Nothing Special   »   [go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Search: a000739 -id:a000739
     Sort: relevance | references | number | modified | created      Format: long | short | data
Expansion of Product_{k >= 1} (1 - x^k)^4.
(Formerly M3204 N1296)
+10
27
1, -4, 2, 8, -5, -4, -10, 8, 9, 0, 14, -16, -10, -4, 0, -8, 14, 20, 2, 0, -11, 20, -32, -16, 0, -4, 14, 8, -9, 20, 26, 0, 2, -28, 0, -16, 16, -28, -22, 0, 14, 16, 0, 40, 0, -28, 26, 32, -17, 0, -32, -16, -22, 0, -10, 32, -34, -8, 14, 0, 45, -4, 38, 8, 0, 0, -34, -8, 38, 0, -22, -56, 2, -28, 0, 0, -10, 20, 64, -40, -20, 44
OFFSET
0,2
COMMENTS
Number 51 of the 74 eta-quotients listed in Table I of Martin (1996).
Ramanujan (see the link, pp. 155 and 157 Nr. 23.) conjectured the expansion coefficients called Psi_4(n) of eta^4(6*z) in powers of q = exp(2*Pi*i*z), Im(z) > 0, where i is the imaginary unit. In the Finch link on p. 5, multiplicity is used and Psi_4(p^r), called f(p^r), is given (see also b(p^e) formula given by Michael Somos, Aug 23 2006). Mordell proved this conjecture on pp. 121-122 based on Klein-Fricke, Theorie der elliptischen Modulfunktionen, 1892, Band II, p. 374. The product formula for the Dirichlet series, Mordell, eq. (7) for a=2,is used to find Psi_4(n), called f_2(n), from f_2(p) for primes p. The primes p = 2 and 3 do not appear in the product. - Wolfdieter Lang, May 03 2016
REFERENCES
Morris Newman, A table of the coefficients of the powers of eta(tau). Nederl. Akad. Wetensch. Proc. Ser. A. 59 = Indag. Math. 18 (1956), 204-216.
J. H. Silverman, A Friendly Introduction to Number Theory, 3rd ed., Pearson Education, Inc, 2006, p. 415. Exer. 47.2.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
M. Boylan, Exceptional congruences for the coefficients of certain eta-product newforms, J. Number Theory 98 (2003), no. 2, 377-389.
Amanda Clemm, Modular Forms and Weierstrass Mock Modular Forms, Mathematics, volume 4, issue 1, (2016).
S. Cooper, M. D. Hirschhorn and R. Lewis, Powers of Euler's Product and Related Identities, The Ramanujan Journal, Vol. 4 (2), 137-155 (2000).
S. R. Finch, Powers of Euler's q-Series, arXiv:math/0701251 [math.NT], 2007.
M. Koike, On McKay's conjecture, Nagoya Math. J., 95 (1984), 85-89.
Y. Martin, Multiplicative eta-quotients, Trans. Amer. Math. Soc. 348 (1996), no. 12, 4825-4856, see page 4852 Table I.
Louis J. Mordell, On Mr. Ramanujan's empirical expansions of modular functions, Proceedings of the Cambridge Philosophical Society 19 (1917), pp. 117-124.
M. Newman, A table of the coefficients of the powers of eta(tau), Nederl. Akad. Wetensch. Proc. Ser. A. 59 = Indag. Math. 18 (1956), 204-216. [Annotated scanned copy]
S. Ramanujan, On certain Arithmetical Functions, Trans. Cambridge Philos. Soc. 22 (1916) 159-184; also in Collected papers, eds. G. H. Hardy, P. V. Seshu Aiyar and B. M. Wilson, Chelsea publ. Comp., 1962 (reprint from CUP 1927), pp. 136-162, 340- 341.
Robert M. Ziff, On Cardy's formula for the critical crossing probability in 2d percolation, J. Phys. A. 28, 1249-1255 (1995).
FORMULA
Euler transform of period 1 sequence [-4, -4, ...]. - Michael Somos, Apr 02 2005
Given g.f. A(x), then B(q) = q * A(q^3)^2 satisfies 0 = f(B(q), B(q^2), B(q^4)) where f(u, v, w) = w*u^2 - v^3 + 16 * u*w^2. - Michael Somos, Apr 02 2005
a(n) = b(6*n + 1) where b() is multiplicative with b(2^e) = b(3^e) = 0^e, b(p^e) = b(p) * b(p^(e-1)) - p * b(p^(e-2)), b(p) = 0 if p == 5 (mod 6), b(p) = 2*x where p = x^2 + 3*y^2 == 1 (mod 6) and x == 1 (mod 3). - Michael Somos, Aug 23 2006
Coefficients of L-series for elliptic curve "36a1": y^2 = x^3 + 1. - Michael Somos, Jul 01 2004
a(n) = (-1)^n * A187076(n). a(2*n + 1) = -4 * A187150(n). a(25*n + 9) = a(25*n + 14) = a(25*n + 19) = a(25*n + 24) = 0. a(25*n + 4) = -5 * a(n). Convolution inverse of A023003. Convolution square of A002107. Convolution square is A000731.
a(0) = 1, a(n) = -(4/n)*Sum_{k=1..n} A000203(k)*a(n-k) for n > 0. - Seiichi Manyama, Mar 26 2017
G.f.: exp(-4*Sum_{k>=1} x^k/(k*(1 - x^k))). - Ilya Gutkovskiy, Feb 05 2018
Let M = p_1*...*p_k be a positive integer whose prime factors p_i (not necessarily distinct) are all congruent to 5 (mod 6). Then a( M^2*n + (M^2 - 1)/6 ) = (-1)^k*M*a(n). See Cooper et al., equation 4. - Peter Bala, Dec 01 2020
a(n) = b(6*n + 1) where b() is multiplicative with b(3^e) = 0^e, b(p^e) = (1 + (-1)^e)/2 * (-p)^(e/2) if p == 2 (mod 3), b(p^e) = (((x+sqrt(-3)*y)/2)^(e+1) - ((x-sqrt(-3)*y)/2)^(e+1))/x if p == 1 (mod 3) where p = x^2 + 3*y^2 and x == 1 (mod 3). - Jianing Song, Mar 19 2022
EXAMPLE
G.f. = 1 - 4*x + 2*x^2 + 8*x^3 - 5*x^4 - 4*x^5 - 10*x^6 + 8*x^7 + 9*x^8 + ...
G.f. = q - 4*q^7 + 2*q^13 + 8*q^19 - 5*q^25 - 4*q^31 - 10*q^37 + 8*q^43 + ...
