Science and Technology, Vol. 9, Issue 44, pp. 1-7, 2016.
EXAMPLE
Example 1: Five unit resistors: each arm of the bridge has one unit resistor, leading to an equivalent resistance of 1; so the set is {1} and its order is 1. Thus a(5) = A048211(5) + 1 = 23.
Example 2: Six unit resistors: a bridge with 6 resistors yields A174285(6) = 3 different resistances and the series parallel combinations give A048211(6) = 53 resistances, but resistance 1 is counted twice. The union of the forementioned resistances has cardinality 53+3-1 = 55. There are two more circuits to be considered: the bridge with five unit resistors and the sixth unit resistor either in parallel (value 1/2) or in series (value 2). Both values 1/2 and 2 are not counted by A048211(6) or A174285(6), so the total is 55 + 2 = 57. - Rainer Rosenthal, Oct 25 2020
KEYWORD
nonn,hard,nice,more
AUTHOR
Sameen Ahmed Khan, Mar 15 2010
EXTENSIONS
a(8) corrected and a(9)-a(17) from Rainer Rosenthal, Oct 29 2020
STATUS
approved
Number of distinct resistances that can be produced using at most n equal resistors in series and/or parallel, confined to the five arms (four arms and the diagonal) of a bridge configuration. Since the bridge requires a minimum of five resistors, the first four terms are zero.
+10
15
0, 0, 0, 0, 1, 3, 19, 75, 291, 985, 3011, 8659, 24319, 65899, 176591, 464451, 1211185
OFFSET
1,6
LINKS
Antoni Amengual, The intriguing properties of the equivalent resistances of n equal resistors combined in series and in parallel, American Journal of Physics, 68(2), 175-179 (February 2000). Digital Object Identifier (DOI): 10.1119/1.19396.
Sameen Ahmed Khan, The bounds of the set of equivalent resistances of n equal resistors combined in series and in parallel, arXiv:1004.3346v1 [physics.gen-ph], (20 April 2010).
Marx Stampfli, Bridged graphs, circuits and Fibonacci numbers, Applied Mathematics and Computation, Volume 302, 1 June 2017, Pages 68-79.
EXAMPLE
Example 1: Five equal unit resistors. Each arm of the bridge has one unit resistor, leading to an equivalent resistance of 1; so the set is {1} and its order is 1. Example 2: Six equal unit resistors. Four arms have one unit resistor each and the fifth arm has two unit resistors. Two resistors in the same arm, when combined in series and parallel result in 2 and 1/2 respectively (corresponding to 2: {1/2, 2} in A048211). The set {1/2, 2}, in the diagonal results in {1}. Set {1/2, 2} in any of the four arms results in {11/13, 13/11}. Consequently, with six equal resistors, we have the set {11/13, 1, 13/11}, whose order is 3. Union of the previous terms is {1} and the union with these three is again {11/13, 1, 13/11}. So the terms for five and six resistors are 1 and 3 respectively.
MAPLE
See link section: A174286(n) = nops(SetA174286(n)).
KEYWORD
nonn,more
AUTHOR
Sameen Ahmed Khan, Mar 15 2010
EXTENSIONS
From Stampfli's paper, a(8) corrected and a(9)-a(12) added by Eric M. Schmidt, Sep 09 2017
Name edited by Eric M. Schmidt, Sep 09 2017
a(13)-a(17) added by Rainer Rosenthal, Feb 05 2021
STATUS
approved
Number of distinct finite resistances that can be produced using at most n equal resistors (n or fewer resistors) in series, parallel and/or bridge configurations.
