Nothing Special   »   [go: up one dir, main page]

login
A034182
Number of not-necessarily-symmetric n X 2 crossword puzzle grids.
21
1, 5, 15, 39, 97, 237, 575, 1391, 3361, 8117, 19599, 47319, 114241, 275805, 665855, 1607519, 3880897, 9369317, 22619535, 54608391, 131836321, 318281037, 768398399, 1855077839, 4478554081, 10812186005, 26102926095, 63018038199, 152139002497, 367296043197
OFFSET
1,2
COMMENTS
n X 2 binary arrays with a path of adjacent 1's and no path of adjacent 0's from top row to bottom row. - R. H. Hardin, Mar 21 2002
Define a triangle with T(n,1) = T(n,n) = n*(n-1) + 1, n>=1, and its interior terms via T(r,c) = T(r-1,c) + T(r-1,c-1)+ T(r-2,c-1), 2<=c<r. This gives 1; 3,3; 7,7,7; 13,17,17,13; 21,37,41,37,21; etc. The row sums are 1, 6, 21, 60, 157, 394, etc., and the first differences of the row sums are this sequence. - J. M. Bergot, Mar 16 2013
LINKS
Louis Marin, Counting Polyominoes in a Rectangle b X h, arXiv:2406.16413 [cs.DM], 2024. See p. 145.
FORMULA
a(n) = 2a(n-1) + a(n-2) + 4.
(1 + 5x + 15x^2 + ...) = (1 + 2x + 2x^2 + ...) * (1 + 3x + 7x^2 + ...), convolution of A040000 and left-shifted A001333.
a(n) = (-4 + (1-sqrt(2))^(1+n) + (1+sqrt(2))^(1+n))/2. G.f.: x*(1+x)^2/((1-x)*(1 - 2*x - x^2)). - Colin Barker, May 22 2012
a(n) = A001333(n+1)-2. - R. J. Mathar, Mar 28 2013
a(n) = A048739(n-3) +2*A048739(n-2) +A048739(n-1). - R. J. Mathar, Jun 15 2020
MATHEMATICA
{1}~Join~NestList[{#2, 2 #2 + #1 + 4} & @@ # &, {1, 5}, 28][[All, -1]] (* Michael De Vlieger, Oct 02 2017 *)
PROG
(Haskell)
a034182 n = a034182_list !! (n-1)
a034182_list = 1 : 5 : (map (+ 4) $
zipWith (+) a034182_list (map (* 2) $ tail a034182_list))
-- Reinhard Zumkeller, May 23 2013
CROSSREFS
Row 2 of A292357.
Column sums of A059678.
Cf. A001333, A034184, A034187, A052542 (first differences).
Sequence in context: A357290 A099035 A262295 * A348885 A132985 A022570
KEYWORD
nonn,easy
STATUS
approved