MAPLE
with(numtheory): etr:= proc(p) local b; b:=proc(n) option remember; local d, j; if n=0 then 1 else add(add(d*p(d), d=divisors(j)) *b(n-j), j=1..n)/n fi end end: a:= etr(n-> -4): seq(a(n), n=0..81); # Alois P. Heinz, Sep 08 2008
MATHEMATICA
etr[p_] := Module[{b}, b[n_] := b[n] = If[n == 0, 1, Sum[Sum[d*p[d], {d, Divisors[j]}]*b[n - j], {j, 1, n}]/n]; b]; a = etr[-4&]; Table[a[n], {n, 0, 81}] (* Jean-François Alcover, Mar 10 2014, after Alois P. Heinz *)
a[ n_] := SeriesCoefficient[ QPochhammer[ x]^4, {x, 0, n}]; (* Michael Somos, Jun 12 2014 *)
nmax = 80; CoefficientList[Series[Sum[Sum[(-1)^(k+m) * (2*k+1) * q^(k*(k+1)/2 + m*(3*m-1)/2), {k, 0, nmax}], {m, -nmax, nmax}], {q, 0, nmax}], q] (* Vaclav Kotesovec, Dec 06 2015 *)
PROG
(PARI) {a(n) = my(A, p, e, x, y, a0, a1); if( n<0, 0, n = 6*n + 1; A = factor(n); prod( k=1, matsize(A)[1], [p, e] = A[k, ]; if( p<5, 0, p%6==5, if(e%2, 0, (-1)^(e/2) * p^(e/2)), for( y=1, sqrtint(p\3), if( issquare( p - 3*y^2, &x), break)); a0=1; if( x%3!=1, x=-x); a1 = x = 2*x; for( i=2, e, y = x*a1 - p*a0; a0=a1; a1=y); a1)))}; /* Michael Somos, Aug 23 2006 */
(PARI) {a(n) = if( n<0, 0, polcoeff(eta(x + x * O(x^n))^4, n))};
(PARI) {a(n) = if( n<0, 0, ellak( ellinit( [0, 0, 0, 0, 1], 1), 6*n + 1))}; /* Michael Somos, Jul 01 2004 */
(Sage) ModularForms( Gamma0(36), 2, prec=493).0; # Michael Somos, Jun 12 2014
(Magma) qEigenform( EllipticCurve( [0, 0, 0, 0, 1]), 493); /* Michael Somos, Jun 12 2014 */
(Magma) A := Basis( ModularForms( Gamma0(36), 2), 493); A[2] - 4*A[8]; /* Michael Somos, Jun 12 2014 */
(Magma) Basis( CuspForms( Gamma0(36), 2), 493)[1]; /* Michael Somos, May 17 2015 */
(Julia) # DedekindEta is defined in A000594.
L000727List(len) = DedekindEta(len, 4)
L000727List(82) |> println # Peter Luschny, Mar 09 2018
(Magma) Coefficients(&*[(1-x^m)^4:m in [1..100]])[1..100] where x is PolynomialRing(Integers()).1; // Vincenzo Librandi, Mar 10 2018
CROSSREFS
KEYWORD
sign,easy
STATUS
approved
Expansion of Product_{k>=1} (1 - x^k)^2.
(Formerly M0091 N0028)
+10
23
1, -2, -1, 2, 1, 2, -2, 0, -2, -2, 1, 0, 0, 2, 3, -2, 2, 0, 0, -2, -2, 0, 0, -2, -1, 0, 2, 2, -2, 2, 1, 2, 0, 2, -2, -2, 2, 0, -2, 0, -4, 0, 0, 0, 1, -2, 0, 0, 2, 0, 2, 2, 1, -2, 0, 2, 2, 0, 0, -2, 0, -2, 0, -2, 2, 0, -4, 0, 0, -2, -1, 2, 0, 2, 0, 0, 0, -2
OFFSET
0,2
COMMENTS
Number of partitions of n into an even number of distinct parts minus number of partitions of n into an odd number of distinct parts, with 2 types of each part. E.g., for n=4, we consider k and k* to be different versions of k and so we have 4, 4*, 31, 31*, 3*1, 3*1*, 22*, 211*, 2*11*. The even partitions number 5 and the odd partitions number 4, so a(4)=5-4=1. - Jon Perry, Apr 04 2004
Also, number of partitions of n into parts of -2 different kinds (based upon formal analogy). - Michele Dondi (blazar(AT)lcm.mi.infn.it), Jun 29 2004
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Number 68 of the 74 eta-quotients listed in Table I of Martin (1996).
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..10000 (first 1001 terms from T. D. Noe)
G. E. Andrews, Advanced problems 6562, Amer. Math. Monthly 94, 1987.
M. Boylan, Exceptional congruences for the coefficients of certain eta-product newforms, J. Number Theory 98 (2003), no. 2, 377-389. MR1955423 (2003k:11071)
S. Cooper, M. D. Hirschhorn and R. Lewis, Powers of Euler's Product and Related Identities, The Ramanujan Journal, Vol. 4 (2), 137-155 (2000).
S. R. Finch, Powers of Euler's q-Series, arXiv:math/0701251 [math.NT], 2007.
J. W. L. Glaisher, On the square of Euler's series, Proc. London Math. Soc., 21 (1889), 182-194.
J. T. Joichi, Hecke-Rogers, Andrews identities; combinatorial proofs, Discrete Mathematics, Vol. 84, Issue 3, 1990, pp. 255-259.
Victor G. Kac and Dale H. Peterson, Infinite-Dimensional Lie Algebras, Theta Functions and Modular Forms, Advances in Mathematics (1984), 53. 125-264, see page 261, (5.19).
M. Koike, On McKay's conjecture, Nagoya Math. J., 95 (1984), 85-89.
Y. Martin, Multiplicative eta-quotients, Trans. Amer. Math. Soc. 348 (1996), no. 12, 4825-4856, see page 4852 Table I.
Tim Silverman, Counting Cliques in Finite Distant Graphs, arXiv preprint arXiv:1612.08085 [math.CO], 2016.