+10
14
0, 1, 3, 7, 15, 35, 79, 193, 493, 1299, 3429, 9049, 23699, 62271, 163997, 433433, 1147659, 3040899
OFFSET
0,3
COMMENTS
This sequence is a variation on A153588, which uses only series and parallel combinations. The circuits with exactly n unit resistors are counted by A174283, so this sequence counts the union of the sets, which are counted by A174283(k), k <= n. - Rainer Rosenthal, Oct 27 2020
For n = 0 the resistance is infinite, therefore the number of finite resistances is a(0) = 0. Sequence A180414 counts all resistances (including infinity) and so has A180414(0) = 1 and A180414(n) = a(n) + 1 for all n up to n = 7. For n > 7 the networks get more complex, producing more resistance values, so A180414(n) > a(n) + 1. - Rainer Rosenthal, Feb 13 2021
LINKS
Antoni Amengual, The intriguing properties of the equivalent resistances of n equal resistors combined in series and in parallel, American Journal of Physics, 68(2), 175-179 (February 2000).
Sameen Ahmed Khan, The bounds of the set of equivalent resistances of n equal resistors combined in series and in parallel, arXiv:1004.3346v1 [physics.gen-ph], (20 April 2010).
Sameen Ahmed Khan, Farey sequences and resistor networks, Proc. Indian Acad. Sci. (Math. Sci.) Vol. 122, No. 2, May 2012, pp. 153-162.
Sameen Ahmed Khan, Beginning to Count the Number of Equivalent Resistances, Indian Journal of Science and Technology, Vol. 9, Issue 44, pp. 1-7, 2016.
FORMULA
a(n) = #(union of all S(k), k <= n), where S(k) is the set which is counted by A174283(k). - Rainer Rosenthal, Oct 27 2020
EXAMPLE
Since a bridge circuit requires a minimum of five resistors, the first four terms coincide with A153588. The fifth term also coincides since the set corresponding to five resistors for the bridge, i.e. {1}, is already obtained in the fourth set corresponding to the fourth term in A153588. [Edited by Rainer Rosenthal, Oct 27 2020]
MAPLE
# SetA174283(n) is the set of resistances counted by A174283(n) (see Maple link).
AccumulatedSetsA174283 := proc(n) option remember;
if n=1 then {1} else `union`(AccumulatedSetsA174283(n-1), SetA174283(n)) fi end:
A174284 := n -> nops(AccumulatedSetsA174283(n)):
seq(A174284(n), n=1..9); # Rainer Rosenthal, Oct 27 2020
KEYWORD
more,nonn
AUTHOR
Sameen Ahmed Khan, Mar 15 2010
EXTENSIONS
a(8) corrected, a(9)-a(17) from Rainer Rosenthal, Oct 27 2020
Title changed and a(0) added by Rainer Rosenthal, Feb 13 2021
STATUS
approved
a(n) = 2*Farey(m; I) - 1 where m = Fibonacci (n + 1) and I = [1/n, 1].
+10
14
1, 3, 7, 17, 37, 99, 243, 633, 1673, 4425, 11515, 30471, 80055, 210157, 553253, 1454817, 3821369, 10040187, 26360759, 69201479, 181628861, 476576959, 1250223373, 3279352967, 8600367843, 22551873573, 59128994931, 155014246263, 406350098913, 1065104999651
OFFSET
1,2
COMMENTS
This sequence provides a strict upper bound of the set of equivalent resistances formed by any conceivable network (series/parallel or bridge, or non-planar) of n equal resistors. Consequently it provides an strict upper bound of the sequences: A048211, A153588, A174283, A174284, A174285 and A174286. This sequence provides a better strict upper bound than A176500 but is harder to compute. [Corrected by Antoine Mathys, May 07 2019]
The claim that this sequence is a strict upper bound for the number of representable resistance values of any conceivable network is incorrect for networks with more than 10 resistors, in which non-planar configurations can also occur. Whether the sequence provides at least a valid upper bound for planar networks with generalized bridge circuits (A337516) is difficult to decide on the basis of the insufficient number of terms in A174283 and A337516. See the linked illustrations of the respective quotients. - Hugo Pfoertner, Jan 25 2021
LINKS
Antoni Amengual, The intriguing properties of the equivalent resistances of n equal resistors combined in series and in parallel, American Journal of Physics, 68(2), 175-179 (February 2000).
Sameen Ahmed Khan, The bounds of the set of equivalent resistances of n equal resistors combined in series and in parallel, arXiv:1004.3346v1 [physics.gen-ph], (20 April 2010).
Sameen Ahmed Khan, Mathematica notebook
Sameen Ahmed Khan, How Many Equivalent Resistances?, RESONANCE, May 2012. - From N. J. A. Sloane, Oct 15 2012
Sameen Ahmed Khan, Farey sequences and resistor networks, Proc. Indian Acad. Sci. (Math. Sci.) Vol. 122, No. 2, May 2012, pp. 153-162. - From N. J. A. Sloane, Oct 23 2012
Hugo Pfoertner, Ratio for series-parallel networks, Plot2 of A048211(n)/a(n).
Hugo Pfoertner, Ratio for arbitrary networks, Plot2 of A337517(n)/a(n).
FORMULA
a(n) = 2 * A176501(n) - 1. - Antoine Mathys, Aug 07 2018
EXAMPLE
n = 5, , I = [1/5, 1], m = Fibonacci(6) = 8, Farey(8) = 23, Farey(8; I) = 19, Grand Set(5) = 37.
MATHEMATICA
a1[n_ /; n<4] := 2^(n-1); a1[n_] := Module[{m = Fibonacci[n+1], v}, v = Reap[Do[Sow[j/i], {i, n+1, m}, {j, 1, (i-1)/n}]][[2, 1]]; Total[EulerPhi[ Range[m]]] - Length[v // Union]];
a[n_] := 2 a1[n] - 1;
Table[an = a[n]; Print["a(", n, ") = ", an]; an, {n, 1, 23}] (* Jean-François Alcover, Aug 30 2018, after Antoine Mathys *)
PROG
(PARI) farey(n) = sum(i=1, n, eulerphi(i)) + 1;
a176501(n) = my(m=fibonacci(n + 1), count=0); for(b=n+1, m, for(a=1, (b-1)/n, if(gcd(a, b)==1, count++))); farey(m) - 1 - count;
a(n) = 2 * a176501(n) - 1; \\ Antoine Mathys, May 07 2019
KEYWORD
nonn
AUTHOR
Sameen Ahmed Khan, Apr 21 2010
EXTENSIONS
a(19)-a(27) from Antoine Mathys, Aug 10 2018
a(28)-a(30) from Antoine Mathys, May 07 2019
STATUS
approved
Number of distinct resistances that can be produced using n equal resistors in series and/or parallel, confined to the five arms (four arms and the diagonal) of a bridge configuration. Since the bridge requires a minimum of five resistors, the first four terms are zero.
+10
13
0, 0, 0, 0, 1, 3, 17, 61, 235, 815, 2563, 7585, 22277, 62065, 169489, 452621, 1191617
OFFSET
1,6
LINKS
Antoni Amengual, The intriguing properties of the equivalent resistances of n equal resistors combined in series and in parallel, American Journal of Physics, 68(2), 175-179 (February 2000). Digital Object Identifier (DOI): 10.1119/1.19396
Sameen Ahmed Khan, The bounds of the set of equivalent resistances of n equal resistors combined in series and in parallel, arXiv:1004.3346v1 [physics.gen-ph], (20 April 2010).
Marx Stampfli, Bridged graphs, circuits and Fibonacci numbers, Applied Mathematics and Computation, Volume 302, 1 June 2017, Pages 68-79.
EXAMPLE
Five equal unit resistors. Each arm of the bridge has one unit resistor, leading to an equivalent resistance of 1; so the set is {1} and its order is 1.