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of q^(-1/12) * eta(q)^2 in powers of q. - Michael Somos, Mar 06 2012
Euler transform of period 1 sequence [ -2, ...]. - Michael Somos, Mar 06 2012
a(n) = b(12*n + 1) where b(n) is multiplicative and b(2^e) = b(3^e) = 0^e, b(p^e) = (1 + (-1)^e) / 2 if p == 7, 11 (mod 12), b(p^e) = (-1)^(e/2) * (1 + (-1)^e) / 2 if p == 5 (mod 12), b(p^e) = (e + 1) * (-1)^(e*x) if p == 1 (mod 12) where p = x^2 + 9*y^2. - Michael Somos, Sep 16 2006
Convolution inverse of A000712.
a(0) = 1, a(n) = -(2/n)*Sum{k = 0..n-1} a(k)*sigma_1(n-k). - Joerg Arndt, Feb 05 2011
Expansion of f(-x)^2 in powers of x where f() is a Ramanujan theta function. - Michael Somos, May 17 2015
G.f. is a period 1 Fourier series which satisfies f(-1 / (144 t)) = 12 (t/i) f(t) where q = exp(2 Pi i t). - Michael Somos, May 17 2015
a(n) = Sum_{k=0..n} A010815(k)*A010815(n-k); self convolution of A010815. - Gevorg Hmayakyan, Sep 18 2016
G.f.: Sum_{m, n in Z, n >= 2*|m|} (-1)^n * x^((3*(2*n + 1)^2 - (6*m + 1)^2)/24). - Seiichi Manyama, Oct 01 2016
G.f.: exp(-2*Sum_{k>=1} x^k/(k*(1 - x^k))). - Ilya Gutkovskiy, Feb 05 2018
From Peter Bala, Jan 02 2021: (Start)
For prime p congruent to 5, 7 or 11 (mod 12), a(n*p^2 + (p^2 - 1)/12) = e*a(n), where e = 1 if p == 7 or 11 (mod 12) and e = -1 if p == 5 (mod 12).
If n and p are coprime then a(n*p + (p^2 - 1)/12) = 0. See Cooper et al., Theorem 1. (End)
With the convention that a(n) = 0 for n < 0 we have the recurrence a(n) = A010816(n) + Sum_{k a nonzero integer} (-1)^(k+1)*a(n - k*(3*k-1)/2), where A010816(n) = (-1)^m*(2*m+1) if n = m*(m + 1)/2, with m positive, is a triangular number else equals 0. For example, n = 10 = (4*5)/2 is a triangular number, A010816(10) = 9, and so a(10) = 9 + a(9) + a(8) - a(5) - a(3) = 9 - 2 - 2 - 2 - 2 = 1. - Peter Bala, Apr 06 2022
EXAMPLE
G.f. = 1 - 2*x - x^2 + 2*x^3 + x^4 + 2*x^5 - 2*x^6 - 2*x^8 - 2*x^9 + x^10 + ...
G.f. = q - 2*q^13 - q^25 + 2*q^37 + q^49 + 2*q^61 - 2*q^73 - 2*q^97 - 2*q^109 + ...
MAPLE
A010816 := proc (n); if frac(sqrt(8*n+1)) = 0 then (-1)^((1/2)*isqrt(8*n+1)-1/2)*isqrt(8*n+1) else 0 end if; end proc:
N := 10:
a := proc (n) option remember; if n < 0 then 0 else A010816(n) + add( (-1)^(k+1)*a(n - (1/2)*k*(3*k-1) ), k = -N..-1) + add( (-1)^(k+1)*a(n - (1/2)*k*(3*k-1) ), k = 1..N) end if; end proc:
seq(a(n), n = 0..100); # Peter Bala, Apr 06 2022
MATHEMATICA
terms = 78; Clear[s]; s[n_] := s[n] = Product[(1 - x^k)^2, {k, 1, n}] // Expand // CoefficientList[#, x]& // Take[#, terms]&; s[n = 10]; s[n = 2*n]; While[s[n] != s[n - 1], n = 2*n]; A002107 = s[n] (* Jean-François Alcover, Jan 17 2013 *)
a[ n_] := SeriesCoefficient[ QPochhammer[ x]^2, {x, 0, n}]; (* Michael Somos, Jan 31 2015 *)
a[ n_] := SeriesCoefficient[ Product[ 1 - x^k, {k, n}]^2, {x, 0, n}]; (* Michael Somos, Jan 31 2015 *)
PROG
(PARI) {a(n) = my(A, p, e, x); if( n<0, 0, n = 12*n + 1; A = factor(n); prod( k=1, matsize(A)[1], [p, e] = A[k, ]; if( p<5, 0, p%12>1, if( e%2, 0, (-1)^((p%12==5) * e/2)), for( i=1, sqrtint(p\9), if( issquare(p - 9*i^2), x=i; break)); (e + 1) * (-1)^(e*x))))}; /* Michael Somos, Aug 30 2006 */
(PARI) {a(n) = if( n<0, 0, polcoeff( eta(x + x * O(x^n))^2, n))}; /* Michael Somos, Aug 30 2006 */
(PARI) Vec(eta(x)^2) \\ Charles R Greathouse IV, Apr 22 2016
(Magma) Basis( CuspForms( Gamma1(144), 1), 926) [1]; /* Michael Somos, May 17 2015 */
(Julia) # DedekindEta is defined in A000594.
A002107List(len) = DedekindEta(len, 2)
A002107List(78) |> println # Peter Luschny, Mar 09 2018
CROSSREFS
Cf. A000712 (reciprocal of g.f.), A010815, A010816, A258406.
Powers of Euler's product: A000594, A000727 - A000731, A000735, A000739, A010815 - A010840.
KEYWORD
sign,nice
STATUS
approved
Expansion of Product (1 - x^k)^8 in powers of x.
(Formerly M4488 N1900)
+10
21
1, -8, 20, 0, -70, 64, 56, 0, -125, -160, 308, 0, 110, 0, -520, 0, 57, 560, 0, 0, 182, -512, -880, 0, 1190, -448, 884, 0, 0, 0, -1400, 0, -1330, 1000, 1820, 0, -646, 1280, 0, 0, -1331, -2464, 380, 0, 1120, 0, 2576, 0, 0, -880, 1748, 0, -3850, 0, -3400, 0, 2703, 4160, -2500, 0, 3458
OFFSET
0,2
COMMENTS
Number 22 of the 74 eta-quotients listed in Table I of Martin (1996).
Denoted by g_4(q) in Cynk and Hulek in Remark 3.4 on page 12 as the unique level 9 form of weight 4.
This is a member of an infinite family of integer weight modular forms. g_1 = A033687, g_2 = A030206, g_3 = A130539, g_4 = A000731. - Michael Somos, Aug 24 2012
a(n)=0 if and only if A033687(n)=0 (see the Han-Ono paper). - Emeric Deutsch, May 16 2008
Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).
REFERENCES
Newman, Morris; A table of the coefficients of the powers of eta(tau). Nederl. Akad. Wetensch. Proc. Ser. A. 59 = Indag. Math. 18 (1956), 204-216.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Matthew Boylan, Exceptional congruences for the coefficients of certain eta-product newforms, J. Number Theory 98 (2003), no. 2, 377-389. MR1955423 (2003k:11071)
Shaun Cooper, Minchael D. Hirschhorn and Richard Lewis, Powers of Euler's Product and Related Identities, The Ramanujan Journal, Vol. 4 (2), 137-155 (2000).
Slawomir Cynk and Klaus Hulek, Construction and examples of higher-dimensional modular Calabi-Yau manifolds, arXiv:math/0509424 [math.AG], 2005-2006.
Steven R. Finch, Powers of Euler's q-Series, arXiv:math/0701251 [math.NT], 2007.
Guo-Niu Han and Ken Ono, Hook Lengths and 3-Cores, Ann. Comb. (2011) Vol. 15, 305-312. See also arXiv:0805.2461, [math.NT], 2008.
Iva Kodrnja and Helena Koncul, Polynomials vanishing on a basis of S_m(Gamma_0(N)), Glasnik Matematički (2024) Vol. 59, No. 79, 313-325. See p. 319.
Yves Martin, Multiplicative eta-quotients, Trans. Amer. Math. Soc. 348 (1996), no. 12, 4825-4856, see page 4852 Table I.
Morris Newman, A table of the coefficients of the powers of eta(tau), Nederl. Akad. Wetensch. Proc. Ser. A. 59 = Indag. Math. 18 (1956), 204-216. [Annotated scanned copy]
FORMULA
Expansion of q^(-1/3) * eta(q)^8 in powers of q.
Expansion of q^(-1/3) * b(q)^3 * c(q) / 3 in powers of q where b(), c() are cubic AGM theta functions. - Michael Somos, Nov 08 2006
Expansion of q^(-1) * b(q) * c(q)^3 / 27 in powers of q^3 where b(), c() are cubic AGM theta functions. - Michael Somos, Nov 08 2006
Euler transform of period 1 sequence [ -8, ...].
a(n) = b(3*n + 1) where b(n) is multiplicative and b(3^e) = 0^e, b(p^e) = (1 + (-1)^e)/2 * (-1)^(e/2) * p^(3*e/2) if p == 2 (mod 3), b(p^e) = b(p)*b(p^(e-1)) - b(p^(e-2))*p^3 if p == 1 (mod 3) where b(p) = (x^2 - 3*p)*x, 4*p = x^2 + 3*y^2, |x|<|y| and x == 2 (mod 3). - Michael Somos, Aug 23 2006
Given g.f. A(x), then B(x) = x * A(x^3) satisfies 0 = f(B(x), B(x^2), B(x^4)) where f(u, v, w) = v^3 - u * w * (u + 16 * w). - Michael Somos, Feb 19 2007
G.f. is a period 1 Fourier series which satisfies f(-1 / (9 t)) = 81 (t/i)^4 f(t) where q = exp(2 Pi i t). - Michael Somos, Sep 29 2011
G.f.: Product_{k>0} (1 - x^k)^8.
a(2*n) = A153728(n). - Michael Somos, Sep 29 2011
a(4*n + 1) = -8 * a(n). - Michael Somos, Dec 06 2004
a(4*n + 3) = a(16*n + 13) = 0. - Michael Somos, Oct 19 2005
A092342(n) = a(n) + 81*A033690(n-1). - Michael Somos, Aug 22 2007
Sum_{n>=0} a(n) * q^(3*n + 1) = (Sum_{i,j,k in Z} (i-j) * (j-k) * (k-i) * q^((i*i + j*j + k*k) / 2)) / 2 where 0 = i+j+k, i == 1 (mod 3), j == 2 (mod 3), and k == 0 (mod 3). - Michael Somos, Sep 22 2014
a(0) = 1, a(n) = -(8/n)*Sum_{k=1..n} A000203(k)*a(n-k) for n > 0. - Seiichi Manyama, Mar 27 2017
G.f.: exp(-8*Sum_{k>=1} x^k/(k*(1 - x^k))). - Ilya Gutkovskiy, Feb 05 2018
Let M = p_1*...*p_k be a positive integer whose prime factors p_i (not necessarily distinct) are all congruent to 2 (mod 3). Then a( M^2*n + (M^2 - 1)/3 ) = (-1)^k*M^3*a(n). See Cooper et al., Theorem 1. - Peter Bala, Dec 01 2020
a(n) = b(3*n + 1) where b(n) is multiplicative and b(3^e) = 0^e, b(p^e) = (1 + (-1)^e)/2 * (-p^3)^(e/2) if p == 2 (mod 3), b(p^e) = (((x+sqrt(-3)*y)/2)^(3*e+3) - ((x-sqrt(-3)*y)/2)^(3*e+3))/(((x+sqrt(-3)*y)/2)^3 - ((x-sqrt(-3)*y)/2)^3) if p == 1 (mod 3) where 4*p = x^2 + 3*y^2, |x|<|y| and x == 2 (mod 3). - Jianing Song, Mar 19 2022
EXAMPLE
G.f. = 1 - 8*x + 20*x^2 - 70*x^3 + 64*x^4 + 56*x^5 - 125*x^6 - 160*x^7 + ...
G.f. = q - 8*q^4 + 20*q^7 - 70*q^13 + 64*q^16 + 56*q^19 - 125*q^25 - ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ QPochhammer[ x]^8, {x, 0, n}]; (* Michael Somos, Sep 29 2011 *)
a[ n_] := SeriesCoefficient[ Product[ 1 - x^k, {k, n}]^8, {x, 0, n}]; (* Michael Somos, Dec 09 2013 *)
PROG
(PARI) {a(n) = if( n<0, 0, polcoeff( eta(x + x * O(x^n))^8, n))};
(PARI) {a(n) = my(A, p, e, x, y, a0, a1); if( n<0, 0, n = 3*n + 1; A = factor(n); prod( k=1, matsize(A)[1], [p, e] = A[k, ]; if( p==3, 0, p%3==2, if( e%2, 0, (-1)^(e/2) * p^(3*e/2)), forstep( y=sqrtint(4*p\3), sqrtint(p\3), -1, if( issquare( 4*p - 3*y^2, &x), if( x%3!=2, x=-x); break)); a0=1; a1 = y = x * (x^2 - 3*p); for( i=2, e, x = y*a1 - p^3*a0; a0=a1; a1=x); a1)))}; /* Michael Somos, Aug 23 2006 */
(Sage) CuspForms( Gamma0(9), 4, prec=56).0; # Michael Somos, May 28 2013
(Magma) Basis( CuspForms( Gamma0(9), 4), 56) [1]; /* Michael Somos, Dec 09 2013 */
CROSSREFS
Powers of Euler's product: A000594, A000727 - A000731, A000735, A000739, A002107, A010815 - A010840.
KEYWORD
sign,easy,changed
EXTENSIONS
Corrected by Charles R Greathouse IV, Sep 02 2009
STATUS
approved
Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of Product_{j>=1} (1 - x^j)^k.