Six equal unit resistors. Four arms have one unit resistor each and the fifth arm has two unit resistors. Two resistors in the same arm, when combined in series and parallel result in 2 and 1/2 respectively (corresponding to 2: {1/2, 2} in A048211). The set {1/2, 2}, in the diagonal results in {1}. Set {1/2, 2} in any of the four arms results in {11/13, 13/11}. Consequently, with six equal resistors, we have the set {11/13, 1, 13/11}, whose order is 3.
MAPLE
See link section: A174285(n) = nops(SetA174285(n)).
KEYWORD
nonn,more
AUTHOR
Sameen Ahmed Khan, Mar 15 2010
EXTENSIONS
From Stampfli's paper, a(8) corrected and a(9)-a(12) added by Eric M. Schmidt, Sep 09 2017
Name edited by Eric M. Schmidt, Sep 09 2017
a(13)-a(17) added by Rainer Rosenthal, Feb 04 2021
a(12) corrected by Marx Stampfli, Nov 04 2022
STATUS
approved
Haros-Farey sequence whose argument is the Fibonacci number; Farey(m) where m = Fibonacci(n + 1).
+10
13
2, 3, 5, 11, 23, 59, 141, 361, 941, 2457, 6331, 16619, 43359, 113159, 296385, 775897, 2030103, 5315385, 13912615, 36421835, 95355147, 249635525, 653525857, 1710966825, 4479358275, 11726974249, 30701593527, 80377757397, 210431301141, 550916379293
OFFSET
1,1
COMMENTS
This sequence arises in the analytically obtained strict upper bound of the set of equivalent resistances formed by any conceivable network (series/parallel or bridge, or non-planar) of n equal resistors. Consequently it provides a strict upper bound of the sequences: A048211, A153588, A174283, A174284, A174285 and A174286. A176501 provides a better strict upper bound but is harder to compute. [Corrected by Antoine Mathys, May 07 2019]
Farey(n) = A005728(n). [Franklin T. Adams-Watters, May 12 2010]
The claim that this sequence is a strict upper bound for the number of representable resistance values of any conceivable network is wrong. It only applies to purely serial-parallel networks (A048211), but it already fails when bridges are allowed, as described in A174283. Even more so if arbitrary nonplanar networks are allowed as in A337517. See the linked illustrations of the respective quotients. - Hugo Pfoertner, Jan 24 2021
LINKS
Antoni Amengual, The intriguing properties of the equivalent resistances of n equal resistors combined in series and in parallel, American Journal of Physics, 68(2), 175-179 (February 2000). Digital Object Identifier (DOI): 10.1119/1.19396.
Sameen Ahmed Khan, The bounds of the set of equivalent resistances of n equal resistors combined in series and in parallel, arXiv:1004.3346v1 [physics.gen-ph], (20 April 2010).
Sameen Ahmed KHAN, Mathematica notebook 1
Sameen Ahmed KHAN, Mathematica notebook 2
Hugo Pfoertner, Ratio for series-parallel networks, Plot2 of A048211(n)/a(n).
Hugo Pfoertner, Ratio for networks with bridges, Plot2 of A174283(n)/a(n).
Hugo Pfoertner, Ratio for arbitrary networks, Plot2 of A337517(n)/a(n).
FORMULA
a(n) = A005728(A000045(n+1)). - Michel Marcus, Jul 31 2018
EXAMPLE
n = 5, m = Fibonacci(5 + 1) = 8, Farey(8) = 23.