+10
18
1, 1, 0, 1, -1, 0, 1, -2, -1, 0, 1, -3, -1, 0, 0, 1, -4, 0, 2, 0, 0, 1, -5, 2, 5, 1, 1, 0, 1, -6, 5, 8, 0, 2, 0, 0, 1, -7, 9, 10, -5, 0, -2, 1, 0, 1, -8, 14, 10, -15, -4, -7, 0, 0, 0, 1, -9, 20, 7, -30, -6, -10, 0, -2, 0, 0, 1, -10, 27, 0, -49, 0, -5, 8, 0, -2, 0, 0, 1, -11, 35, -12, -70, 21, 11, 25, 9, 0, 1, 0, 0
OFFSET
0,8
COMMENTS
A(n,k) number of partitions of n into an even number of distinct parts minus number of partitions of n into an odd number of distinct parts with k types of each part.
FORMULA
G.f. of column k: Product_{j>=1} (1 - x^j)^k.
G.f. of column k: (Sum_{j=-inf..inf} (-1)^j*x^(j*(3*j+1)/2))^k.
Column k is the Euler transform of period 1 sequence [-k, -k, -k, ...].
EXAMPLE
A(3,2) = 2 because we have [2, 1], [2', 1], [2, 1'], [2', 1'] (number of partitions of 3 into an even number of distinct parts with 2 types of each part), [3], [3'] (number of partitions of 3 into an odd number of distinct parts with 2 types of each part) and 4 - 2 = 2.
Square array begins:
1, 1, 1, 1, 1, 1, ...
0, -1, -2, -3, -4, -5, ...
0, -1, -1, 0, 2, 5, ...
0, 0, 2, 5, 8, 10, ...
0, 0, 1, 0, -5, -15, ...
0, 1, 2, 0, -4, -6, ...
MAPLE
A:= proc(n, k) option remember; `if`(n=0, 1, -k*
add(numtheory[sigma](j)*A(n-j, k), j=1..n)/n)
end:
seq(seq(A(n, d-n), n=0..d), d=0..12); # Alois P. Heinz, Jun 21 2018
MATHEMATICA
Table[Function[k, SeriesCoefficient[Product[(1 - x^i)^k , {i, Infinity}], {x, 0, n}]][j - n], {j, 0, 12}, {n, 0, j}] // Flatten
Table[Function[k, SeriesCoefficient[QPochhammer[x, x, Infinity]^k, {x, 0, n}]][j - n], {j, 0, 12}, {n, 0, j}] // Flatten
Table[Function[k, SeriesCoefficient[Sum[(-1)^i*x^(i*(3*i + 1)/2), {i, -Infinity, Infinity}]^k, {x, 0, n}]][j - n], {j, 0, 12}, {n, 0, j}] // Flatten
CROSSREFS
Main diagonal gives A008705.
Antidiagonal sums give A299105.
KEYWORD
sign,tabl
AUTHOR
Ilya Gutkovskiy, May 08 2017
STATUS
approved
Expansion of Product_{k >= 1} (1 - x^k)^6.
(Formerly M4076 N1691)
+10
15
1, -6, 9, 10, -30, 0, 11, 42, 0, -70, 18, -54, 49, 90, 0, -22, -60, 0, -110, 0, 81, 180, -78, 0, 130, -198, 0, -182, -30, 90, 121, 84, 0, 0, 210, 0, -252, -102, -270, 170, 0, 0, -69, 330, 0, -38, 420, 0, -190, -390, 0, -108, 0, 0, 0, -300, 99, 442, 210, 0, 418, -294, 0, 0, -510, 378, -540, 138, 0
OFFSET
0,2
COMMENTS
This is Glaisher's function lambda(m). It appears to be defined only for odd m, and lambda(4t-1) = 0 (t >= 1), lambda(4t+1) = a(t) (t >= 0). - N. J. A. Sloane, Nov 25 2018
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Number 36 of the 74 eta-quotients listed in Table I of Martin (1996).
Dickson, v.2, p. 295 briefly states a result of Glaisher, 1883, pp 212-215. This result is that a(n) is the sum over all solutions of 16*n + 4 = x^2 + y^2 + z^2 + w^2 in nonnegative odd integers of chi(x) and is also the sum over all solutions of 8*n + 2 = x^2 + y^2 in nonnegative odd integers of chi(x) * chi(y) where chi(x) = x if x == 1 (mod 4) and -x if x == 3 (mod 4). [Michael Somos, Jun 18 2012]
Denoted by g_3(q) in Cynk and Hulek on page 8 as the unique weight 3 Hecke eigenform of level 16 with complex multiplication by i. - Michael Somos, Aug 24 2012
This is a member of an infinite family of integer weight modular forms. g_1 = A008441, g_2 = A002171, g_3 = A000729, g_4 = A215601, g_5 = A215472. - Michael Somos, Aug 24 2012
REFERENCES
L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 2, p. 295, and vol. 3, p. 134.
J. W. L. Glaisher, On the representations of a number as a sum of four squares, and on some allied arithmetical functions, Quarterly Journal of Pure and Applied Mathematics, 36 (1905), 305-358. See page 340.
J. W. L. Glaisher, The arithmetical functions P(m), Q(m), Omega(m), Quart. J. Math, 37 (1906), 36-48.
Morris Newman, A table of the coefficients of the powers of eta(tau). Nederl. Akad. Wetensch. Proc. Ser. A. 59 = Indag. Math. 18 (1956), 204-216.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
M. Boylan, Exceptional congruences for the coefficients of certain eta-product newforms, J. Number Theory 98 (2003), no. 2, 377-389. MR1955423 (2003k:11071)
S. Cooper, M. D. Hirschhorn and R. Lewis, Powers of Euler's Product and Related Identities, The Ramanujan Journal, Vol. 4 (2), 137-155 (2000).
S. Cynk and K. Hulek, Construction and examples of higher-dimensional modular Calabi-Yau manifolds, arXiv:math/0509424 [math.AG], 2005-2006.
S. R. Finch, Powers of Euler's q-Series, arXiv:math/0701251 [math.NT], 2007.
J. W. L. Glaisher, Note on the Compositions of a Number as a Sum of Two and Four Uneven Squares, Quarterly Journal of Pure and Applied Mathematics, 19 (1883), 212-215.
J. W. L. Glaisher, On the function chi(n), Quarterly Journal of Pure and Applied Mathematics, 20 (1884), 97-167.
J. W. L. Glaisher, On the function chi(n), Quarterly Journal of Pure and Applied Mathematics, 20 (1884), 97-167. [Annotated scanned copy]
J. W. L. Glaisher, On the representations of a number as the sum of two, four, six, eight, ten, and twelve squares, Quart. J. Math. 38 (1907), 1-62 (see p. 5).
Y. Martin, Multiplicative eta-quotients, Trans. Amer. Math. Soc. 348 (1996), no. 12, 4825-4856, see page 4852 Table I.
S. Milne and V. Leininger, Some new infinite families of eta function identities, Methods and Applications of Analysis 6 (1999), 225--248.
M. Newman, A table of the coefficients of the powers of eta(tau), Nederl. Akad. Wetensch. Proc. Ser. A. 59 = Indag. Math. 18 (1956), 204-216. [Annotated scanned copy]
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of q^(-1/4)/16 * theta_2(q)^4 * theta_3(q) * theta_4(q) in powers of q. - [Dickson, v. 3, p. 134] from Stieltjes footnote 160. Michael Somos, Jun 18 2012
Expansion of q^(-1/2) / 4 * k * k' * (K / (pi/2))^3 in powers of q^2 where k, k', K are Jacobi elliptic functions. - Michael Somos, Jun 22 2012
G.f.: Product_{k>0}(1 - x^k)^6.
Given g.f. A(x), then A(q^4) = f(-q^4)^6 = phi(q) * phi(-q) * psi(q^2)^4 where phi(), psi(), f() are Ramanujan theta functions. - Michael Somos, Aug 23 2006
a(n) = b(4*n + 1) where b(n) is multiplicative with b(2^e) = 0^e, b(p^e) = p^e * (1 + (-1)^e) / 2 if p == 3 (mod 4), b(p^e) = b(p) * b(p^(e-1)) - b(p^(e-2)) * p^2 if p == 1 (mod 4) and b(p) = 2 * (x^2 - y^2) where p = x^2 + y^2 and y is even. - Michael Somos, Aug 23 2006
G.f. is a period 1 Fourier series which satisfies f(-1 / (16 t)) = 64 (t/i)^3 f(t) where q = exp(2 Pi i t). - Michael Somos, Aug 24 2012
G.f.: Sum_{k>=0} a(k) * x^(4*k + 1) = (1/2) * Sum_{u,v in Z} (u*u - 4*v*v) * x^(u*u + 4*v*v). - Michael Somos, Jun 14 2007
G.f.: eta(x)^6 = Sum_{n>=0} (1+2n)^2*x^(n^2+n) + 2*Sum_{n>=0,k>=1} (1 + 4(n^2+n-k^2))*x^(n^2+n+k^2) - from the Milne and Leininger reference. [Paul D. Hanna, Mar 15 2010]
a(0) = 1, a(n) = -(6/n)*Sum_{k=1..n} A000203(k)*a(n-k) for n > 0. - Seiichi Manyama, Mar 26 2017
G.f.: exp(-6*Sum_{k>=1} x^k/(k*(1 - x^k))). - Ilya Gutkovskiy, Feb 05 2018
Let M be a positive integer whose prime factors are all congruent to 3 (mod 4) - see A004614. Then a( M^2*n + (M^2 - 1)/4 ) = M^2*a(n). See Cooper et al., equation 5. - Peter Bala, Dec 01 2020
a(n) = b(4*n + 1) where b(n) is multiplicative with b(2^e) = 0^e, b(p^e) = p^e * (1 + (-1)^e) / 2 if p == 3 (mod 4), b(p^e) = ((x+y*i)^(2*e+2) - (x-y*i)^(2*e+2))/((x+y*i)^2 - (x-y*i)^2) if p == 1 (mod 4) where p = x^2 + y^2 and x is odd. - Jianing Song, Mar 19 2022
EXAMPLE
G.f. = 1 - 6*x + 9*x^2 + 10*x^3 - 30*x^4 + 11*x^6 + 42*x^7 - 70*x^9 + 18*x^10 + ...
G.f. = q - 6*q^5 + 9*q^9 + 10*q^13 - 30*q^17 + 11*q^25 + 42*q^29 - 70*q^37 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ 1/16 EllipticTheta[ 4, 0, q] EllipticTheta[ 2, 0, q]^4 EllipticTheta[ 3, 0, q], {q, 0, 4 n + 1}]; (* Michael Somos, Jun 18 2012 *)
a[ n_] := If[ n < 0, 0, With[ {m = Sqrt[ 16 n + 4]}, SeriesCoefficient[ Sum[ Mod[k, 2] q^k^2, {k, m}]^3 Sum[ KroneckerSymbol[ -4, k] k q^k^2, {k, m}], {q, 0, 16 n + 4}]]]; (* Michael Somos, Jun 12 2012 *)
a[ n_] := With[ {m = InverseEllipticNomeQ @ q}, SeriesCoefficient[ Sqrt[(1 - m) m ] (EllipticK[m] 2/Pi)^3 / (4 q^(1/2)), {q, 0, 2 n}]]; (* Michael Somos, Jun 22 2012 *)
a[ n_] := SeriesCoefficient[ Product[ 1 - x^k, {k, n}]^6, {x, 0, n}]; (* Michael Somos, May 17 2015 *)
a[ n_] := SeriesCoefficient[ QPochhammer[ x]^6, {x, 0, n}]; (* Michael Somos, May 17 2015 *)
a[ n_] := SeriesCoefficient[ (-1/4) EllipticThetaPrime[ 1, -Pi/4, q] EllipticTheta[ 1, -Pi/4, q]^3, {q, 0, 4 n + 1}]; (* Michael Somos, May 17 2015 *)
a[ n_] := SeriesCoefficient[ (-1/16) EllipticThetaPrime[ 1, 0, q] EllipticTheta[ 1, -Pi/2, q]^3, {q, 0, 4 n + 1}]; (* Michael Somos, May 17 2015 *)
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^6, n))};
(PARI) {a(n) = my(A, p, e, x, y, a0, a1); if( n<0, 0, n = 4*n + 1; A = factor(n); prod( k=1, matsize(A)[1], [p, e] = A[k, ]; if( p==2, 0, p%4==3, if( e%2, 0, p^e), forstep( i=1, sqrtint(p), 2, if( issquare( p - i^2, &y), x=i; break)); a0=1; a1 = y = 2*(x^2 - y^2); for( i=2, e, x = y*a1 - p^2*a0; a0=a1; a1=x); a1)))}; /* Michael Somos, Aug 21 2006 */
(PARI) {a(n)=local(tn=(sqrtint(8*n+1)+1)\2); polcoeff(sum(m=0, tn, (1+2*m)^2*x^(m^2+m)+x*O(x^n)) + 2*sum(m=0, tn, sum(k=1, tn, (1+4*(m^2+m-k^2))*x^(m^2+m+k^2)+x*O(x^n))), n)} /* Paul D. Hanna, Mar 15 2010 */
(Magma) A := Basis( ModularForms( Gamma1(16), 3), 274); A[2] - 6*A[6] + 9*A[10] + 10*A[14] - 30*A[18]; /* Michael Somos, May 17 2015 */
(Magma) A := Basis( CuspForms( Gamma1(16), 3), 274); A[1] - 6*A[5]; /* Michael Somos, Jan 09 2017 */
CROSSREFS
Powers of Euler's product: A000594, A000727 - A000731, A000735, A000739, A002107, A010815 - A010840.