MAPLE
with(numtheory): with(combinat, fibonacci): a:=n->1+add(phi(i), i=1..n): seq(a(fibonacci(n+1)), n=1..30); # Muniru A Asiru, Jul 31 2018
MATHEMATICA
b[n_] := 1 + Sum[EulerPhi[i], {i, 1, n}];
a[n_] := b[Fibonacci[n + 1]];
Array[a, 30] (* Jean-François Alcover, Sep 20 2018 *)
PROG
(PARI) farey(n) = 1+sum(k=1, n, eulerphi(k));
a(n) = farey(fibonacci(n+1)); \\ Michel Marcus, Jul 31 2018
(GAP) List([1..30], n->Sum([1..Fibonacci(n+1)], i->Phi(i)))+1; # Muniru A Asiru, Jul 31 2018
(Magma) [1+&+[EulerPhi(i):i in [1..Fibonacci(n+1)]]:n in [1..30]]; // Marius A. Burtea, Jul 26 2019
KEYWORD
nonn
AUTHOR
Sameen Ahmed Khan, Apr 21 2010
EXTENSIONS
a(26)-a(29) from Sameen Ahmed Khan, May 02 2010
a(30) from Antoine Mathys, Aug 06 2018
STATUS
approved
a(n) = 2*Farey(Fibonacci(n + 1)) - 3.
+10
13
1, 3, 7, 19, 43, 115, 279, 719, 1879, 4911, 12659, 33235, 86715, 226315, 592767, 1551791, 4060203, 10630767, 27825227, 72843667, 190710291, 499271047, 1307051711, 3421933647, 8958716547, 23453948495, 61403187051, 160755514791, 420862602279, 1101832758583
OFFSET
1,2
COMMENTS
This sequence provides a strict upper bound of the set of equivalent resistances formed by any conceivable network (series/parallel or bridge, or non-planar) of n equal resistors. Consequently it provides an strict upper bound of the sequences: A048211, A153588, A174283, A174284, A174285 and A174286. A176502 provides a better strict upper bound but is harder to compute. [Corrected by Antoine Mathys, Jul 12 2019]
Farey(n) = A005728(n). - Franklin T. Adams-Watters, May 12 2010
The claim that this sequence is a strict upper bound for the number of representable resistance values of any conceivable network is incorrect for networks with more than 11 resistors, in which non-planar configurations can also occur. Whether the sequence provides at least a valid upper bound for planar networks with generalized bridge circuits (A337516) is difficult to decide on the basis of the insufficient number of terms in A174283 and A337516. See the linked illustrations of the respective quotients. - Hugo Pfoertner, Jan 24 2021
LINKS
Antoni Amengual, The intriguing properties of the equivalent resistances of n equal resistors combined in series and in parallel, American Journal of Physics, 68(2), 175-179 (February 2000).
Sameen Ahmed Khan, The bounds of the set of equivalent resistances of n equal resistors combined in series and in parallel, arXiv:1004.3346v1 [physics.gen-ph], (Apr 20 2010).
Sameen Ahmed KHAN, Mathematica notebook 1
Sameen Ahmed KHAN, Mathematica notebook 2
Hugo Pfoertner, Ratio for series-parallel networks, Plot2 of A048211(n)/a(n).
Hugo Pfoertner, Ratio for arbitrary networks, Plot2 of A337517(n)/a(n).
FORMULA
a(n) = 2 * A176499(n) - 3.
EXAMPLE
n = 5, m = Fibonacci(5 + 1) = 8, Farey(8) = 23, 2Farey(m) - 3 = 43.
MATHEMATICA
a[n_] := 2 Sum[EulerPhi[k], {k, 1, Fibonacci[n+1]}] - 1;
Table[an = a[n]; Print[an]; an, {n, 1, 30}] (* Jean-François Alcover, Nov 03 2018, from PARI *)
PROG
(PARI) a(n) = 2*sum(k=1, fibonacci(n+1), eulerphi(k))-1 \\ Charles R Greathouse IV, Oct 07 2016
(Magma) [2*(&+[EulerPhi(k):k in [1..Fibonacci(n+1)]])-1:n in [1..30]]; // Marius A. Burtea, Jul 26 2019
KEYWORD
nonn
AUTHOR
Sameen Ahmed Khan, Apr 21 2010
EXTENSIONS
a(26)-a(28) from Sameen Ahmed Khan, May 02 2010
a(29)-a(30) from Antoine Mathys, Aug 06 2018
STATUS
approved

Search completed in 0.028 seconds