KEYWORD
sign,easy
STATUS
approved
Number of ternary words of length n with no 000's.
+10
7
1, 3, 9, 26, 76, 222, 648, 1892, 5524, 16128, 47088, 137480, 401392, 1171920, 3421584, 9989792, 29166592, 85155936, 248624640, 725894336, 2119349824, 6187737600, 18065963520, 52746101888, 153999606016, 449623342848, 1312738101504, 3832722100736, 11190167090176, 32671254584832
OFFSET
0,2
COMMENTS
Column 0 of A119825.
From Wolfdieter Lang, Dec 08 2020: (Start)
The sequence b(n) = a(n-1), for n >= 1, and b(0) = 1, with o.g.f. Gb(x) = (1 - x - x^2 - x^3)*G(x), where G(x) = 1/(1 - 2*x - 2*x^2 - 2*x^3) generates A077835, is the INVERT transform of the tribonacci sequence {Trib(k+2)}_{k >= 1}, with Trib(n) = A000739(n). See the Bernstein and Sloane link for INVERT.
The proof that (1 - 2*x - 2*x^2 - 2*x^3) = (1 - x - x^2 - x^3)*(1 - Sum_{k = 1..M} Trib(k+2)*x^k), for M >= 3, up to terms starting with Trib(M+3)*x^{M+1} can be done by induction, using the tribonacci recurrence. Letting M -> infinity one obtains the o.g.f. of {b(n)}_{n>=0) from the one given by the INVERT transform.
The explicit form of b(n), for n >= 1, is given in terms of the partition array A048996 (M_0-multinomials) with the multivariate row polynomials with indeterminates {Trib(k+2)}_{k = 1..n}. See the example section instead of giving the general baroque partition formula. (End)
LINKS
M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, arXiv:math/0205301 [math.CO], 2002; Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210.
D. Birmajer, J. B. Gil, and M. D. Weiner, On the Enumeration of Restricted Words over a Finite Alphabet, J. Int. Seq. 19 (2016) # 16.1.3, Example 7.
FORMULA
G.f.: (1+z+z^2)/(1-2*z-2*z^2-2*z^3).
a(n-1) = Sum_{m=1..n} Sum_{k=m..n} C(k-1, m-1) * Sum_{j=0..k} C(j, n-3*k+2*j) * C(k, j). - Vladimir Kruchinin, Apr 25 2011
G.f. for sequence with 1 prepended: 1/( 1 - Sum_{k>=1} (x+x^2+x^3)^k). - Joerg Arndt, Sep 30 2012 [This g.f. is then (1 - x - x^2 - x^3)/(1 - 2*x - 2*x^2 - 2*x^3); see the above given INVERT comment. - Wolfdieter Lang, Dec 08 2020]
a(n) = round((3/2)*((r+s+2)/3)^(n+3)/(r^2+s^2+10)), where r=(53+3*sqrt(201))^(1/3), s=(53-3*sqrt(201))^(1/3); r and s are the real roots of the polynomial x^6 - 106*x^3 + 1000. - Anton Nikonov, Jul 11 2013
a(n) = A077835(n) + A077835(n-1) + A077835(n-2). - R. J. Mathar, Aug 07 2015
EXAMPLE
a(4)=76 because among the 3^4=81 ternary words of length 4 only 0000, 0001, 0002, 1000 and 2000 contain 000's.
Partition formula from INVERT with T(n) = Trib(n+2) = A000739(n+2) (see the W. Lang comment above) a(4) = 76 = b(5) = 1*T(5) + (2*T(1)*T(4) + 2*T(2)*T(3)) + (3*T(1)^2*T(3) + 3*T(1)*T(2)^2) + 4*T(1)^3*T(2) + 1*T(1)^5, from row n = 5 of A048996: [1, 2, 2, 3, 3, 4, 1]. - Wolfdieter Lang, Dec 08 2020
MAPLE
g:=(1+z+z^2)/(1-2*z-2*z^2-2*z^3): gser:=series(g, z=0, 32): seq(coeff(gser, z, n), n=0..28);
# second Maple program:
a:= n-> (<<0|1|0>, <0|0|1>, <2|2|2>>^n. <<1, 3, 9>>)[1, 1]:
seq(a(n), n=0..30); # Alois P. Heinz, Oct 30 2012
MATHEMATICA
nn=30; CoefficientList[Series[(1-x^3)/(1-3x+2x^4), {x, 0, nn}], x] (* Geoffrey Critzer, Oct 30 2012 *)
LinearRecurrence[{2, 2, 2}, {1, 3, 9}, 30] (* Jean-François Alcover, Dec 25 2015 *)
PROG
(Maxima)
a(n):=sum(sum(binomial(k-1, m-1)*sum(binomial(j, n-3*k+2*j)*binomial(k, j), j, 0, k), k, m, n), m, 1, n); /* Vladimir Kruchinin, Apr 25 2011 */
CROSSREFS
Cf. A119825, A119827 (exactly one 000), A231430 (one or more 000).
KEYWORD
nonn,easy
AUTHOR
Emeric Deutsch, May 26 2006
STATUS
approved
Expansion of Product (1 - x^k)^10 in powers of x.
+10
6
1, -10, 35, -30, -105, 238, 0, -260, -165, 140, 1054, -770, -595, 0, -715, 2162, 455, 0, -2380, -1820, 2401, -680, 1495, 3080, 1615, -6958, -1925, 0, 0, 5100, -1442, 8330, -5355, 1330, 0, -16790, 0, 8190, 8265, 0, 1918, 0, 8415, -10230, -7140, -9362
OFFSET
0,2
REFERENCES
Newman, Morris; A table of the coefficients of the powers of eta(tau). Nederl. Akad. Wetensch. Proc. Ser. A. 59 = Indag. Math. 18 (1956), 204-216.
LINKS
M. Boylan, Exceptional congruences for the coefficients of certain eta-product newforms, J. Number Theory 98 (2003), no. 2, 377-389.
S. Cooper, The Quintuple product identity, Int. J. Number Theory 2 (2006), no. 1, 115-161. See after equation (73).
S. Cooper, M. D. Hirschhorn and R. Lewis, Powers of Euler's Product and Related Identities, The Ramanujan Journal, Vol. 4 (2), 137-155 (2000).
S. R. Finch, Powers of Euler's q-Series, arXiv:math/0701251 [math.NT], 2007.
FORMULA
Expansion of f(-x)^10 in powers of x where f() is a Ramanujan theta function.
Expansion of q^(-5/12) * eta(q)^10 in powers of q. - Michael Somos, Jun 09 2011
a(n) = b(12*n + 5) / 48 where b() is multiplicative with b(2^e) = b(3^e) = 0^e, b(p^e) = (1 + (-1)^e) / 2 * p^(2*e) if p == 7 or 11 (mod 12), b(p^e) = b(p) * b(p^(e-1)) - p^4 * b(p^(e-2)) if p == 1 or 5 (mod 12). - Michael Somos, Jun 24 2013
G.f. is a period 1 Fourier series which satisfies f(-1 / (144 t)) = 12^5 (t/i)^5 f(t) where q = exp(2 Pi i t). - Michael Somos, Jan 06 2014
G.f.: Product_{k>0} (1 - x^k)^10. a(49*n + 20) = 2401 * a(n).
48 * a(n) = A234565(3*n + 1). a(7*n + 2) = 0 unless n == 2 (mod 7). - Michael Somos, Jul 18 2014
a(0) = 1, a(n) = -(10/n)*Sum_{k=1..n} A000203(k)*a(n-k) for n > 0. - Seiichi Manyama, Mar 27 2017
G.f.: exp(-10*Sum_{k>=1} x^k/(k*(1 - x^k))). - Ilya Gutkovskiy, Feb 05 2018
Let M = p_1*...*p_k be a positive integer whose prime factors p_i (not necessarily distinct) are congruent to 7 (mod 12) or 11 (mod 12). Then a( M^2*n + 10*(M^2 - 1)/24 ) = M^4*a(n). See Cooper et al., Theorem 1. - Peter Bala, Dec 01 2020
EXAMPLE
G.f. = 1 - 10*x + 35*x^2 - 30*x^3 - 105*x^4 + 238*x^5 - 260*x^7 - 165*x^8 + ...
G.f. = q^5 - 10*q^17 + 35*q^29 - 30*q^41 - 105*q^53 + 238*q^65 - 260*q^89 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ QPochhammer[ x]^10, {x, 0, n}]; (* Michael Somos, Jun 24 2013 *)
PROG
(PARI) {a(n) = if( n<0, 0, polcoeff( eta(x + x * O(x^n))^10, n))}; /* Michael Somos, Jun 09 2011 */
(PARI) {a(n) = local(m, x, y, z); if( n<0, 0, m = 12*n + 5; z = 0; for( x = -sqrtint(m), sqrtint(m), if( x%6 != 1, next); if( issquare( m - x^2, &y), if( y%6 == 2, y = -y); if( y%6 == 4, z += x*y * (x*x - y*y) ))); z / 6)}; /* Michael Somos, Jun 09 2011 */
(PARI) {a(n) = local(A, p, e, i, x, y, a0, a1); if( n<0, 0, n = 12*n + 5; A = factor(n); 1 / 48 * prod( k=1, matsize(A)[1], if( p=A[k, 1], e=A[k, 2]; if( p<5, 0, if( p%12 > 6, if( e%2, 0, p^(2*e)), forstep( i = 1, sqrtint( p), 2, if( issquare( p - i^2, &y), x=i; break)); if( p%12 == 5, a1 = 8 * x*y * (x-y) * (x+y) * (-1)^((x%6==1) + (y%6==4)), a1 = 2 * (x^2-y^2+2*x*y) * (x^2-y^2-2*x*y) * (-1)^(x%6==3) ); a0 = 1; y = a1; for( i=2, e, x = y * a1 - p^4 * a0; a0=a1; a1=x); a1 )))))}; /* Michael Somos, Jun 24 2013 */
CROSSREFS
Powers of Euler's product: A000594, A000727 - A000731, A000735, A000739, A002107, A010815 - A010840.
KEYWORD
sign,easy
STATUS
approved
Expansion of f(-x)^8 * Q(x) in powers of x where f() is a Ramanujan theta function and Q() is a Ramanujan Lambert series.
+10
1
1, 232, 260, -5760, 6890, 7744, 33176, -115200, 14035, 60320, 1508, 449280, -380770, -599040, 7640, 599040, -755943, 1598480, 1843200, -2620800, -988858, -2995712, 3857360, -1497600, -2004730, 7696832, 2699684, 1670400, -7188480, -11980800, 1791400, 10736640
OFFSET
0,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Ramanujan Lambert series: P(q) (see A006352), Q(q) (A004009), R(q) (A013973).
REFERENCES
Srinivasa Ramanujan, The Lost Notebook and Other Unpublished Papers, Narosa Publishing House, New Delhi, 1988, p. 329, 2nd equation.
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of f(-x)^8 * (f(-x)^24 + 256 * x * f(-x^2)^24) / (f(-x) * f(-x^2))^8 in powers of x.
a(n) = b(3*n+1) where b() is multiplicative with b(p^e) = 0^e if p=3 and b(p^e) = b(p)*b(p^(e-1)) - p^7*b(p^(e-2)) otherwise.
G.f. is a period 1 Fourier series which satisfies f(-1 / (9 t)) = 6561 (t/i)^8 f(t) where q = exp(2 Pi i t).
Convolution of A000731 and A004009.
EXAMPLE
G.f. = 1 + 232*x + 260*x^2 - 5760*x^3 + 6890*x^4 + 7744*x^5 + 33176*x^6 - 115200*x^7 + 14035*x^8 + ...
G.f. = q + 232*q^4 + 260*q^7 - 5760*q^10 + 6890*q^13 + 7744*q^16 + 33176*q^19 - 115200*q^22 + ...
MATHEMATICA
a[ n_] := If[ n < 0, 0, SeriesCoefficient[ QPochhammer[ x]^8 (1 + 240 Sum[ DivisorSigma[ 3, k] x^k, {k, n}]), {x, 0, n}]];
a[ n_] := SeriesCoefficient[ With[ {A1 = QPochhammer[ x]^8, A2 = QPochhammer[ x^2]^8}, A1 (A1^3 + 256 x A2^3) / (A1 A2)], {x, 0, n}];
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^8 * sum(k=1, n, 240 * sigma(k, 3) * x^k, 1 + A), n))};
(PARI) {a(n) = my(A, A1, A2); if( n<0, 0, A = x * O(x^n); A1 = eta(x + A)^8; A2 = eta(x^2 + A)^8; polcoeff( A1 * (A1^3 + 256 * x * A2^3) / (A1 * A2), n))};
(Magma) A := Basis( CuspForms( Gamma0(9), 8), 95); A[1] + 232*A[4];
CROSSREFS
KEYWORD
sign
AUTHOR
Michael Somos, Sep 27 2016
STATUS
approved

Search completed in 0.027 seconds